数值计算方法试题库及答案解析
- 格式:pdf
- 大小:934.13 KB
- 文档页数:17
《数值计算方法》复习试题四、计算题:1、用高斯-塞德尔方法解方程组 ⎪⎩⎪⎨⎧=++=++=++225218241124321321321x x x x x x x x x ,取T)0,0,0()0(=x ,迭代四次(要求按五位有效数字计算)。
答案:迭代格式⎪⎪⎪⎩⎪⎪⎪⎨⎧--=--=--=++++++)222(51)218(41)211(41)1(2)1(1)1(3)(3)1(1)1(2)(3)(2)1(1k k k k k k k k k x x x x x x x x x2、求A 、B 使求积公式⎰-+-++-≈11)]21()21([)]1()1([)(f f B f f A dx x f 的代数精度尽量高,并求其代数精度;利用此公式求⎰=211dxx I (保留四位小数)。
答案:2,,1)(x x x f =是精确成立,即⎪⎩⎪⎨⎧=+=+32212222B A B A 得98,91==B A求积公式为)]21()21([98)]1()1([91)(11f f f f dx x f +-++-=⎰-当3)(x x f =时,公式显然精确成立;当4)(x x f =时,左=52,右=31。
所以代数精度为3。
69286.014097]321132/11[98]311311[91311113221≈=+++-++++-≈+=⎰⎰--=dt t dx x x t3、已知分别用拉格朗日插值法和牛顿插值法求)(x f 的三次插值多项式)(3x P ,并求)2(f 的近似值(保留四位小数)。
答案:)53)(43)(13()5)(4)(1(6)51)(41)(31()5)(4)(3(2)(3------+------=x x x x x x x L)45)(35)(15()4)(3)(1(4)54)(34)(14()5)(3)(1(5------+------+x x x x x x差商表为)4)(3)(1(41)3)(1()1(22)()(33---+----+==x x x x x x x N x P5.5)2()2(3=≈P f4、取步长2.0=h ,用预估-校正法解常微分方程初值问题⎩⎨⎧=+='1)0(32y yx y )10(≤≤x答案:解:⎪⎩⎪⎨⎧+++⨯+=+⨯+=++++)]32()32[(1.0)32(2.0)0(111)0(1n n n n n n n n n n y x y x y y y x y y即 04.078.152.01++=+n n n y x y5、已知求)(x f 的二次拟合曲线)(2x p ,并求)0(f '的近似值。
数值计算方法试题一一、 填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。
2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。
3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。
4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k n k k( )。
5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=∆07f。
6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。
7、{}∞=0)(k kx ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。
8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。
9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。
10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。
《数值计算⽅法》试题集及答案要点《数值计算⽅法》复习试题⼀、填空题:1、----=410141014A ,则A 的LU 分解为A ?=。
答案:--??--=15561415014115401411A 2、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则⽤⾟普⽣(⾟⼘⽣)公式计算求得?≈31_________)(dx x f ,⽤三点式求得≈')1(f 。
答案:2.367,0.25 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的⼆次插值多项式中2x 的系数为,拉格朗⽇插值多项式为。
答案:-1,)2)(1(21)3)(1(2)3)(2(21)(2--------=x x x x x x x L4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字;5、设)(x f 可微,求⽅程)(x f x =的⽜顿迭代格式是();答案)(1)(1n n n n n x f x f x x x '---=+6、对1)(3++=x x x f ,差商=]3,2,1,0[f (1 ),=]4,3,2,1,0[f ( 0 );7、计算⽅法主要研究( 截断 )误差和( 舍⼊ )误差; 8、⽤⼆分法求⾮线性⽅程f (x )=0在区间(a ,b )内的根时,⼆分n 次后的误差限为(12+-n a b );9、求解⼀阶常微分⽅程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公式为()],(),([2111+++++=n n n n n n y x f y x f hy y);10、已知f (1)=2,f (2)=3,f (4)=5.9,则⼆次Newton 插值多项式中x 2系数为( 0.15 );11、两点式⾼斯型求积公式?10d )(x x f ≈(?++-≈1)]3213()3213([21d )(f f x x f),代数精度为( 5 );12、解线性⽅程组A x =b 的⾼斯顺序消元法满⾜的充要条件为(A 的各阶顺序主⼦式均不为零)。
一、选择题(每题2分,共20分)1.数值计算的基本思想是()。
A.精确求解B.近似求解C.解析表达D.图像显示2.下列哪种方法不属于数值计算方法?()A.有限差分法B.有限元法C.插值法D.微积分3.在数值计算中,为避免数值计算误差,通常采用()方法。
A.精确计算B.误差分析C.误差校正D.舍入运算4.下列哪种数值方法适用于求解偏微分方程?()A.欧拉法B.龙格-库塔法C.有限差分法D.牛顿法5.下列哪种方法不属于求解线性方程组的数值方法?()A.高斯消元法B.追赶法C.迭代法D.矩阵分解法二、填空题(每题2分,共20分)6.数值计算方法是利用计算机求解科学和工程问题的_______方法。
7.数值计算的主要目的是将_______问题转化为_______问题。
8.在数值计算中,通常需要对实际问题进行_______,以简化计算过程。
9.有限差分法的核心思想是将偏微分方程转化为_______方程。
10.牛顿法是一种_______方法,适用于求解非线性方程组。
三、判断题(每题2分,共20分)11.数值计算方法只能解决线性问题。
()12.在数值计算中,误差只能通过增加计算精度来减小。
()13.迭代法求解线性方程组时,需要预先知道方程组的解。
()14.数值计算方法在实际应用中具有较高的可靠性。
()15.有限元法适用于求解所有类型的偏微分方程。
()四、简答题(每题10分,共30分)16.请简要说明数值计算的基本思想及其应用范围。
17.请简要介绍有限差分法的原理及应用。
18.请简要说明牛顿法求解非线性方程组的原理。
