最新不等式与不等式组练习题资料
- 格式:doc
- 大小:833.50 KB
- 文档页数:20
不等式与不等式方程练习题(含答案)本文档包含了一系列关于不等式和不等式方程的练题和答案,旨在帮助读者巩固对这些概念的理解和应用。
不等式练题1. 求解不等式:$2x + 5 > 10$。
答案:$x > 2.5$2. 将不等式$3x - 4 < 7$化为标准不等式形式。
答案:$3x < 11$3. 求解不等式组:$\begin{cases} x - 2 > 5 \\ 2x + 3 < 10\end{cases}$。
答案:$x > 7$,$x < 3.5$4. 求解绝对值不等式:$|2x - 3| \leq 7$。
答案:$-2 \leq x \leq 5$5. 求解复合不等式:$-3 < 2x + 1 < 5$。
答案:$-2 < x < 2$不等式方程练题1. 求解不等式方程:$5x - 7 = 3x + 5$。
答案:$x = 6$2. 求解二次不等式方程:$x^2 + 5x - 6 < 0$。
答案:$-6 < x < 1$3. 求解分式不等式方程:$\frac{2x + 1}{x - 3} \geq 2$。
答案:$x \geq 4$4. 求解绝对值不等式方程:$|2x - 5| = 10$。
答案:$x = -2.5$,$x = 7.5$5. 求解复合不等式方程组:$\begin{cases} 3x - 2 \geq 4 \\ 2x + 5 \leq 9 \end{cases}$。
答案:$x \geq 2$,$x \leq 2$以上是一些关于不等式和不等式方程的练习题和答案。
阅读者可以利用这些题目来巩固学习并提高解题能力。
如有任何疑问,请随时提出。
七年级数学《不等式与不等式(组)》练习题班级_______姓名________成绩_________A 卷 ·基础知识(一)一、选择题(4×8=32)1、下列数中是不等式x 32>50的解的有( ) 76, 73, 79, 80, 74.9, 75.1, 90, 60A、5个 B、6个 C、7个 D、8个2、下列各式中,是一元一次不等式的是( )A、5+4>8 B、12-x C、x 2≤5 D、x x 31-≥0 3、若b a ,则下列不等式中正确的是( )A、b a +-+-33 B、0 b a - C、b a 3131D、b a 22-- 4、用不等式表示与的差不大于2-,正确的是( )A、2-- e d B、2-- e d C、e d -≥2- D、e d -≤2-5、不等式组⎩⎨⎧22 x x 的解集为( ) A 、x >2- B 、2-<x <2 C 、x <2 D 、 空集6、不等式86+x >83+x 的解集为( )A 、x >21 B 、x <0 C 、x >0 D 、x <21 7、不等式2+x <6的正整数解有( ) A 、1个 B 、2个 C 、3 个 D 、4个8、下图所表示的不等式组的解集为( )-2A 、x 3B 、32 x -C 、 2- xD 、32 x -二、填空题(3×6=18)9、“x 的一半与2的差不大于1-”所对应的不等式是10、不等号填空:若a<b<0 ,则5a - 5b -;a 1 b1;12-a 12-b 11、当a 时,1+a 大于212、直接写出下列不等式(组)的解集①42 -x ②105 x -③ ⎩⎨⎧-21 x x 13、不等式03 +-x 的最大整数解是14、某种品牌的八宝粥,外包装标明:净含量为330g ±10g ,表明了这罐八宝粥的净含量x 的范围是三、解下列不等式,并把它们的解集在数轴上表示出来。
