常用逻辑用语教案
- 格式:doc
- 大小:506.00 KB
- 文档页数:6
常用逻辑用语教学设计一、教学目标:通过本节课的学习,学生能够掌握常用逻辑用语的用法和意义,提高逻辑思维能力,培养分析问题和判断问题的能力。
二、教学重难点:1. 了解常用逻辑用语的定义和分类;2. 掌握常用逻辑用语的用法和意义;3. 提高学生在语言和逻辑思维方面的能力。
三、教学内容:1. 常用逻辑用语的定义和分类;常用逻辑用语是指在论述、表达中常用到的一些逻辑关系的词语,用来链接原因和结果、因果关系、转折关系等。
常用逻辑用语主要分为因果关系、转折关系、因果关系、对比关系、条件关系等几种。
(1)因果关系的逻辑用语:因为、所以、由于、因此、所以、因而、故等;(2)对比关系的逻辑用语:而、但是、然而、却、相反等;(3)转折关系的逻辑用语:虽然……但是、虽然……可是、尽管……但是、尽管……还是等;(4)条件关系的逻辑用语:如果……就、只要……就、除非……否则等。
3. 各种逻辑用语的具体运用和理解。
四、教学过程:第一步:导入教师出示一些句子并让学生分析其逻辑关系,引入逻辑用语的学习。
通过制作PPT或板书,向学生介绍常用逻辑用语的定义和分类,并让学生跟随教师一起朗读这些逻辑用语,加深他们的记忆。
第三步:举例说明逻辑用语的用法和意义教师可以通过实例分析的方式,让学生理解逻辑用语的具体用法和意义,让他们在实际中运用并理解。
第四步:操练教师设计一些练习题,让学生运用所学的逻辑用语进行操练,巩固所学内容。
第五步:交流讨论教师组织学生进行交流讨论,让学生表达自己对逻辑用语的理解和运用,鼓励学生积极参与,提高逻辑思维能力。
第六步:作业布置布置相关练习题目或写作任务,巩固学生所学的逻辑用语的知识。
五、教学手段:1. PPT:用于讲解逻辑用语的定义和分类;2. 实例分析:通过实例让学生理解逻辑用语的用法和意义;3. 练习题:通过练习题让学生巩固所学的知识;4. 课堂讨论:通过课堂讨论增强学生的交流和思考。
六、教学建议:1. 逻辑用语的讲解可以结合实际生活中的例子,让学生更容易理解和接受;2. 多给学生一些实例分析的机会,培养学生的逻辑思维能力;3. 融入互动环节,提高学生的学习积极性。
高中数学《常用逻辑用语》教案一、教学目标:知识与技能目标:使学生掌握常用逻辑用语,如且、或、非、如果……等,并能够运用这些逻辑用语分析问题和解决问题。
过程与方法目标:通过实例分析和练习,培养学生运用逻辑用语表达和分析数学问题的能力。
情感态度与价值观目标:培养学生对数学逻辑思维的兴趣,提高学生分析问题和解决问题的能力。
二、教学内容:1. 且、或、非逻辑运算:介绍且、或、非三种基本的逻辑运算,并通过实例说明其含义和应用。
2. 如果……逻辑运算:解释如果……的逻辑含义,探讨其逆命题、逆否命题和原命题之间的关系。
3. 逻辑运算的优先级:讲解逻辑运算的优先级规则,使学生能够正确运用逻辑运算解决问题。
4. 逻辑用语的应用:通过实际问题,引导学生运用逻辑用语分析和解决问题,提高学生的逻辑思维能力。
5. 逻辑用语的练习:提供一些练习题,让学生巩固所学的内容,增强运用逻辑用语解决问题的能力。
三、教学方法:1. 讲授法:讲解逻辑运算的定义和规则,让学生理解并掌握逻辑运算的基本概念。
2. 实例分析法:通过具体的例子,使学生了解逻辑运算在实际问题中的应用。
3. 练习法:提供一些练习题,让学生通过实际操作,巩固所学的内容。
4. 小组讨论法:组织学生进行小组讨论,培养学生的合作能力和逻辑思维能力。
四、教学准备:1. 教学PPT:制作教学PPT,展示逻辑运算的定义、规则和实例。
2. 练习题:准备一些练习题,用于巩固所学的内容。
3. 教学素材:收集一些实际问题,用于引导学生运用逻辑用语分析和解决问题。
五、教学过程:1. 导入新课:通过一个简单的逻辑问题,引入常用逻辑用语的学习。
