卫星的发射变轨近地同步卫星
- 格式:ppt
- 大小:1.41 MB
- 文档页数:36
深度剖析卫星的变轨一、考点突破:知识点 考纲要求题型说明卫星的变轨的动力学本质 1. 掌握卫星变轨原理; 2. 会分析不同轨道上速度和加速度的大小关系;3. 理解变轨前后的能量变化。
选择题、计算题 属于高频考点,重点考查卫星变轨中的供需关系、速度关系、能量关系及轨道的变化,是最近几年的高考热点。
二、重难点提示:重点:1. 卫星变轨原理;2. 不同轨道上速度和加速度的大小关系。
难点:理解变轨前后的能量变化。
一、变轨原理卫星在运动过程中,受到的合外力为万有引力,F 引=2R MmG 。
卫星在运动过程中所需要的向心力为:F 向=Rmv 2。
当:(1)F 引= F 向时,卫星做圆周运动; (2)F 引> F 向时,卫星做近心运动; (3)F 引<F 向时,卫星做离心运动。
二、变轨过程 1. 反射变轨在1轨道上A 点向前喷气(瞬间),速度增大,所需向心力增大,万有引力不足,离心运动进入轨道2沿椭圆轨道运动,此过程为离心运动;到达B点,万有引力过剩,供大于求做近心运动,故在轨道2上供需不平衡,轨迹为椭圆,若在B点向后喷气,增大速度可使飞船沿轨道3运动,此轨道供需平衡。
2. 回收变轨在B点向前喷气减速,供大于需,近心运动由3轨道进入椭圆轨道,在A点再次向前喷气减速,进入圆轨道1,实现变轨,在1轨道再次减速返回地球。
三、卫星变轨中的能量问题1. 由低轨道到高轨道向后喷气,卫星加速,但在上升过程中,动能减小,势能增加,增加的势能大于减小的动能,故机械能增加。
2. 由高轨道到低轨道向前喷气,卫星减速,但在下降过程中,动能增加,势能减小,增加的动能小于减小的势能,故机械能减小。
注意:变轨时喷气只是一瞬间,目的是破坏供需关系,使卫星变轨。
变轨后稳定运行的过程中机械能是守恒的,其速度大小仅取决于卫星所在轨道高度。
3. 卫星变轨中的切点问题【误区点拨】近地点加速只能提高远地点高度,不能抬高近地点,切点在近地点;远地点加速可提高近地点高度,切点在远地点。
专题5.3 三种特殊的卫星及卫星的变轨问题、天体的追击相遇问题一、近地卫星、赤道上物体及同步卫星的运行问题1.近地卫星、同步卫星、赤道上的物体的比较比较内容赤道表面的物体近地卫星同步卫星向心力来源万有引力的分力万有引力向心力方向指向地心重力与万有引力的关系重力略小于万有引力重力等于万有引力线速度v1=ω1R v2=GMRv3=ω3(R+h)=GMR+hv1<v3<v2(v2为第一宇宙速度)角速度ω1=ω自ω2=GMR3ω3=ω自=GMR+h3ω1=ω3<ω2向心加速度a1=ω21R a2=ω22R=GMR2a3=ω23(R+h) =GMR+h2a1<a3<a2卫星的轨道半径r是指卫星绕天体做匀速圆周运动的半径,与天体半径R的关系为r=R+h(h为卫星距离天体表面的高度),当卫星贴近天体表面运动(h≈0)时,可认为两者相等。
【示例1】(多选)如图,地球赤道上的山丘e、近地资源卫星p和同步通信卫星q均在赤道平面上绕地心做匀速圆周运动。
设e、p、q的圆周运动速率分别为v1、v2、v3,向心加速度分别为a1、a2、a3,则( )A.v1>v2>v3B.v1<v3<v2C.a1>a2>a3D.a1<a3<a2【答案】BD【解析】由题意可知:山丘与同步卫星角速度、周期相同,由v=ωr,a=ω2r可知v1<v3、a1<a3;对同步卫星和近地资源卫星来说,满足v =GM r 、a =GMr2,可知v 3<v 2、a 3<a 2。
故选项B 、D 正确。