不等式的解与解集(上午班)一、选填题1.下列说法错误的是()A、1不是x≥2的解B、0是x<1的一个解C、不等式x+3>3的解是x>0D、x=6是x-7<0的解集2、不等式x-2>3的解集是()A、x>2B、x>3C、x>5D、x<53、若不等式-3x+n>0的解集是x<2,则不等式-3x+n<0的解集是________.4、若一个角的余角不大于它的补角的1/3,则这个角的范围是()5、某商品进价为800元,售价为1200元,由于受市场供求关系的影响,现准备打折销售,但要求利润率(利润率=售价-进价/进价*100%)不底于5%,则至少可打()A.6折B.7折C.8折D.9折6、在下列不等式中,与3-2x/3≤-1的解集相同的是()A.2x+6≥0B.2x-6≤0C.2x-6≥0D.2x+6≤0二、解答题1.利用不等式的性质解下列不等式,并把解集在数轴上表示出来.(1)4x+3<3x (2)2x-4≥0 (3)-x+2>52.已知不等式5x-2<6x+1的最小正整数解是方程3x-ax=6的解,求a的值.3.已知两个正整数的和与积相等,求这两个正整数.4、在满足x+2y≤3,x≥0,y≥0的条件下,求2x+y能达到的最大值5、根据等式和不等式的基本性质,我们可以得到比较两个数大小的方法:若A-B>0,则A>B;若A-B=0,则A=B;若A-B<0,则A<B,这种比较大小的方法称为“作差比较法”,试比较2x2-2x与x2-2x的大小.5、某校师生要去外地参加夏令营,车站提出2种车票票价,第一种是教师按原价付款,学生按原价的78%付款:第2种方案是师生按原价的80%付款,该校有5名教师,试根据参加夏令营的学生人数,选购票付款的最佳方案8.若不等式2X—M小于等于0只有3个正整数解,求正整数M的取值范围9.已知某电脑公司有A型、B型、C型三种型号的电脑,其价格分别为A型每台6000元,B型每台4000元,C型每台2500元,某中学计划将100500元钱全部用于从该电脑公司购进其中两种不同型号的电脑共36台,请你设计出几种不同的购买方案供该校选择,并说明理由。
不等式与不等式组测试题(含答案)】一、选择题1.A2.B3.B4.B5.B6.C二、填空题7.|x/2 - 5/2|。
= 38.x <= 189.x < -4/2 = -210.40 <= x <= 48三、做一做11.解:x = 3/4,解集表示在数轴上如下图所示。
o-----|--------------o----|0.1/7.3/4.112.解:x。
8/2 = 4 或 x < -2/2 = -1,解集表示在数轴上如下图所示。
o-----------------o-----|1.4.13四、想一想13.解:将第一个方程乘以2,得6x + 4y = 2m + 2,将第二个方程乘以3,得6x + 3y = 3m - 3.两式相减得y = m - 5,代入第一个方程得6x + 4(m - 5) = 2m + 2,化简得2x = m + 3,因为x。
y,所以m + 1.0,解得m。
-1.14.解:设这个两位数为10a + b,其中a和b分别表示十位和个位数字。
根据题意得a = b + 2,又因为50 < 10a + b < 70,所以5 < a < 7.因为a和b都是非负整数,所以只有a = 6,b = 4时满足条件,所求的两位数为64.五、实际应用15.解:设XXX家每月用水量为x立方米,则当x。
5时,水费为9 + 2(x - 5) = 2x - 1元。
因为每月水费不少于15元,所以有1.8x。
= 15 或 2x - 1.= 15,解得x。
= 8.33,所以XXX家每月用水量至少为9立方米。
不等式与不等式组(100 道)用不等式表示:1、a与 1 的和是正数;2、x的1与 y 的1的差是非负数;233、x的 2 倍与 1 的和大于3;4、a的一半与 4 的差的绝对值不小于 a .5、x的 2 倍减去 1 不小于x与 3 的和;6、a与b的平方和是非负数;7、 y 的 2 倍加上 3 的和大于- 2 且小于 4;8、a减去 5 的差的绝对值不大于解不等式(组),并在数轴上表示它们的解集9、x1 (x-1) ≥ 1;3 210、x4 2311、3x 1 2x 12x 812、2x 1 32x 3 3x13、2(3x 1) 3(4 x 5) x 4( x 7) ;14、x 5x7 1 7 x 2 ;2 3 415、x 2 1 3x 1 816、3x 2 x 25x 5 2x 717、2x 2 3x 1 1 2x 4 x18、3x 2 2x 819、3 2 x 9 4x20、2(2x 3) 5( x 1) 22、2x 2x 12 323、x5 1 3x 22 224、3x 