2. 讲解与演示:讲解常用逻辑用语的定义和规则,并通过实例演示其应用。
3. 练习与讨论:让学生进行练习,并通过小组讨论,巩固所学的内容。
4. 应用与拓展:引导学生运用逻辑用语分析和解决问题,提高学生的逻辑思维能力。
5. 总结与反思:对本节课的内容进行总结,使学生明确所学的重要知识点。
常用逻辑用语复习教案一、教学目标:1. 回顾和巩固常用的逻辑用语,包括概念、判断和推理。
2. 提高学生对逻辑用语的理解和应用能力。
3. 培养学生的逻辑思维和分析问题的能力。
二、教学内容:1. 概念的定义和分类。
2. 判断的类型和结构。
3. 推理的形式和有效性。
4. 逻辑符号的表示方法。
5. 逻辑推理的运用实例。
三、教学方法:1. 采用讲解法,讲解概念、判断和推理的定义和特点。
2. 使用示例法,通过具体的例子的分析和解答,帮助学生理解和掌握逻辑用语的应用。
3. 采用练习法,通过课堂练习和作业的完成,巩固学生对逻辑用语的掌握。
四、教学步骤:1. 导入:通过一个有趣的逻辑谜题,引起学生对逻辑用语的兴趣和好奇心。
2. 讲解概念:讲解概念的定义和分类,并通过示例进行解释和展示。
3. 讲解判断:讲解判断的类型和结构,并通过示例进行解释和展示。
4. 讲解推理:讲解推理的形式和有效性,并通过示例进行解释和展示。
5. 练习巩固:布置一些相关的练习题,让学生进行练习和巩固所学的逻辑用语。
五、教学评价:1. 课堂参与度:观察学生在课堂上的积极性和参与程度,包括提问和回答问题的情况。
2. 练习完成情况:检查学生完成练习题的情况,评估学生对逻辑用语的理解和应用能力。
3. 作业完成情况:评估学生完成作业的质量,包括逻辑用语的正确使用和推理的合理性。
4. 学生自我评价:鼓励学生进行自我评价,反思自己在学习过程中的优点和需要改进的地方。
六、教学资源:1. 教学PPT:制作逻辑用语的复习PPT,包括概念、判断和推理的定义和示例。
2. 练习题库:准备一些逻辑用语的练习题,包括选择题、填空题和解答题。
3. 参考书籍:提供一些关于逻辑学的基础书籍,供学生进一步学习和参考。
七、教学安排:1. 第1-2课时:回顾和巩固概念的定义和分类。
2. 第3-4课时:讲解判断的类型和结构。
3. 第5-6课时:讲解推理的形式和有效性。
4. 第7-8课时:讲解逻辑符号的表示方法。
常用逻辑用语复习教案一、教学目标1. 让学生复习和掌握常用的逻辑用语,包括概念、判断和推理。
2. 提高学生运用逻辑用语分析和解决问题的能力。
3. 培养学生清晰、严谨的思维习惯。
二、教学内容1. 概念:定义、划分、概括等。
2. 判断:肯定判断、否定判断、复合判断等。
3. 推理:演绎推理、归纳推理、类比推理等。
4. 常用逻辑符号及其意义。
三、教学重点与难点1. 教学重点:概念的定义、判断的类型、推理的方法。
2. 教学难点:逻辑符号的运用和逻辑推理的准确性。
四、教学方法1. 采用讲解、举例、练习、讨论等多种教学方法,引导学生主动参与课堂。
2. 使用多媒体辅助教学,直观展示逻辑用语的应用。
3. 注重启发式教学,引导学生独立思考和解决问题。
五、教学过程1. 导入新课:通过简单的逻辑谜题,激发学生的兴趣,引出本节课的主题。
2. 知识讲解:讲解概念、判断和推理的定义及分类,举例说明其应用。
3. 逻辑符号讲解:介绍常用逻辑符号及其意义,如“且”、“或”、“非”等。
4. 课堂练习:布置一些逻辑题目,让学生运用所学知识进行解答,巩固知识点。
5. 小组讨论:让学生分组讨论,分享各自的解题思路和心得,互相学习。
7. 课后作业:布置一些有关概念、判断和推理的练习题,让学生课后巩固。
六、教学评估1. 课堂表现评估:观察学生在课堂上的参与程度、提问回答情况,了解学生的学习状态。
2. 练习题评估:对学生的练习题目进行批改,了解学生对知识的掌握程度。
3. 小组讨论评估:评价学生在小组讨论中的表现,包括合作态度、交流能力和思维深度。
