LINGO模型实例及求解讲解学习
- 格式:ppt
- 大小:1.29 MB
- 文档页数:21
LINGO是一种用于线性规划、整数规划、非线性规划、混合整数规划等数学建模和优化问题的软件工具。
它可以用于解决各种实际问题,包括生产计划、物流、资源分配、网络设计等。
以下是一个简单的LINGO案例,以帮助您了解如何使用LINGO进行优化建模和求解问题:**问题描述:**假设有一家制造公司,他们生产两种产品:A和B。
公司有两个工厂,每个工厂都有不同的生产能力和成本。
公司希望确定每个工厂应该生产多少产品A和B,以最大化利润,同时满足生产能力和市场需求的限制。
**问题数据:**- 工厂1的生产能力:最多生产500个A和300个B- 工厂2的生产能力:最多生产400个A和600个B- 产品A的利润:每个A产品的利润为30美元- 产品B的利润:每个B产品的利润为40美元- 生产一个A产品的成本:工厂1为10美元,工厂2为15美元- 生产一个B产品的成本:工厂1为12美元,工厂2为10美元- 市场需求:产品A的市场需求为600个,产品B的市场需求为800个**LINGO建模和求解:**在LINGO中,可以使用数学表达式来建立优化模型。
以下是一个LINGO模型的示例:```SETS:FACTORIES = 1..2;ENDSETSDATA:CAPACITY(FACTORIES) = 500 300400 600;PROFIT = 30 40;COST(FACTORIES) = 10 1512 10;DEMAND = 600 800;ENDDATAVARIABLES:X(FACTORIES) = 0;ENDVARIABLESMAX = @SUM(FACTORIES, PROFIT(FACTORIES) * X(FACTORIES))SUBJECT TOCAPACITY_CONSTRAINT(F)$(FACTORIES): @SUM(FACTORIES, COST(F, FACTORIES) * X(FACTORIES)) <= CAPACITY(F);DEMAND_CONSTRAINT(I)$(FACTORIES): @SUM(FACTORIES,X(FACTORIES)) >= DEMAND(I);POSITIVE_X(F)$(FACTORIES): X(F) >= 0;ENDSUBMODEL:MAX;SOLVE;```上述LINGO模型首先定义了SETS、DATA、VARIABLES和MAX,然后使用SUBJECT TO部分定义了约束条件,最后使用MODEL和SOLVE命令求解优化问题。
运筹学实例分析及lingo 求解一、线性规划某公司有6个仓库,库存货物总数分别为60、55、51、43、41、52,现有8个客户各要一批货,数量分别为35,37,22,32,41,32,43,38。
各供货仓库到8个客户处的单位货物运输价见表试确定各仓库到各客户处的货物调运数量,使总的运输费用最小。
解:设ijx 表示从第i 个仓库到第j 个客户的货物运量。
ij c表示从第i 个仓库到第j 个客户的单位货物运价,i a 表示第i 个仓库的最大供货量,j d 表示第j 个客户的订货量。
目标函数是使总运输费用最少,约束条件有三个:1、各仓库运出的货物总量不超过其库存数2、各客户收到的货物总量等于其订货数量3、非负约束数学模型为:∑∑===6181)(min i j ijij x c x f⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥===≤∑∑==08,,2,1,6,2,1,,..6181ij j i ij i j ij x j d x i a x t s 编程如下:model : Sets :Wh/w1..w6/:ai; Vd/v1..v8/:dj;links(wh,vd):c,x;endsetsData:ai=60,55,51,43,41,52;dj=35,37,22,32,41,32,43,38;c=6,2,6,7,4,2,5,94,9,5,3,8,5,8,25,2,1,9,7,4,3,37,6,7,3,9,2,7,12,3,9,5,7,2,6,55,5,2,2,8,1,4,3;EnddataMin=@sum(links(i,j):c(i,j)*x(i,j));@for(wh(i):@sum(vd(j):x(i,j))<=ai(i));@for(vd(j):@sum(wh(i):x(i,j))=dj(j));endGlobal optimal solution found.Objective value: 664.0000Total solver iterations: 0Variable Value Reduced Cost AI( W1) 60.00000 0.000000 AI( W2) 55.00000 0.000000 AI( W3) 51.00000 0.000000 AI( W4) 43.00000 0.000000 AI( W5) 41.00000 0.000000 AI( W6) 52.00000 0.000000 DJ( V1) 35.00000 0.000000 DJ( V2) 37.00000 