2 2 x 525、x4 2326、3( y 2) 1 8 2( y 1)27、mm 1 13 228、3[ x 2( x 2)] x 3(x 2)29、3x2 9 2x 5x 13 3 230、3( x1) 2 3 x 18 431、1[ x1( x 1)]2( x 1)2 2 532、6x1 2 x 2433、6x1 2x 12 x434、5( x 2) 8 6(x 1) 735、5 2( x 3) 6 x 436、2x1 5x 1 13 237、x2 2x 12 338、3x 2 2 x 839、3 2x 9 4 x40、2( 2 x 3) 5( x 1)41、19 3( x 7) 042、2x 2x 12 343、x5 1 3x 22 244、5( x 2) 8 6(x 1) 721、193( x 7) 045、3[ x2( x 2)] x 3(x 2)46、2 x 15x 1 13 247、 3x 2 9 2x 5x 133248、 1( x 1)1 2 x 2 3 49、 1 [ x 1 ( x 1)] 2 ( x 1)2 25 50、3(x1)2 3 x 18451、 0.4 x 0.90.03 0.02.x x50.50.03252、 2x 10,4 x 0.3x 0, 53、4x 7 0.11 x,54、x22x4 3x 3.55、- 5< 6- 2x < 3.2x 5 3x, 56、x 2 x2 3x x1,57、 232( x 3) 3( x 2)6.x4 1,58、 2x 8 2( x 2).59、 2x 1 x 5 43x.25x 3 2x (1) 60、 3x1 4(2)22x 7 3x 1,61、x 2 0.512x x 1,62、 34(x 1) 3x 4. 63、12 3x 1464、 -(x+1)<6+2(x-1)65、66、xx1132x-13(x+1)67、 3- 4 ≥2+8 68、x 36 x 1 336 69、 9-11x>x +24370、 x - 3x-2 ≥ 2(1+x) - 1432x 1>x 1 71、x 8< 4 x 12x3 1172、 2x5 1< 2 x373、- 7≤2(1 3x)≤ 974 x 10 0,74、 5x4x,11 2x 13x.>1)75、2 14 3xx5x 2>(3 x 1) 76、2 14 3xx77、 5(x+2) ≥ 1-2(x-1)2 y 73 y 178、y 2579、x4 -3< 5x 22 23x2 2x 80、 4x 2x 5x 3981、x 取什么值时 , 代数式1 5x的值不小于代数式23 2x4 的值382、K 取何值时 , 方程 2x3k =5(x-k)+1 的解是非3负数k283、k 为何值时 , 等式 |-24+3a|+ 3ab0 2中的 b 是负数 ? 3a-18 是多少?84、若方程组 x 2 y1的解 x 、 y 的值都不大x 2 y m于 1,求 m 的取值范围 85、若 a 同时满足不等式 2a 4 0 和 3a 1 2 ,化简1 a a2 .xy7a86、已知方程组的解,x 为非正数,x y 1 3ay 为负数(1) 求 a 的取值范围(2) 化简| a-3 | +| a+2| (3) 在 a 的取值范围中,当 a 为何整数时,不等式2ax+x > 2a+1 的解为 x < 187、求不等式组3x 5 6x4x 6 7 x 的自然数解。
不等式与不等式组练习题
一、选择题
1.如果x>5,那么下列哪个不等式是正确的?
A.x+2<7
B.x-3>2
C.4x<20
D.3x>15
2.哪个数是不等式2x-1<9 的解?
A.4
B.5
C.3
D.2
二、填空题
1.解不等式3x-7>8,那么x应满足的条件是x>
2.如果4(x-3)+6>10,那么x的取值范围是
三、解答题
1.解不等式5-2x>3 并写出解集
2.解不等式组:
x+3>7
2x-5<5
并确定不等式组的解集
四、应用题
1.一个数的3倍减去4大于10,求这个数的取值范围
2.某校规定学生每天的阅读时间不少于30分钟,小华一周阅读了
3.5小时,问小华每天的阅读时间是否满足学校规定?