七、教学拓展1. 逻辑游戏:设计一些逻辑游戏,让学生在游戏中锻炼逻辑思维能力。
2. 逻辑竞赛:组织学生参加逻辑知识竞赛,激发学生的学习兴趣和竞争意识。
3. 逻辑应用于实际问题:引导学生运用逻辑思维解决实际生活中的问题,提高学生的实践能力。
八、教学反馈1. 学生反馈:收集学生对课堂内容、教学方法的意见和建议,不断改进教学。
常用逻辑用语一、教学目标:1. 让学生理解并掌握常用的逻辑用语,提高学生的逻辑思维能力。
2. 培养学生运用逻辑用语进行有效沟通和表达的能力。
3. 引导学生运用逻辑思维解决实际问题。
二、教学内容:1. 概念:介绍常用的逻辑用语,如“如果…………”、“只有……才……”、“只要……就……”、“不仅……还……”、“要么……要么……”。
2. 用法:讲解这些逻辑用语的用法和表达方式。
3. 练习:通过例句和练习,让学生学会正确运用这些逻辑用语。
三、教学重点与难点:1. 重点:掌握常用逻辑用语的概念和用法。
2. 难点:灵活运用逻辑用语进行表达和论证。
四、教学方法:1. 讲授法:讲解逻辑用语的概念和用法。
2. 示例法:通过例句展示逻辑用语的运用。
3. 练习法:让学生通过练习,巩固所学内容。
4. 讨论法:引导学生运用逻辑用语解决实际问题,进行小组讨论。
五、教学过程:1. 导入:引导学生回顾已学过的逻辑知识,为新课的学习做好铺垫。
2. 讲解:讲解本节课要学习的常用逻辑用语,如“如果…………”、“只有……才……”、“只要……就……”、“不仅……还……”、“要么……要么……”。
3. 示例:给出例句,让学生理解并模仿运用这些逻辑用语。
4. 练习:设计练习题,让学生运用所学逻辑用语进行表达和论证。
5. 讨论:布置讨论题目,让学生分组讨论,运用逻辑用语解决实际问题。
6. 总结:对本节课所学内容进行总结,强调重点和难点。
7. 作业布置:布置作业,让学生巩固所学内容。
六、教学评估:1. 课堂参与度:观察学生在课堂上的积极参与情况,以及对逻辑用语的理解和运用能力。
2. 练习完成情况:检查学生完成练习的情况,评估学生对逻辑用语的掌握程度。
3. 讨论表现:评估学生在小组讨论中的表现,包括逻辑思维能力和团队合作能力。
七、教学反思:1. 教师反思:教师在课后对自己的教学进行反思,思考教学方法是否适合学生,是否需要调整教学策略。
2. 学生反馈:收集学生的反馈意见,了解学生对逻辑用语的学习效果和困难所在。
常用逻辑用语教案一、教案概述本教案旨在帮助学生掌握常用的逻辑用语,提高他们的逻辑思维和表达能力。
通过学习逻辑用语,学生可以更准确地表达自己的观点,加强论证的逻辑性,并且能够更好地理解他人的观点和论证过程。
本教案适用于初中或高中的逻辑课程,预计学时为2课时。
二、教学目标1. 理解逻辑用语的定义和作用;2. 掌握常用的逻辑用语,包括因果关系、比较关系、转折关系等;3. 能够正确运用逻辑用语进行论证和辩论。
三、教学重点1. 理解逻辑用语的定义和作用;2. 掌握常用的逻辑用语;3. 运用逻辑用语进行论证和辩论。
四、教学内容与步骤1. 引入(5分钟)通过提问或举例的方式,引导学生思考逻辑用语的作用和重要性。
例如:“你们在日常生活中有没有遇到过需要用逻辑推理的情况?逻辑用语对于我们的思维和表达有什么帮助?”2. 理论讲解(15分钟)介绍逻辑用语的定义和分类。
逻辑用语是指用来表达逻辑关系的词语或短语,可以帮助我们更准确地表达观点、论证和解释。
常见的逻辑用语包括因果关系、比较关系、转折关系等。
通过示意图或实例,讲解每种逻辑用语的具体含义和用法。
3. 练习与讨论(20分钟)让学生分组进行练习和讨论。
每个小组从给定的话题中选择一个观点,并使用逻辑用语进行论证。
例如,给定话题为“手机对青少年的影响”,小组成员可以选择支持或反对这一观点,并使用逻辑用语进行论证。
4. 总结归纳(5分钟)让学生总结归纳刚才学习的逻辑用语,并提醒他们在日常生活中多加运用。