【示例2】(多选)同步卫星离地心距离为r ,运行速率为v 1,加速度为a 1,地球赤道上的物体随地球自转的向心加速度为a 2,第一宇宙速度为v 2,地球的半径为R ,则下列比值正确的是( )A.a 1a 2=rRB.a 1a 2=r 2R2 C.v 1v 2=r R D.v 1v 2=R r【答案】: AD【示例3】(2016·四川理综·3)国务院批复,自20XX 年起将4月24日设立为“中国航天日”.1970年4月24日我国首次成功发射的人造卫星东方红一号,目前仍然在椭圆轨道上运行,其轨道近地点高度约为440 km ,远地点高度约为2 060 km ;1984年4月8日成功发射的东方红二号卫星运行在赤道上空35 786 km 的地球同步轨道上.设东方红一号在远地点的加速度为a 1,东方红二号的加速度为a 2,固定在地球赤道上的物体随地球自转的加速度为a 3,则a 1、a 2、a 3的大小关系为( ) A.a 2>a 1>a 3 B.a 3>a 2>a 1 C.a 3>a 1>a 2 D.a 1>a 2>a 3【答案】 D【解析】 由于东方红二号卫星是同步卫星,则其角速度和赤道上的物体角速度相等,根据a =ω2r ,r 2>r 3,则a 2>a 3;由万有引力定律和牛顿第二定律得,G Mmr2=ma ,由题目中数据可以得出,r 1<r 2,则a 2<a 1;综合以上分析有,a 1>a 2>a 3,选项D 正确.【示例4】.有a 、b 、c 、d 四颗地球卫星,a 在地球赤道上未发射,b 在地面附近近地轨道上正常运动,c 是地球同步卫星,d 是高空探测卫星,各卫星排列位置如图,则有( )A .a 的向心力由重力提供B .c 在4 h 内转过的圆心角是π6C .b 在相同时间内转过的弧长最长D .d 的运动周期有可能是20 h 【答案】 C二、 卫星的变轨问题 1.三种情境2.变轨问题的三点注意(1)航天器变轨时半径的变化,根据万有引力和所需向心力的大小关系判断;稳定在新轨道上的运行速度变化由v =GMr判断。
卫星变轨问题引例:飞船发射及运行过程:先由运载火箭将飞船送入椭圆轨道,然后在椭圆轨道的远地点A 实施变轨,进入预定圆轨道,如图所示,飞船变轨前后速度分别为v1、v2,变轨前后的运行周期分别为T1、T2,飞船变轨前后通过A 点时的加速度分别为a1、a2,则下列说法正确的是A .T1<T2,v1<v2,a1<a2B .T1<T2,v1<v2,a1=a2C .T1>T2,v1>v2,a1<a2D .T1>T2,v1=v2,a1=a2解答:首先,同样是A 点,到地心的距离相等,万有引力相等,由万有引力提供的向心力也相等,向心加速度相等。
如果对开普勒定律比较熟悉,从T 的角度分析:由开普勒定律知道,同样的中心体,k=a^3/T^2为一常数。
从图中很容易知道,圆轨道的半径R 大于椭圆轨道的半长轴a ,这样可得圆轨道上运行的周期T2大于椭圆轨道的周期T1。
如果对离心运动规律比较熟悉,从v 的角度分析:1、当合力[引力]不足以提供向心力(速度比维持圆轨道运动所需的速度大)时,物体偏离圆轨道向外运动,这一点可以说明椭圆轨道近地点天体的运动趋向。
2、当合力[引力]超过运动向心力(速度比维持圆轨道运动所需的速度小)时,物体偏离圆轨道向内运动,这一点可以说明椭圆轨道远地点天体的运动趋向。
对椭圆轨道,A 点为远地点,由上述第2条不难判断,在椭圆轨道上A 点的运行速度v1比圆轨道上时A 点的速度v2小。
综上,正确选项为B 。
注意:变轨的物理实质就是变速。
由低轨变向高轨是加速,由高轨变向低轨是减速。
其基本操作都是打开火箭发动机做功,但加速时做正功,减速时做负功。
一、人造卫星基本原理1、绕地球做匀速圆周运动的人造卫星所需向心力由万有引力提供。