0.000000 DJ( V3) 22.00000 0.000000 DJ( V4) 32.00000 0.000000 DJ( V5) 41.00000 0.000000 DJ( V6) 32.00000 0.000000 DJ( V7) 43.00000 0.000000 DJ( V8) 38.00000 0.000000 C( W1, V1) 6.000000 0.000000 C( W1, V2) 2.000000 0.000000 C( W1, V3) 6.000000 0.000000 C( W1, V4) 7.000000 0.000000 C( W1, V5) 4.000000 0.000000 C( W1, V6) 2.000000 0.000000 C( W1, V7) 5.000000 0.000000C( W2, V1) 4.000000 0.000000 C( W2, V2) 9.000000 0.000000 C( W2, V3) 5.000000 0.000000 C( W2, V4) 3.000000 0.000000 C( W2, V5) 8.000000 0.000000 C( W2, V6) 5.000000 0.000000 C( W2, V7) 8.000000 0.000000 C( W2, V8) 2.000000 0.000000 C( W3, V1) 5.000000 0.000000 C( W3, V2) 2.000000 0.000000 C( W3, V3) 1.000000 0.000000 C( W3, V4) 9.000000 0.000000 C( W3, V5) 7.000000 0.000000 C( W3, V6) 4.000000 0.000000 C( W3, V7) 3.000000 0.000000 C( W3, V8) 3.000000 0.000000 C( W4, V1) 7.000000 0.000000 C( W4, V2) 6.000000 0.000000 C( W4, V3) 7.000000 0.000000 C( W4, V4) 3.000000 0.000000 C( W4, V5) 9.000000 0.000000 C( W4, V6) 2.000000 0.000000 C( W4, V7) 7.000000 0.000000 C( W4, V8) 1.000000 0.000000 C( W5, V1) 2.000000 0.000000 C( W5, V2) 3.000000 0.000000 C( W5, V3) 9.000000 0.000000 C( W5, V4) 5.000000 0.000000 C( W5, V5) 7.000000 0.000000 C( W5, V6) 2.000000 0.000000 C( W5, V7) 6.000000 0.000000 C( W5, V8) 5.000000 0.000000 C( W6, V1) 5.000000 0.000000 C( W6, V2) 5.000000 0.000000 C( W6, V3) 2.000000 0.000000 C( W6, V4) 2.000000 0.000000 C( W6, V5) 8.000000 0.000000 C( W6, V6) 1.000000 0.000000 C( W6, V7) 4.000000 0.000000 C( W6, V8) 3.000000 0.000000 X( W1, V1) 0.000000 5.000000 X( W1, V2) 19.00000 0.000000 X( W1, V3) 0.000000 5.000000X( W1, V5) 41.00000 0.000000 X( W1, V6) 0.000000 2.000000 X( W1, V7) 0.000000 2.000000 X( W1, V8) 0.000000 10.00000 X( W2, V1) 1.000000 0.000000 X( W2, V2) 0.000000 4.000000 X( W2, V3) 0.000000 1.000000 X( W2, V4) 32.00000 0.000000 X( W2, V5) 0.000000 1.000000 X( W2, V6) 0.000000 2.000000 X( W2, V7) 0.000000 2.000000 X( W2, V8) 0.000000 0.000000 X( W3, V1) 0.000000 4.000000 X( W3, V2) 11.00000 0.000000 X( W3, V3) 0.000000 0.000000 X( W3, V4) 0.000000 9.000000 X( W3, V5) 0.000000 3.000000 X( W3, V6) 0.000000 4.000000 X( W3, V7) 40.00000 0.000000 X( W3, V8) 0.000000 4.000000 X( W4, V1) 0.000000 4.000000 X( W4, V2) 