可以让学生将逻辑用语整理成表格或笔记,以便复习和记忆。
五、教学延伸1. 给学生提供更多的练习题,让他们熟练掌握逻辑用语的运用。
2. 鼓励学生在写作和演讲中多使用逻辑用语,提高他们的表达能力和逻辑思维能力。
3. 引导学生阅读一些逻辑推理方面的文章或书籍,扩展他们的知识面和思维方式。
六、教学评估1. 教师观察学生在练习和讨论中的表现,评估他们对逻辑用语的理解和运用能力。
2. 学生完成课后作业,检查他们对逻辑用语的掌握程度。
高中数学《常用逻辑用语》教案一、教学目标1. 让学生理解并掌握常用的逻辑用语,如且、或、非、逆、逆否等。
2. 培养学生运用逻辑用语进行判断和推理的能力。
3. 让学生能够识别和分析实际问题中的逻辑关系,提高解决问题的能力。
二、教学内容1. 常用的逻辑用语:且、或、非、逆、逆否等。
2. 逻辑运算的规律:分配律、结合律、De Morgan 定律等。
3. 逻辑判断:充分必要条件、充要条件、逆否命题等。
三、教学方法1. 采用讲授法,讲解逻辑用语的定义和运用。
2. 利用案例分析法,分析实际问题中的逻辑关系。
3. 采用小组讨论法,让学生合作探讨逻辑运算的规律。
四、教学准备1. PPT课件:包含逻辑用语的定义、例题和练习题。
2. 案例材料:涉及实际问题中的逻辑关系。
3. 练习题:包括选择题、填空题和解答题。
五、教学过程1. 导入:通过一个实际问题引入逻辑用语的学习,激发学生的兴趣。
2. 新课讲解:讲解常用的逻辑用语,如且、或、非、逆、逆否等,并通过例题演示其运用。
3. 逻辑运算规律:介绍分配律、结合律、De Morgan 定律等,并通过练习题巩固。
4. 逻辑判断:讲解充分必要条件、充要条件、逆否命题等,并通过例题演示其运用。
5. 案例分析:分析实际问题中的逻辑关系,让学生运用所学知识解决问题。
6. 小组讨论:让学生合作探讨逻辑运算的规律,培养学生的合作能力。
8. 课后作业:布置练习题,巩固所学知识。
9. 课后反思:教师反思教学效果,针对学生的掌握情况调整教学策略。
10. 教学评价:对学生的学习情况进行评价,包括逻辑用语的掌握和运用能力。
六、教学评价1. 评价方式:采用课堂练习、课后作业和小测验等方式进行评价。
2. 评价内容:评价学生对常用逻辑用语的理解和运用能力,以及逻辑运算规律的掌握情况。
3. 评价标准:根据学生的答案准确性、解题思路清晰程度以及运用逻辑用语的恰当性进行评分。
七、课后作业1. 练习题:包括选择题、填空题和解答题,涵盖本节课所学的常用逻辑用语和逻辑运算规律。
常用逻辑用语教案一、教学目标1. 让学生理解并掌握常用的逻辑用语,如:并且、或者、如果……、只有……才等。
2. 培养学生运用逻辑用语进行思考和表达的能力。
3. 提高学生分析问题和解决问题的能力。
二、教学内容1. 常用的逻辑用语及其含义2. 逻辑用语在生活中的应用3. 逻辑用语在数学和科学中的应用三、教学重点与难点1. 重点:理解和掌握常用的逻辑用语。
2. 难点:逻辑用语在实际问题中的应用。
四、教学方法1. 讲授法:讲解逻辑用语的含义和用法。
2. 案例分析法:分析生活中和数学、科学中的实际案例,引导学生运用逻辑用语解决问题。
3. 小组讨论法:分组讨论,培养学生合作学习和思考的能力。
五、教学准备1. PPT课件:展示逻辑用语的定义、例子及应用。
2. 教学案例:提供生活中、数学和科学中的实际案例。
3. 练习题:巩固学生对逻辑用语的理解和应用。
1. 导入:通过一个简单的逻辑谜题引起学生对逻辑用语的兴趣,如“小明是个学生,小红也是个学生,请问小明和小红至少有一个不是学生吗?”2. 新课导入:讲解常用的逻辑用语,如“并且”、“或者”、“如果……”、“只有……才”等,并通过示例让学生理解其含义。
3. 案例分析:分析生活中和数学、科学中的实际案例,让学生运用逻辑用语解决问题,如“如果今天下雨,我就不去公园散步。