五、计算题(每题10分,共50分)2x+3yz=14xy+5z=2-x+2y+z=3y'=-y+e^x,初始条件y(0)=1答案:一、选择题1.B2.D3.B4.C5.A二、填空题6.近似7.连续离散8.简化9.差分10.迭代三、判断题11.×12.×13.×14.√15.×四、简答题16.数值计算的基本思想是将实际问题转化为数学问题,再通过计算机求解。
数值计算方法试题一一、 填空题(每空1分,共17分) 1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。
2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件就是α取值在( )。
3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 就是三次样条函数,则a =( ),b =( ),c =( )。
4、)(,),(),(10x l x l x l n Λ就是以整数点n x x x ,,,10Λ为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k n k k( )。
5、设1326)(247+++=x x x x f 与节点,,2,1,0,2/Λ==k k x k 则=],,,[10n x x x f Λ 与=∆07f。
6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。
7、{}∞=0)(k kx ϕ就是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。
8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。
9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 就是阶方法。
10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解就是唯一的。
数值计算方法试题一一、 填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。
2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。
3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。
4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k n k k( )。
5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=∆07f。
6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。
7、{}∞=0)(k kx ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。
8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。
9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。
10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。
数值计算方法试题一一、 填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。
2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。
3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。
4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)((),当2≥n 时=++∑=)()3(204x l x xk k nk k ( )。
5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=∆07f。
6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。
7、{}∞=0)(k kx ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。
8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。
9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。
10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。
数值计算方法试题一一、填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。
2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。
3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。
4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k nk k ( )。
5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=∆07f 。
6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。
7、{}∞=0)(k kx ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=104)(dx x x ϕ 。
8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR迭代法收敛。
9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。
10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。
数值计算方法试题一一、 填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。
2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。
3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。
4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k n k k( )。
5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=∆07f 。
6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。
7、{}∞=0)(k k x ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。
8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。
9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。
10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。