2、轨道半径r 确定后,与之对应的卫星线速度rGMv、周期GMrT 32、向心加速度2rGM a也都是唯一确定的。
3、如果卫星的质量是确定的,那么与轨道半径r 对应的卫星的动能E k 、重力势能E p 和总机械能E 机也是唯一确定的。
卫星的发射与变轨命题人:罗 通 审题人:李吉彬【方法归纳】发射卫星一般采用三级火箭,火箭启动后竖直向上做加速运动,卫星处于超重状态。
若已知火箭上升的加速度,可利用牛顿第二定律根据放在火箭平台上物体对平台的压力估算火箭上升的高度。
卫星绕天体运动,卫星与天体之间的万有引力提供卫星绕天体做匀速圆周运动的向心力,即F 供= 2Mm G r ,F 需=m 2v r 。
若F 供= F 需, 2Mm G r =m 2v r ,卫星做匀速圆周运动,线速度v=GM r。
当卫星由于某种原因速度突然改变时(开启或关闭发动机或空气阻力作用),万有引力不再等于向心力,卫星将做变轨运行:(1)当卫星的速度突然增加时,G Mm r 2<m v 2r,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,当卫星进入新的轨道稳定运行时由v = GM r可知其运行速度比原轨道时减小.(2)当卫星的速度突然减小时,G Mm r 2>m v 2r,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小,当卫星进入新的轨道稳定运行时由v = GM r可知其运行速度比原轨道时增大;卫星的发射和回收就是利用这一原理.例1:搭载着3位航天员的神舟九号飞船与在轨运行的天宫一号“牵手”,顺利完成首次载人自动交会对接.交会对接飞行过程分为远距离导引、自主控制、对接等阶段,图示为“远距离导引”阶段.下列说法正确的是( )A .在远距离导引阶段,神舟九号向前喷气B .在远距离导引阶段,神舟九号向后喷气C .未开始交会对接前,天宫一号做匀速圆周运动的加速度大于神舟九号D .天宫—神九组合体绕地球做匀速圆周运动的速度大于7.9 km/s变式1. 2012年6月18日,神舟九号飞船与天宫一号目标飞行器在离地面343 km 的近圆形轨道上成功进行了我国首次载人空间交会对接.对接轨道所处的空间存在极其稀薄的大气.下列说法正确的是( )A .为实现对接,两者运行速度的大小都应介于第一宇宙速度和第二宇宙速度之间B .如不加干预,在运行一段时间后,天宫一号的速度可能会增加C .如不加干预,天宫一号的轨道高度将缓慢降低D .航天员在天宫一号中处于失重状态,说明航天员不受地球引力作用例2:如图所示,在“嫦娥”探月工程中,设月球半径为R ,月球表面的重力加速度为g 0.飞船在半径为4R 的圆形轨道Ⅰ上运动,到达轨道的A 点时点火变轨进入椭圆轨道Ⅱ,到达轨道的近月点B 时,再次点火进入近月轨道Ⅲ绕月做圆周运动,则( )A .飞船在轨道Ⅲ的运行速率大于g 0RB .飞船在轨道Ⅰ上运行速率小于在轨道Ⅱ上B 处的速率C .飞船在轨道Ⅰ上的重力加速度小于在轨道Ⅱ上B 处重力加速度D .飞船在轨道Ⅰ、轨道Ⅲ上运行的周期之比为4∶1变式2:如图所示,在发射地球同步卫星的过程中,卫星首先进入椭圆轨道Ⅰ,然后在Q 点通过改变卫星速度,让卫星进入地球同步轨道Ⅱ,则( )A .该卫星在P 点的速度大于7.9 km/s ,小于11.2 km/sB .卫星在同步轨道Ⅱ上的运行速度大于7.9 km/sC .在轨道Ⅰ上,卫星在P 点的速度大于在Q 点的速度D .卫星在Q 点通过加速实现由轨道Ⅰ进入轨道Ⅱ练习1.要使卫星从如图所示的圆形轨道1通过椭圆轨道2转移到同步轨道3,需要两次短时间开动火箭对卫星加速,加速的位置应是图中的( )A .P 点B .Q 点C .R 点D .S 点2.