”4. 小组讨论:学生分组讨论,分享各自对逻辑用语的理解和应用,如“小明喜欢吃苹果,小红不喜欢吃苹果,请问小明和小红喜欢吃同一个水果吗?”5. 练习巩固:让学生做一些练习题,巩固对逻辑用语的理解和应用。
七、课堂互动1. 提问:在讲解逻辑用语的过程中,教师可以随时提问学生,检查他们对逻辑用语的理解程度。
2. 回答:学生可以积极回答问题,展示自己对逻辑用语的掌握情况。
3. 讨论:在小组讨论环节,学生可以与组员交流自己的观点,共同探讨逻辑用语的应用。
八、课堂练习1. 练习题:教师可以布置一些练习题,让学生在课后巩固所学内容。
常用逻辑用语教案一、教学目标1. 让学生理解并掌握常用的逻辑用语,提高学生的逻辑思维能力。
2. 培养学生运用逻辑用语进行有效沟通和表达的能力。
3. 引导学生运用逻辑思维解决实际问题,培养学生的创新能力和实践能力。
二、教学内容1. 概念:什么是逻辑用语?2. 常用逻辑用语:(1)且(并且、、并列):表示两个或多个事物存在或发生。
(2)或(或者、要么、选择):表示两个或多个事物中至少有一个存在或发生。
(3)非(不是、并非、否定):表示事物的相反或否定。
(4)如果……(因果关系):表示一种条件与结果的关系。
(5)只有……才(必要条件):表示一种必要条件与结果的关系。
(6)不等式:表示两个事物之间的比较关系。
三、教学重点与难点1. 重点:让学生掌握并运用常用的逻辑用语。
2. 难点:让学生理解逻辑用语的含义及运用场景。
四、教学方法1. 案例分析法:通过分析具体案例,让学生了解逻辑用语的应用。
2. 小组讨论法:分组讨论,培养学生合作学习的能力。
3. 实践演练法:设计相关练习题,让学生在实际操作中掌握逻辑用语。
五、教学过程1. 导入:通过一个谜语,引发学生对逻辑用语的兴趣。
2. 讲解:介绍常用逻辑用语的定义和用法。
3. 案例分析:分析具体案例,让学生理解逻辑用语的实际应用。
4. 小组讨论:分组讨论,让学生运用逻辑用语进行分析。
5. 实践演练:设计相关练习题,让学生进行实际操作。
6. 总结:对本节课的内容进行总结,强调逻辑用语的重要性。
7. 作业布置:布置课后练习题,巩固所学知识。
六、教学评估1. 课堂提问:通过提问了解学生对逻辑用语的理解程度。
2. 练习反馈:收集学生的练习成果,评估学生对逻辑用语的掌握情况。
3. 小组讨论观察:观察学生在小组讨论中的表现,了解学生的合作能力和逻辑思维能力。
七、教学拓展1. 逻辑游戏:设计一些逻辑游戏,让学生在游戏中运用逻辑用语,提高学生的逻辑思维能力。
2. 逻辑竞赛:组织学生参加逻辑竞赛,激发学生的学习兴趣,提高学生的逻辑思维能力。
普通高中课程标准实验教科书—数学选修2-1[人教版B]1.1.1命题教学目标:1.了解数理逻辑2.理解命题的概念.教学重点:理解命题的概念教学过程一、什么是逻辑逻辑通常指人们思考问题,从某些已知条件出发推出合理的结论的规律。
说某人逻辑性强,就是说他善于推理,能够得出正确的结论。
说某人说话不合逻辑,就是说他的推理不正确,得出了错误的结论。
逻辑有时也指逻辑学。
逻辑学是研究推理规律的理论。
逻辑学分古典逻辑和现代逻辑。
逻辑又有演绎逻辑,归纳逻辑,形式逻辑,非形式逻辑等不同类型。
逻辑推理中的已知条件和结论都是可以判断真假的命题。
如果把命题作为最基本的成分,只研究命题推理的规律,就得到命题逻辑。
进一步,把命题再细分为谓词,量词就得到谓词逻辑。
用符号表示命题,谓词,量词,得到符号逻辑。
符号逻辑常用来研究数学中的推理,因此也叫数理逻辑。
二十世纪,数理逻辑发展迅速,它的四个主要分支:集合论,模型论,递归论,证明论已成为数学的重要学科。
现代逻辑如模态逻辑,时态逻辑,概率逻辑,量子逻辑,模糊逻辑等各式各样的应用逻辑层出不穷。
这样一来,逻辑的含义是太丰富了。
逻辑已经成为数学,哲学,计算机科学,甚至每一门学科的基础。