0.000000 2.000000 X( W4, V3) 0.000000 4.000000 X( W4, V4) 0.000000 1.000000 X( W4, V5) 0.000000 3.000000 X( W4, V6) 5.000000 0.000000 X( W4, V7) 0.000000 2.000000 X( W4, V8) 38.00000 0.000000 X( W5, V1) 34.00000 0.000000 X( W5, V2) 7.000000 0.000000 X( W5, V3) 0.000000 7.000000 X( W5, V4) 0.000000 4.000000 X( W5, V5) 0.000000 2.000000 X( W5, V6) 0.000000 1.000000 X( W5, V7) 0.000000 2.000000 X( W5, V8) 0.000000 5.000000 X( W6, V1) 0.000000 3.000000 X( W6, V2) 0.000000 2.000000 X( W6, V3) 22.00000 0.000000 X( W6, V4) 0.000000 1.000000 X( W6, V5) 0.000000 3.000000 X( W6, V6) 27.00000 0.000000 X( W6, V7) 3.000000 0.000000Row Slack or Surplus Dual Price 1 664.0000 -1.000000 2 0.000000 3.000000 3 22.00000 0.000000 4 0.000000 3.000000 5 0.000000 1.000000 6 0.000000 2.000000 7 0.000000 2.000000 8 0.000000 -4.000000 9 0.000000 -5.000000 10 0.000000 -4.000000 11 0.000000 -3.000000 12 0.000000 -7.000000 13 0.000000 -3.000000 14 0.000000 -6.000000 15 0.000000 -2.000000由以上结果可以清楚的看到由各仓库到各客户处的货物调运数量,由此得出的符合条件的最佳运货方案,而使运费最低,最低为664。
附1:用LINGO求解线性规划的例子一奶制品加工厂用牛奶生产A1、A2两种奶制品,1桶牛奶可以在设备甲上用12小时加工成3公斤A1,或者在设备乙上用8小时加工成4公斤A2。
根据市场需求,生产的A1、A2能全部售出,且每公斤A1获利24元,每公斤A2获利16元。
现在加工厂每天能得到50桶牛奶的供应,每天正式工人总的劳动时间为480小时,并且设备甲每天至多能加工100公斤A1,设备乙的加工能力没有限制。
试为该厂制定一个生产计划,使每天获利最大,并进一步讨论以下3个附加问题:1)若用35元可以购买到1桶牛奶,应否作这项投资?若投资,每天最多购买多少桶牛奶?2)若可以聘用临时工人以增加劳动时间,付给临时工人的工资最多是每小时几元?3)由于市场需求变化,每公斤A1的获利增加到30元,应否改变生产计划?数学模型:设每天用x1桶牛奶生产A1 ,用x2桶牛奶生产A2目标函数:设每天获利为z元。
x1桶牛奶可生产3x1公斤A1,获利24*3x1,x2桶牛奶可生产4*x2公斤A2,获利16*4x2,故z=72x1+64x2约束条件:原料供应:生产A1、A2的原料(牛奶)总量不超过每天的供应50桶,即x1+x2≤50劳动时间:生产A1、A2的总加工时间不超过每天正式工人总的劳动时间480小时,即12x1+8x2≤480设备能力:A1的产量不得超过设备甲每天的加工能力100小时,即3x1≤100非负约束:x1、x2均不能为负值,即x1≥0,x2≥0综上所述可得max z=72x1+64x2s.t.x1+x2≤5012x1+8x2≤4803x1≤100x1≥0,x2≥0显然,目标函数和约束条件都是线性的,这是一个线性规划(LP),求出的最优解将给出使净利润最大的生产计划,要讨论的问题需要考虑参数的变化对最优解和影响,一般称为敏感性(或灵敏度)分析。
LINGO求解线性规划用LINGO求解线性规划时,首先在LINGO软件的模型窗口输入一个LP模型,模型以MAX或MIN 开始,按线性规划问题的自然形式输入(见下面例子所示)。
LINGO的一个小例子及相关解释北航:孔继利第一部分:在LINGO Model窗口,键入如下的最优化模型:!目标函数;max=100*x+150*y;!约束条件;x<=80;y<=100;x*2+y<=180;1.从中可以看出,最优化模型包含三个要素:目标函数、变量、约束。
2.在LINGO的模型中,每一行都必须要用一个分号结尾。
如果没有这些分号,模型将无法求解。
3. LINGO模型的一个表达式可以分几行输入,但是表达式必须用一个分号结束。
如:max=100*x+150*y;4.在LINGO中为了提高模型的可读性,需要增加注释。
注释以“!”开始,以“;”结束。
5. LINGO不区分字母的大小写。
6. LINGO中的变量名都必须用字母A~Z开始,接下来是其他字符、数字或底线。