五、探究题
1.探讨不等式ax+b>c(其中a,b,c是常数,a≠0)的解集与a 的符号之间的关系
2.如果一个不等式的解集是x<5,另一个不等式的解集是x>3,求这两个不等式组成的不等式组的解集
六、拓展题
1.已知x 满足2x-1<7 和 3x+1>11,求 x 的值
2.一个数加上8后,乘以2得到的结果是20,求这个数的取值范围。
不等式组的练习题及答案不等式组是数学中常用的一种表达方式,用于描述多个不等式之间的关系。
下面是一些不等式组的练习题及答案,供同学们练习和参考。
练习题1:解不等式组:\[ \begin{cases}x + 2 > 0 \\3 - 2x \geq 1\end{cases} \]答案1:首先解第一个不等式:\[ x + 2 > 0 \Rightarrow x > -2 \]然后解第二个不等式:\[ 3 - 2x \geq 1 \Rightarrow -2x \geq -2 \Rightarrow x \leq 1 \]结合两个不等式的解,得到不等式组的解集为:\[ -2 < x \leq 1 \]练习题2:解不等式组:\[ \begin{cases}x - 5 \leq 3 \\2x + 1 > 7\end{cases} \]答案2:解第一个不等式:\[ x - 5 \leq 3 \Rightarrow x \leq 8 \]解第二个不等式:\[ 2x + 1 > 7 \Rightarrow 2x > 6 \Rightarrow x > 3 \]结合两个不等式的解,得到不等式组的解集为:\[ 3 < x \leq 8 \]练习题3:解不等式组:\[ \begin{cases}-x + 1 \geq 0 \\3x - 2 < 4\end{cases} \]答案3:解第一个不等式:\[ -x + 1 \geq 0 \Rightarrow x \leq 1 \]解第二个不等式:\[ 3x - 2 < 4 \Rightarrow 3x < 6 \Rightarrow x < 2 \]结合两个不等式的解,得到不等式组的解集为:\[ x \leq 1 \]练习题4:解不等式组:\[ \begin{cases}x^2 - 4x + 4 \geq 0 \\x^2 - 6x + 9 \leq 0\end{cases} \]答案4:第一个不等式是一个完全平方公式:\[ (x - 2)^2 \geq 0 \]这个不等式对于所有实数x都成立。
不等式与不等式组练习题一、填空题1.不等式3x+2≥5的解集是{x| x≥1}。
2.关于x的方程kx-1=2x的解为正实数,则k的取值范围是{k| k>2}。
3.不等式2x>3-x的解集为{x| x>1}。
4.把不等式组的解集表示在数轴上,如图所示,那么这个不等式组的解集是{x| x3}。
5.不等式组{x| x>1}和{y| y1.y<4}。
6.不等式组{x| x>1}和{y| y1.y<4}。
7.甲、乙两位同学参加跳高训练,在相同条件下各跳10次,统计各自成绩的方差得S甲<S乙,则成绩较稳定的同学是甲。
8.不等式5(x-1)<3x+1的解集是{x| x<2}。
9.不等式5(x-1)>3x+1的解集是{x| x>4}。
10.不等式组{x| x>-1}和{y| y-1.y<-3}。
11.不等式组{x| x4}的解集是{x| x<2.2<x<y}。
12.不等式组{x| x≤1/2}和{y| y≥0}的解集是{(x,y)|x≤1/2.y≥0}。
13.不等式组{x| x5}的解集是{x| x5}。
14.如果x-y<0,那么x与y的大小关系是x<y。
15.如果不等式组{x| 2≤x<1}和{y| 2x-b<3}的解集是{x|2≤x<1.y<1},那么a+b的值为-2.16.不等式组{x| x2}的解集是{x| x2}。
17.某公司打算至多用1200元印制广告单.已知制版费50元,每印一张广告单还需支付0.3元的印刷费,则该公司可印制的广告单数量x(张)满足的不等式为50+0.3x≤1200,即0≤x≤3833.33,因为x必须是整数,所以该公司最多可印制3833张广告单。
18.关于x的不等式组{x| x>m-1}和{x| x>m+2}的解集是{x| x>-1},则m=2.19.已知ab=2.(1)若-3≤b≤-1,则a的取值范围是{a|1≤a≤2};(2)若b>0,且a²+b²=5,则a+b=√13.20.如图,直线y=kx+b经过A(2,1),B(-1,-2)两点,则不等式x>kx+b>-2的解集为{x| x<1}。