二、命题1、可以判断真假的语句叫做命题2、命题可以用小写英文字母表示:p,q,r…3、可以判断真假与我们是否知道其真假不是一回事4、与命题相关的概念是开语句例如,x<2,x-5=3,(x+y)(x-y)=0.这些语句中含有变量x或y,在没有给定这些变量的值之前,是无法确定语句真假的.这种含有变量的语句叫做开语句(有的逻辑书也称之为命题函项).5、原子命题与复合命题小结:本节课我们学习了命题的概念课堂练习:第4页练习A、B课后作业:略1.1.2量词教学目标:理解全称量词、存在量词教学重点:理解全称量词、存在量词 教学过程一、复习:命题的概念:可以判断真假的语句叫命题正确的叫真命题,错误的叫假命题 二、引入新课1、开语句:语句中含有变量x 或y ,在没有给定这些变量的值之前,是无法确定语句真假的.这种含有变量的语句叫做开语句。
常用逻辑用语讲义课标要求1.命题及其关系① 了解命题及其逆命题、否命题与逆否命题.② 理解必要条件、充分条件与充要条件的意义,会分析四种命题的相互关系. 2.简单的逻辑联结词了解逻辑联结词“或”、“且”、“非”的含义. 3.全称量词与存在量词① 理解全称量词与存在量词的意义.② 能正确地对含有一个量词的命题进行否定.知识结构知识盘点一.命题1.命题的定义:我们把用语言、符号或式子表达的,可以判断真假的 陈述句 叫做命题。
其中判断为真的语句叫做 真命题,判断为假的语句叫做 假命题。
2.命题的结构:在数学中,具有“若p 则q ”这种形式的命题是较为常见的,我们把这种形式的的命题中的p 叫做 命题的条件,q 叫做 命题的结论。
猜想:暂时不知道真假的命题叫做猜想。
例1.判断下列语句是不是命题,若是,判断出其真假,若不是,说明理由。
(1)矩形难道不是平行四边形吗?(2)垂直于同一条直线的两条直线必平行吗?常用逻辑用语命题及其关系充分条件与必要条件简单的逻辑连结词全称量词与存在量词(3)求证:R x ∈,方程012=++x x 无实根. (4)5>x(5)人类在2020年登上火星. 解:(1)是命题,且是真命题。
(2)不是命题,这是疑问句,没有对垂直于同一条直线的两直线是否平行作出判断。
(3)不是命题,是祈使句。
(4)是开语句,不是命题。
(5)是命题。
但目前无法判断真假。
二.四种命题及其相互关系3.四种命题的概念:一般地,用p 和q 分别表示原命题的条件和结论,用p ⌝和q ⌝分别表示p 和q 的否定,于是四种命题的形式就是:原命题:若p 则q ; 逆命题:若q 则p ; 否命题:若p ⌝则q ⌝; 逆否命题:若q ⌝则p ⌝。
关于逆命题、否命题与逆否命题,也可以如下表述:(1)交换原命题的条件和结论,所得的命题是原命题的 逆命题; (2)同时否定原命题的条件和结论,所得的命题是原命题的 否命题;(3)交换原命题的条件和结论,同时进行否定,所得的命题是原命题的 逆否命题。
4.四种命题之间的关系四种命题之间的相互关系如下图所示:由上图知逆命题与否命题也互为逆否命题,因此这四种命题的真假之间的关系如下: (1)两个命题互为逆否命题,它们具有相同的 真假性; (2)两个命题为互逆命题或互否命题,它们的真假性没有关系。
例2.写出“若2=x 或3=x ,则0652=+-x x ”的逆命题、否命题、逆否命题及互 否 为 逆 为 逆 互否互 否互 否互 逆原命题若p 则q互 逆 逆命题 若q 则p逆否命题 若q ⌝则p ⌝逆否命题 若q ⌝则p ⌝命题的否定,并判其真假。
解:逆命题:若0652=+-x x ,则2=x 或3=x ,是真命题; 否命题:若2≠x 且3≠x ,则0652≠+-x x ,是真命题; 逆否命题:若0652≠+-x x ,则2≠x 且3≠x ,是真命题。
命题的否定:若2=x 或3=x ,则0652≠+-x x ,是假命题。
5.反证法(补:否命题与命题的否定)由于原命题与它的逆否命题具有相同的真假性,所以我们在直接证明某一命题有困难时,可以通过证明 命题的否定为假命题,来间接地证明原命题为真命题,这种证明的方法,称作是反证法。