小行星绕恒星运动,恒星均匀地向四周辐射能量,质量缓慢减小,可认为小行星在绕恒星运动一周的过程中近似做圆周运动.则经过足够长的时间后,小行星运动的( )A .半径变大B .速率变大C .角速度变大D .加速度变大3. 2013年发射的“嫦娥三号”卫星,实现对地外天体的直接探测,如图为“嫦娥三号”卫星在月球引力作用下,先沿椭圆轨道向月球靠近,并在P 处“刹车制动”后绕月球做匀速圆周运动,并再次变轨最后实现软着陆,已知“嫦娥三号”绕月球做匀速圆周运动的半径为r ,周期为T ,引力常量为G ,则( )A .“嫦娥三号”卫星的发射速度必须大于11.2 km/sB .“嫦娥三号”卫星在椭圆轨道与圆轨道上经过P 点的速度相等C .“嫦娥三号”卫星由远月点Q 点向P 点运动过程中速度逐渐减小D .由题给条件可求出月球质量4.如图所示是牛顿研究抛体运动时绘制的一幅草图,以不同速度抛出的物体分别沿a 、b 、c 、d 轨迹运动,其中a 是一段曲线,b 是贴近地球表面的圆,c 是椭圆,d 是双曲线的一部分.已知引力常量为G 、地球质量为M 、半径为R 、地球附近的重力加速度为g .以下说法中正确的是( )A .沿a 运动的物体初速度一定小于gRB .沿b 运动的物体速度等于 GM RC .沿c 运动的物体初速度一定大于第二宇宙速度D .沿d 运动的物体初速度一定大于第三宇宙速度5.如图所示,将卫星发射至近地圆轨道1,然后再次点火,将卫星送入同步轨道3.轨道1、2相切于Q,2、3相切于P 点,则当卫星分别在1、2、3轨道上正常运行时,以下说法正确的是 ( )A .卫星在轨道2上经过Q 点时的速度小于它在轨道2上经过P 点时的速度B .卫星在轨道1上经过Q 点时的加速度等于它在轨道2上经过Q 点时的加速度C .卫星在轨道1上的向心加速度小于它在轨道3上的向心加速度D .卫星在轨道3上的角速度小于在轨道1上的角速度6.我国未来将建立月球基地,并在绕月轨道上建造空间站.如图所示,关闭发动机的航天飞机A 在月球引力作用下沿椭圆轨道向月球靠近,并将在椭圆的近月点B 处与空间站对接.已知空间站绕月轨道半径为r ,周期为T ,引力常量为G ,月球的半径为R .下列判断正确的是( )A .航天飞机到达B 处由椭圆轨道进入空间站轨道时必须减速B .图中的航天飞机正在加速飞向B 处C .月球的质量M =4π2r 3GT 2D .月球的第一宇宙速度v =2πr T。
卫星变轨问题分析近年来,我国载人航天工程取得了骄人的成绩,随着我国神州系列载人火箭的研发成功,我国已经能过完成各种高度的卫星发射与回收。
在这样的大背景下, 这几年的物理高考,卫星的发射与回收,卫星变轨问题,就成为了考试的热点内容。
然而由于变轨问题涉及的相关知识较多,综合性较强,而在物理教材中只是一带而过,使许多学生在面对卫星变轨问题时感到困惑不解,存在一些模糊和错误认识。
为此,本文将对卫星发射,变轨等问题进行详细讲解。
以期对广大同学在卫星变轨问题上有所帮助。
首先我们来说一说卫星绕地球做圆周运动的基本理论:万事万物做圆周运动,都会需要一个指向圆心的向心力,卫星绕地球运动,也一样,也需要向心力,这个向心力由地球与卫星之间的万有引力充当。
即2r GMm =r mv2或者222()Mm Gm r r T π=。
轨道半径r 确定后,与之对应的卫星线速度r GM v =、周期GM r T 32π=、向心加速度2r GM a =等等也都是相应确定下来。
一旦卫星轨道半径r 发生变化,也就是卫星变轨。
那么对应的物理量V 、T 、a 都会发生相应的变化,这样也成为了考试的一个考点。