第九章不等式与不等式组【课标规定】【知识梳理】1.判断不等式与否成立:核心是分析鉴定不等号旳变化,变化旳根据是不等式旳性质,特别注意旳是,不等式两边都乘以(或除以)同一种负数时,要变化不等号方向。
反之,若不等式旳不等号方向发生变化,则阐明不等式两边同乘以(或除以)了一种负数。
因此,在判断不等式成立与否或由不等式变形求某些字母旳范畴时,要认真观测不等式旳形式与不等号方向。
2.解一元一次不等式(组):解一元一次不等式旳环节与解一元一次方程旳环节大体相似,应注意旳是,不等式两边所乘以(或除以)旳数旳正负,并根据不同状况灵活运用其性质。
一元一次不等式(组)常与分式、根式、一元二次方程、函数等知识相联系,解决综合性问题。
3.求不等式(组)旳特殊解:不等式(组)旳解往往是有无数多种,但其特殊解在某些范畴内是有限旳,如整数解、非负整数解,规定这些特殊解,一方面是拟定不等式(组)旳解集, 然后再找到相应旳答案。
注意应用数形结合思想。
4.列不等式(组)解应用题:注意分析题目中旳不等量关系,考察旳热点是与实际生活密切相联旳不等式(组)应用题。
考察学生对知识旳掌握,灵活运用知识旳解题旳能力,同步考察学生数学建模旳能力。
【能力训练】一、填空题:1.用不等式表达:① a不小于0_____________; ②是负数____________;③ 5与x旳和比x旳3倍小______________________。
2.不等式旳解集是__________________。
3.用不等号填空:若。
4.当x_________时,代数代旳值是正数。
5.不等式组旳解集是__________________。
6.不等式旳正整数解是_______________________。
7.旳最小值是a,旳最大值是b,则8.生产某种产品,原需a小时,目前由于提高了工效,可以节省时间8%至15%,若目前所需要旳时间为b小时,则____________< b<_____________。
数学课程不等式与不等式组练习题及答案一、不等式练习题1. 解不等式:2x + 3 > 72. 解不等式:5x - 8 < 123. 解不等式组: { 2x + 3 > 5; 3x - 4 < 10 }4. 解不等式组: { 3x + 2 > 7; 4x - 5 < 15 }二、不等式练习题答案1. 解不等式:2x + 3 > 7解:将不等式中的等号转化为大于号,得到 2x > 4再将不等式两边同时除以2,并保持不等号的方向性不变,得到x > 2所以,不等式的解为 x > 22. 解不等式:5x - 8 < 12解:将不等式中的等号转化为小于号,得到 5x < 20再将不等式两边同时除以5,并保持不等号的方向性不变,得到 x < 4所以,不等式的解为 x < 43. 解不等式组:{ 2x + 3 > 5; 3x - 4 < 10 }解:第一个不等式可以简化为 2x > 2,继续简化得到 x > 1第二个不等式可以简化为 3x < 14,继续简化得到 x < 14/3所以,不等式组的解为 1 < x < 14/34. 解不等式组:{ 3x + 2 > 7; 4x - 5 < 15 }解:第一个不等式可以简化为 3x > 5,继续简化得到 x > 5/3第二个不等式可以简化为 4x < 20,继续简化得到 x < 5所以,不等式组的解为 5/3 < x < 5本文重点介绍了数学课程中关于不等式与不等式组的练习题及其答案。
通过解答这些题目,希望读者能够更加熟练地运用不等式的解法,提高解题能力和数学思维能力。
不等式在数学中具有广泛应用,不仅在代数学中有很多应用,也在实际问题中有着重要的意义。
当解不等式时,需要注意将不等号的方向性保持一致,并且在乘除等操作时,需根据不等式的正负情况进行判断,以保持不等式解的准确性。
不等式与不等式组练习一、 填空题1. 不等式325x +≥的解集是.2. 关于x 的方程x kx 21=-的解为正实数,则k 的取值范围是3. 不等式23x x >-的解集为 .4. 把不等式组的解集表示在数轴上,如图所示,那么这个不等式组的解集是 .5.不等式组40320x x ->⎧⎨+>⎩的解集是 .6. 不等式组3(2)412 1.3x x x x --⎧⎪+⎨>-⎪⎩≥,的解集是 .7. 甲、乙两位同学参加跳高训练,在相同条件下各跳10次,统计各自成绩的方差得22S S <乙甲,则成绩较稳定的同学是___________.(填“甲”或“乙”)8.不等式5(1)31x x -<+的解集是 .9. 不等式5(1)31x x -<+的解集是 .10. 不等式组103x x +>⎧⎨>-⎩,的解集是 .11. 不等式组6020x x -<⎧⎨->⎩的解是 .12. 