用反证法证明的步骤如下:(1)假设命题的结论不成立,即假设结论的反面成立; (2)从这个假设出发,经过推理论证得出矛盾; (3)由矛盾判定假设不正确,从而肯定命题的结论成立。
逆否证法:由于原命题与它的逆否命题具有相同的真假性,所以我们在直接证明某一命题有困难时,可以通过证明逆否命题为真命题,来间接地证明原命题为真命题,这种证明的方法,称作是逆否证法。
(了解即可)王后雄7P 例14.例3.已知)1,0(,,∈c b a ,求证:b a )1(-,c b )1(-,a c )1(-三式中至少有一个不大于41. 证明:(用反证法)若b a )1(-,c b )1(-,a c )1(-三式中都大于41.则有 23)1()1()1(>-+-+-a c c b b a (*) 而2)1()1(b a b a +-≤-,2)1()1(c b c b +-≤-,2)1()1(ac a c +-≤-,三式相加得23)1()1()1(≤-+-+-a c c b b a ,此与(*)式矛盾,故假设错误,从而原命题成立。
三.充分条件与必要条件6.若q p ⇒,则p 叫做q 的充分条件,则q 叫做p 的必要条件;若q p ⇔,则p 叫做q 的 充分必要条件,简称为充要条件.也常说成q 当且仅当p ,或p 与q 等价。
7.如果q p ⇒且q ⇒p ,我们称p 为q 的充分不必要条件,如果p ⇒q 且p q ⇒,则我们称p 为q 的必要不充分条件. 四.判断充要条件的方法8.命题判断法设“若p 则q ”为原命题,那么:(1)原命题为真,逆命题为假时,则p 是q 的充分不必要条件; (2)原命题为假,逆命题为真时p 是q 的必要不充分条件; (3)原命题与逆命题都为真时,p 是q 的充要条件;(4) 原命题与逆命题都为假时,p 是q 的既不充分也不必要条件. 9.集合判断法从集合的观点看,建立命题q p ,相应的集合:)(|{:x p x A p =成立},)(|{:x q x B q =成立},那么: (1)若B A ⊆,则p 是q 的充分条件,若A B ≠⊂时,则p 是q 的充分而不必要条件;(2) 若A B ⊆,则p 是q 的必要条件,若A B ≠⊂时,则p 是q 的必要而不充分条件;(3)若B A =,则p 是q 的充要条件,若A B ⊄且B A ⊄时,则p 是q 的既不充分也不必要条件. 例4.已知数列{n a } 、{n b }、{n c },其中{n a } 、{n b }是等比数列.对于任意正整数n ,n a 、n b 、n c 都成等差数列,且01≠c .试证明:“数列{n c }成等比数列”的充要条件是“数列{n a } 与{n b }公比相等”.证明:充分性 设数列{n a } 与{n b }的公比都是q ,则11-=n n q a a ,11-=n n q b b ,而)(21n n n b a c +=11111)(21--=+=n n q c q b a ,又01≠c ,故{n c }是公比为q 的等比数列.充分性得证. 必要性 若数列{n c }是等比数列,设数列{n a } ,{n b },{n c }的公比分别为r q p ,,,则)3()2()1(222212121111111⎪⎩⎪⎨⎧+=+=+=q b p a r c q b p a r c b a c ,由)3()1(⨯得:2212211221221)(4q b q p b a p a r c +++= (4) 将(2)的两边平方得2211122122124q b pq b a p a r c ++= (5)比较(4)(5)两式得pq q p 222=+,故q p =,即数列{n a } 与{n b }公比相等.必要性得证.五.逻辑联结词10.逻辑联结词:在数学中,有时会使用一些联结词,如 非、且、或 . 11.“p 且q ”记作p q ∧;“p 或q ”记作p q ∨;“非p ”记作p ⌝.12.命题q p ∧,q p ∨和p ⌝的真假判断对于q p ∧而言“一假必假”;对于q p ∨而言“一真必真”;对于p ⌝而言“真假相反”。