第二部分:点击“solve”按钮,在编译不出错的情况下,将给出“求解状态窗口”和“模型解答报告”。
该模型的“求解状态窗口”的如下图:其中,变量框(Variables)显示的是变量的总数。
它也显示非线性变量和整数变量的个数。
一般,非线性变量和整数变量的个数越多,求解越困难,耗费的时间越多。
模型中变量的数目不包含取定值的变量。
约束框(Constraints)显示的是模型约束的总数和非线性约束的总数。
非零框(Nonzeros)显示的是模型中非零系数的总数和非线性变量中非零系数的总数。
内存显示框(Memory Used)显示正在使用的模型所需的内存大小。
耗用时间框(Elapsed Runtime)显示用于编译和求解模型所需的时间。
最优状态框(Optimizer Status)显示最优解得状态。
State(状态):给出现行解的状态。
可能的结果有“全局最优解”、“局部最优解”、“可行解”、“不可行解”、“无界解”、“中断”和“未定”。
Iterations(跌代):求解的跌代次数。
Infeasibility(不可行):矛盾约束的数目。
基础题:1.目标规划问题最近,某节能灯具厂接到了订购16000套A 型和B 型节能灯具的订货合同,合同中没有对这两种灯具的各自数量做要求,但合同要求工厂在一周内完成生产任务并交货。
根据该厂的生产能力,一周内可以利用的生产时间为20000min ,可利用的包装时间为36000min 。
生产完成和包装一套A 型节能灯具各需要2min ;生产完成和包装完成一套B 型节能灯具各需要1min 和3min 。
每套A 型节能灯成本为7元,销售价为15元,即利润为8元;每套B 型节能灯成本为14元,销售价为20元,即利润为6元。
厂长首先要求必须按合同完成订货任务,并且即不要有足量,也不要有超量。
其次要求满意销售额达到或者尽量接近275000元。
最后要求在生产总时间和包装总时间上可以有所增加,但过量尽量地小。
同时注意到增加生产时间要比包装时间困难得多。
试为该节能灯具厂制定生产计划。
解:将题中数据列表如下:根据问题的实际情况,首先分析确定问题的目标级优先级。
第一优先级目标:恰好完成生产和包装完成节能灯具16000套,赋予优先因子p1;第二优先级目标:完成或者尽量接近销售额为275000元,赋予优先因子p2; 第三优先级目标:生产和包装时间的增加量尽量地小,赋予优先因子p3; 然后建立相应的目标约束。
在此,假设决策变量12,x x 分别表示A 型,B 型节能灯具的数量。
(1) 关于生产数量的目标约束。
用1d -和1d +分别表示未达到和超额完成订货指标16000套的偏差量,因此目标约束为1111211min ,..16000z d d s t x x d d -+-+=+++-=要求恰好达到目标值,即正、负偏差变量都要尽可能地小(2) 关于销售额的目标约束。
用2d -和2d +分别表示未达到和超额完成满意销售指标275000元的偏差值。
因此目标约束为221222min ,..1520-275000.z d s t x x d d --+=++=要求超过目标值,即超过量不限,但必须是负偏差变量要尽可能地小,(另外:d +要求不超过目标值,即允许达不到目标值,就是正偏差变量要尽可能地小) (3) 关于生产和包装时间的目标约束。
数学建模实验报告1.解析:此题属于0-1模型问题。
设队员序号为i ,泳姿为j ,记c ij 为队员i 第j 种泳姿的百米成绩,若选择队员i 参加泳姿j 的比赛,记x ij =1, 否则记xij =0;则有,目标函数为∑∑===4151j i ij ij x c Z Min ,每个人最多选泳姿为1,则有5,1,141=≤∑=i xj ij,每种泳姿有且仅有1人,则有4,1,151==∑=j xi ij。
若丁的蛙泳成绩退步及戊的自由泳成绩进步,则将c43的值和c54的值改变即可。
实验过程及运行结果如下:若丁的蛙泳成绩退步为1'15"2及戊的自由泳成绩进步57"5,计算结果如下:通过计算结果可知,在原数据的情况下,队伍的选择应该是甲参加自由泳,乙参加蝶泳,丙参加仰泳,丁参加蛙泳,戊不参加任何比赛,且最好的时间是253.2秒。
若丁的蛙泳成绩退步为1'15"2及戊的自由泳成绩进步57"5,则组成接力的比赛队伍调整为乙参加蝶泳,丙参加仰泳,丁参加蛙泳,戊参加自由泳,甲不参加任何比赛。
2.解析:此题属于线性规划问题。
已知某工厂用1A 、2A 两台机床加工1B 、2B 、3B 三种不同的零件,设1A 生产1B 、2B 、3B 的个数分别为1x 、2x 、3x ,2A 生产1B 、2B 、3B 的个数分别为4x 、5x 、6x ,则目标函数为min=1*2*1x +2*3*2x +3*5*3x +1*3*4x +1*3*5x +3*6*6x ;1A 加工的工时小于80小时,2A 加工的工时小于100小时,生产1B 、2B 、3B 的总数分别为70个、50个、20个。
实验过程及运行结果如下:通过计算结果可知,当1A 生产1B 、2B 、3B 的个数分别为68个、0个、4个,2A 生产1B 、2B 、3B 的个数分别为2个、50个、16个的时候,才能得到最低的成本640元。