不等式组210x ox -≤⎧⎨>⎩的解是 13. 不等式组23732x x +>⎧⎨->-⎩,的解集是 .14. 如果x -y <0,那么x 与y 的大小关系是x y .(填<或>符号)15. 如果不等式组2223xa xb ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .16. 不等式组6020x x -<⎧⎨->⎩的解是 .17. 某公司打算至多用1200元印制广告单.已知制版费50元,每印一张广告单还需支付0.3元的印刷费,则该公司可印制的广告单数量x (张)满足的不等式为 . 18.关于x 的不等式组12x m x m >->+⎧⎨⎩的解集是1x >-,则m = .19.已知2ab =.(1)若3-≤b ≤1-,则a 的取值范围是____________.(2)若0b >,且225a b +=,则a b +=____________.20. 如图,直线y kx b =+经过(21)A ,,(12)B --,两点,则不等式122x kx b >+>-的解集为 .21. 如果不等式组2223xa xb ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .22. 若不等式组220x a b x ->⎧⎨->⎩的解集是11x -<<,则2009()a b += . 23. 已知关于x 的不等式组0521x a x -⎧⎨->⎩≥,只有四个整数解,则实数a 的取值范围是 .24.函数y =中,自变量x 的取值范围是( )A .2x >-B .2x -≥C .2x ≠-D .2x -≤25. 不等式组221x x -⎧⎨-<⎩≤的整数解共有( )A .3个B .4个C .5个D .6个二、 选择题26. 不等式组2131x x -<⎧⎨≥-⎩ 的解集是A.2x <B.1-≥xC.12x -≤< D .无解27. 已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( )A .13cmB .6cmC .5cmD .4cm28.不等式260x -<的解集是( )A .3x >B .3x <C .3x >-D .3x <-29.据佛山日报报道,2009年6月1日佛山市最高气温是33℃,最低气温是24℃,则当天佛山市气温t (℃)的变化范围是( )A .33t >B .24t ≤C .2433t <<D .2433t ≤≤30. 不等式组213351x x +>⎧⎨-⎩≤的解集在数轴上表示正确的是( )31. 不等式组2410x x <⎧⎨+>⎩,的解集在数轴上表示正确的是( )32. 不等式组11223x x ⎧⎪⎨⎪-<⎩≤的解集在数轴上表示为( )AB .C.D .1 2 A .B .1 2C .1 2 D .1 233. 不等式﹣2x <4的解集是 ( )A .x >﹣2 B.x <﹣2 C. x >2 D. x <234. 不等式组11223x x ⎧⎪⎨⎪-<⎩≤的解集在数轴上表示为( )35. 下列哪个不等式组的解集在数轴上表示如图2所示 ( )A .21x x ≥⎧⎨<-⎩B .21x x ≤⎧⎨>-⎩C . 21x x >⎧⎨≤-⎩D .21x x <⎧⎨≥-⎩36. 如果一元一次不等式组3x x a>⎧⎨>⎩的解集为3x >.则a 的取值范围是( )A .3a >B .a ≥3C .a ≤3D .3a <37. 如图,直线y kx b =+经过点(12)A --,和点(20)B -,,直线2y x =过点A ,则不等式20x kx b <+<的解集为( )A .2x <-B .21x -<<-C .20x -<<D .10x -<<38. 解不等式组5125431x x x x ->+⎧⎨-<+⎩,.xA .B .C .D .39. 若01x <<,则21x x x,,的大小关系是( ) A .21x x x << B .21x x x << C .21x x x << D .21x x x<< 40. 不等式组⎪⎩⎪⎨⎧≤<-15112x xx 的解集在数轴上表示正确的是 ( )41. 不等式26x ≤的解集为( )A .3x ≥B . 3x ≤C . 13x ≥D . 13x ≤42. 不等式组3(2)412 1.3x x x x --⎧⎪+⎨>-⎪⎩≥,的解集是 .43.不等式组103x x +>⎧⎨>-⎩,的解集是 .44. 不等式2x ≥的解集在数轴上表示为( )45. 