lingo与建模
- 格式:ppt
- 大小:1.69 MB
- 文档页数:19
第9卷第3期2007年6月黄山学院学报JOurnal0fHuangshanUniVefsityVo】.9.NO.3Jun.2007数学建模中的优秀软件——LINGO周甄川(黄山学院数学系,安徽黄山245041)摘要:介绍了数学建模的相关概念、数学建模竞赛概况,探讨了LINGo系统的功能与特点,以及它在数学建模中的应用。
关键词:数学模型;数学建模;LlNGo系统中图分类号:TP319:0141.4文献标识码:A文章编号:1672—447x(2007)03—0112—03在对自然科学与社会科学许多课题的研究中,科学工作者常将事物的变化规律用特定的数学表达式的形式加以描述。
将寻求这种确定事物变化规律的过程称为“数学建模”。
而在数学建模以及全国大学生数学建模竞赛中,最常碰到的是一类决策问题,即在一系列限制条件下,寻求使某个或多个指标达到最大或最小,这种决策问题通常称为最优化问题【1】。
最优化理论是近几十年发展和形成的一门新兴的应用性学科。
它主要解决最优生产计划、最优分配、最优设计、最优决策、最佳管理等最优化问题。
主要研究方法是定量化、系统化和模型化方法,特别是运用各种数学模型和技术来解决问题。
它主要由决策变量、目标函数、约束条件三个要素组成。
当遇到的实际问题时即使建立了模型,找到了解的方法,对于较大的计算量也是望而却步,LINGo系列优化软件包就给我们提供了理想的选择。
1什么是数学建模数学建模(MatheImticalModelin曲‘11顾名思义就是建立数学模型以解决实际问题的过程。
它利用数学和计算机对实际问题进行分析研究,抽象出反映事物内在活动规律的数学关系表达式,通过对这些数学关系表达式的求解和反复验证,最终解决实际问题。
数学是所有自然科学的基础,随着计算机软硬件技术的迅速发展,数学建模和与之相伴的计算已逐渐成为工程设计的关键工具,并在人类社会实践活动中的众多领域内发挥着越来越重要的作用。
那么,什么是数学模型?如何建立数学模型?如何用数学模型解决实际问题呢?模型就是对事物的一种抽象。
基础题:1.目标规划问题最近,某节能灯具厂接到了订购16000套A 型和B 型节能灯具的订货合同,合同中没有对这两种灯具的各自数量做要求,但合同要求工厂在一周内完成生产任务并交货。
根据该厂的生产能力,一周内可以利用的生产时间为20000min ,可利用的包装时间为36000min 。
生产完成和包装一套A 型节能灯具各需要2min ;生产完成和包装完成一套B 型节能灯具各需要1min 和3min 。
每套A 型节能灯成本为7元,销售价为15元,即利润为8元;每套B 型节能灯成本为14元,销售价为20元,即利润为6元。
厂长首先要求必须按合同完成订货任务,并且即不要有足量,也不要有超量。
其次要求满意销售额达到或者尽量接近275000元。
最后要求在生产总时间和包装总时间上可以有所增加,但过量尽量地小。
同时注意到增加生产时间要比包装时间困难得多。
试为该节能灯具厂制定生产计划。
解:将题中数据列表如下:根据问题的实际情况,首先分析确定问题的目标级优先级。
第一优先级目标:恰好完成生产和包装完成节能灯具16000套,赋予优先因子p1;第二优先级目标:完成或者尽量接近销售额为275000元,赋予优先因子p2; 第三优先级目标:生产和包装时间的增加量尽量地小,赋予优先因子p3; 然后建立相应的目标约束。
在此,假设决策变量12,x x 分别表示A 型,B 型节能灯具的数量。
(1) 关于生产数量的目标约束。
用1d -和1d +分别表示未达到和超额完成订货指标16000套的偏差量,因此目标约束为1111211min ,..16000z d d s t x x d d -+-+=+++-=要求恰好达到目标值,即正、负偏差变量都要尽可能地小(2) 关于销售额的目标约束。
用2d -和2d +分别表示未达到和超额完成满意销售指标275000元的偏差值。
因此目标约束为221222min ,..1520-275000.z d s t x x d d --+=++=要求超过目标值,即超过量不限,但必须是负偏差变量要尽可能地小,(另外:d +要求不超过目标值,即允许达不到目标值,就是正偏差变量要尽可能地小) (3) 关于生产和包装时间的目标约束。
数学建模实验报告1.解析:此题属于0-1模型问题。
设队员序号为i ,泳姿为j ,记c ij 为队员i 第j 种泳姿的百米成绩,若选择队员i 参加泳姿j 的比赛,记x ij =1, 否则记xij =0;则有,目标函数为∑∑===4151j i ij ij x c Z Min ,每个人最多选泳姿为1,则有5,1,141=≤∑=i xj ij,每种泳姿有且仅有1人,则有4,1,151==∑=j xi ij。
若丁的蛙泳成绩退步及戊的自由泳成绩进步,则将c43的值和c54的值改变即可。
实验过程及运行结果如下:若丁的蛙泳成绩退步为1'15"2及戊的自由泳成绩进步57"5,计算结果如下:通过计算结果可知,在原数据的情况下,队伍的选择应该是甲参加自由泳,乙参加蝶泳,丙参加仰泳,丁参加蛙泳,戊不参加任何比赛,且最好的时间是253.2秒。
若丁的蛙泳成绩退步为1'15"2及戊的自由泳成绩进步57"5,则组成接力的比赛队伍调整为乙参加蝶泳,丙参加仰泳,丁参加蛙泳,戊参加自由泳,甲不参加任何比赛。
2.解析:此题属于线性规划问题。
已知某工厂用1A 、2A 两台机床加工1B 、2B 、3B 三种不同的零件,设1A 生产1B 、2B 、3B 的个数分别为1x 、2x 、3x ,2A 生产1B 、2B 、3B 的个数分别为4x 、5x 、6x ,则目标函数为min=1*2*1x +2*3*2x +3*5*3x +1*3*4x +1*3*5x +3*6*6x ;1A 加工的工时小于80小时,2A 加工的工时小于100小时,生产1B 、2B 、3B 的总数分别为70个、50个、20个。
实验过程及运行结果如下:通过计算结果可知,当1A 生产1B 、2B 、3B 的个数分别为68个、0个、4个,2A 生产1B 、2B 、3B 的个数分别为2个、50个、16个的时候,才能得到最低的成本640元。