可以用下表来判断:(即真值表)p q q p ∧ q p ∨ p ⌝真 真 真 真 假 真 假 假 真 假 假 真 假 真 真 假 假 假假真例5.在一次模拟射击游戏中,小李连续射击了两次,设命题1p :“第一次射击中靶”, 命题2p :“第二次射击中靶”,试用1p ,2p 及逻辑连结词“或”“且”“非”表示下列命题:(1)两次射击均中靶; “1p 且2p ” (2)两次射击均未中靶; “1p ⌝且2p ⌝”(3)两次射击恰好有一次中靶; “1p 且2p ⌝,或1p ⌝且2p ” (4)两次射击至少有一次中靶. “1p 或2p ” 六.全称量词与存在量词13.全称量词:短语“任意”、“所有”在逻辑中通常叫做全称量词,用符号∀来表示; 含有全称量词的命题,叫做全称命题.全称命题“对M 中任意一个x ,有)(x p 成立”可用符号简记为(),x M p x ∀∈.14.存在量词:短语 “存在”、“某一个”在逻辑中通常叫做存在量词,用符号∃来表示; 含有存在量词的命题,叫做特称命题.存在命题“存在M 中一个x ,使)(x p 成立” 可用符号简记为(),x M p x ∃∈. 15..含有一个量词的命题的否定:含有一个量词的全称命题的否定,有以下结论: 全称命题p :)(,x p M x ∈∀,它的否定p ⌝:00,()x M p x ∃∈⌝;即全称命题的否定是特称命题.含有一个量词的特称命题的否定,有以下结论:特称命题p :)(,x p M x ∈∃,它的否定p ⌝:,()x M p x ∀∈⌝;即特称命题的否定是全称命题. 例6.写出下列命题的否定,并判断真假 (1)所有的矩形都是平行四边形;(2)每一个素数都是奇数; (3)有些实数的绝对值是正数; (4)某此平行四边形是菱形。
解:(1)存在一个矩形不是平行四边形;假命题; (2)存在一个素数不是奇数;真命题; (3)所有的实数的绝对值都不是正数;假命题; (4)每一个平行四边形都不是菱形,假命题。
说明1.否命题与命题的否定是不相同的,若p 表示命题,“非p ”叫做命题的否定。
如果原命题是“若p 则q ”,否命题是“若p ⌝,则q ⌝”,而命题的否定是“p 则q ⌝”,即只否定结论。
2.当一个命题的真假不易判断时,往往可以判断原命题的逆否命题的真假,从而得出原命题的真假。
3.反证法常用于证明如下形式的问题:否定性问题、存在性问题、唯一性问题,至多、至少问题,结论的反面比原结论更具体更易于研究和掌握的问题。
4.常用的正面叙述词语和它的否定词语的关系(如下表):正面词语等于(=)大于(>)小于(<)有是都是全是否定词语 不等于(≠) 不大于(≤) 不小于(≥) 无 不是 不都是 不全是正面词语 任意的 任意两个 至少有一个 至多有一个 所有的 至多有n 个或否定词语某个某两个一个也没有 至少有两个 某些至少有1+n 个 且例7.(2007年华师附中)已知命题p :方程0222=-+ax x a 在[]1,1-上有解;命题q :只有一个实数x 满足不等式2220,x ax a ++≤若命题""p q 或是假命题,求a 的取值范围.解:由0222=-+ax x a ,得0)1)(2(=-+ax ax ,显然0≠a ,ax 2-=∴或a x 1=]1,1[-∈x ,故1|2|≤a 或1|1|≤a,1||≥∴a , 又“只有一个实数满足0222≤++a ax x ”即抛物线a ax x y 222++=与x 轴只有一个交点,0842=-=∆∴a a ,0=∴a 或2=a ,∴命题“p 或q ”为真命题时,1||≥a 或0=a命题“p 或q ”是假命题,a ∴的取值范围为01|{<<-a a 或}10<<a .。