不等式组1021x x +>⎧⎨-<⎩,的解集是( )A .1x >-B .3x <C .13x -<<D .31x -<<A .B .C .D .46. 若不等式组122x x ⎨->-⎩有解,则a 的取值范围是( )A .1a >-B .1a -≥C .1a ≤D .1a <47. 不等式组26623212x x x x -<-⎧⎪⎨++>⎪⎩的整数解是()A .1,2B .1,2,3C .331<<xD .0,1,248. 一个不等式的解集为12x -<≤,那么在数轴上表示正确的是( )49. 若b a <,则下列各式中一定成立的是( )A.11-<-b a B .33ba >C . b a -<-D . bc ac <50. 已知三角形的两边长分别为4cm和9cm ,则下列长度的四条线段中能作为第三边的是( )A .13cm B .6cm C .5cm D .4cm51. 不等式325x +≥的解集是 .52. 不等式组1024x x ->⎧⎨<⎩的解集是( )A .x >1B .x <2C .1<x <2D .无解53. 不等式组13x x ⎧-⎪⎨⎪⎩<≤,的解集在数轴上可以表示为( )A .B .C .D .54. 如果ab <0,那么下列判断正确的是( ).A .a <0,b <0B . a >0,b >0C . a ≥0,b ≤0D . a <0,b >0或a >0,b <0ABCD55. 不等式组58x x ⎨+⎩≤ 的解集在下列数轴上表示正确的是( )56. 如果不等式组2223xa xb ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .57. 下列哪个不等式组的解集在数轴上表示如图2所示 ( )A .21x x ≥⎧⎨<-⎩B .21x x ≤⎧⎨>-⎩C . 21x x >⎧⎨≤-⎩D .21x x <⎧⎨≥-⎩58. 已知⊙O 1和⊙O 2的半径分别为1和4,如果两圆的位置关系为相交,那么圆心距O 1O 2的取值范围在数轴上表示正确的是 ( )59. 如果一元一次不等式组3x x a>⎧⎨>⎩的解集为3x >.则a的取值范围是( )A .3a >B .a ≥3C .a ≤3D .3a <60. 若x y >,则下列式子错误的是( )A .33x y ->-B .33x y ->-C .32x y +>+D .33x y > B . D .A .C .61. 据佛山日报报道,2009年6月1日佛山市最高气温是33℃,最低气温是24℃,则当天佛山市气温t (℃)的变化范围是( )A .33t >B .24t ≤C .2433t <<D .2433t ≤≤62. 若x y >,则下列式子错误的是( )A .33x y ->-B .33x y ->-C .32x y +>+D .33x y > 63. 不等式组⎪⎩⎪⎨⎧≥--+2321123x ,x x >的解集在数轴上表示正确的是( )64. 不等式组⎪⎩⎪⎨⎧≤<-15112x x x 的解集在数轴上表示正确的是 ( )65. 不等十足⎩⎨⎧--≥-81312 x x 的解集在数轴上可表示为 ( )ABCD66. 不等式组⎩⎨⎧≤-31<x x 的解集在数轴上可以表示为( )67. 不等式20x -≤的解集在数轴上表示正确的是( )A .B .C .D .68.不等式组⎪⎩⎪⎨⎧≥--+2321123x ,x x >的解集在数轴上表示正确的是( )69. 不等式组2201x x +>⎧⎨--⎩≥的解集在数轴上表示为( )A .B .C .D .70. 不等式组221x x -⎧⎨-<⎩≤的整数解共有( )A .3个B .4个C .5个D .6个ABCDABCD三、 解答题71. 解下列不等式组,并把解集在数轴上表示出来.⎩⎨⎧≥+-<- x x x )2(33)1(2)1(0272. 解不等式组3(2)8,1.23x x x x ++⎧⎪-⎨⎪⎩<≤73. 解不等式组⎩⎨⎧≥--1232x x x ,并把解集在数轴上表示出来.74. 解不等式:13x -1<0,并把它的解集在数轴上表示出来;75. (1)化简:2211x x x x +-÷; (2)解不等式组:3221317.22x x x x ->+⎧⎪⎨--⎪⎩,≤76. 解不等式:5x –12≤2(4x -3)77. 解不等式组⎩⎨⎧->+<-.)1(215,02x x x78.解不等式组:303(1)21x x x +>⎧⎨--⎩,①≤.②79. 解不等式:322x x -≥-80. 解不等式组:351(1)13(2)2x x x +-⎧⎪⎨->⎪⎩≥81. 解不等式组20537x x x -<⎧⎨+≤+⎩;并写出它的整数解。