在高中考试中,主要涉及到两种变轨问题,一种是轨道渐变,一种为轨道突变。
轨道渐变所谓渐变,是指卫星轨道半径,受各种原因影响,或者慢慢变大,或者慢慢变小。
由于是缓慢变化,所以对于每一周运动,我们都可以认为是在做匀速圆周运动。
因此,这类问题,只要我们判断出卫星轨道半径是变大还是变小,就可以很快利用基本公式,判断出各个物理量的变化关系。
例1:低轨道人造地球卫星在运行过程中由于受到稀薄大气的阻力作用,轨道半径会逐渐变小,在此过程中,对于以下有关各物理量变化情况的叙述中正确的是( )A .卫星的线速度将逐渐增大B .卫星的环绕周期将逐渐增大C .卫星的角速度将逐渐增大D .卫星的向心加速度将逐渐增大本题这种变轨的起因是空气阻力,阻力对卫星做负功,使卫星速度减小,所需要的向心力r mv 2减小了,而万有引力大小2r GMm没有变,卫星将做向心运动,即半径r 减小。
专题强化训练二:卫星(近地、同步、极地)的宇宙航行运动规律与变轨问题技巧归纳:人造卫星的变轨问题1.变轨问题概述 (1)稳定运行卫星绕天体稳定运行时,万有引力提供了卫星做圆周运动的向心力,即G Mmr 2=m v 2r .(2)变轨运行卫星变轨时,先是线速度大小v 发生变化导致需要的向心力发生变化,进而使轨道半径r 发生变化.①当卫星减速时,卫星所需的向心力F 向=m v 2r 减小,万有引力大于所需的向心力,卫星将做近心运动,向低轨道变轨.②当卫星加速时,卫星所需的向心力F 向=m v 2r 增大,万有引力不足以提供卫星所需的向心力,卫星将做离心运动,向高轨道变轨. 2.实例分析 (1)飞船对接问题①低轨道飞船与高轨道空间站对接时,让飞船合理地加速,使飞船沿椭圆轨道做离心运动,追上高轨道空间站完成对接(如图甲所示).②若飞船和空间站在同一轨道上,飞船加速时无法追上空间站,因为飞船加速时,将做离心运动,从而离开这个轨道.通常先使后面的飞船减速降低高度,再加速提升高度,通过适当控制,使飞船追上空间站时恰好具有相同的速度,如图乙所示.(2)卫星的发射、变轨问题如图发射卫星时,先将卫星发射至近地圆轨道1,在Q 点点火加速做离心运动进入椭圆轨道2,在P 点点火加速,使其满足GMmr 2=m v 2r,进入圆轨道3做圆周运动.一、单选题1.(2022·江苏省江都中学高三开学考试)据报道,一颗来自太阳系外的彗星擦火星而过。
如图所示,设火星绕太阳在圆轨道上运动,运动半径为r ,周期为T 。
该彗星在穿过太阳系时由于受到太阳的引力,轨道发生弯曲,彗星与火星在圆轨道的A 点“擦肩而过”。
已知万有引力常量G ,则( )A.可计算出火星的质量B.可计算出彗星经过A点时受到的引力C.可确定太阳分别对彗星和火星的引力在A点产生的加速度相等D.可确定彗星在A点的速度大小为2r vTπ=2.(2022·云南·昆明一中模拟预测)随着“嫦娥奔月”梦想的实现,我国不断刷新深空探测的“中国高度”。
专题拓展课四 应用万有引力定律解决“三个”热点问题【学习目标要求】 1.理解卫星变轨的实质,会分析变轨过程中各物理量以及能量变化。
2.理解同步卫星、近地卫星和赤道上物体运动的区别。
3.掌握双星和多星问题的特点,会分析相关问题。
拓展点1 卫星变轨问题1.卫星变轨问题的处理卫星在运动中的“变轨”有两种情况:离心运动和近心运动。
当万有引力恰好提供卫星做圆周运动所需的向心力,即G Mm r 2=m v 2r 时,卫星做匀速圆周运动;当某时刻速度发生突变,所需的向心力也会发生突变,而突变瞬间万有引力不变。
(1)制动变轨:卫星的速率变小时,使得万有引力大于所需向心力,即G Mm r 2>m v 2r ,卫星做近心运动,轨道半径将变小。
(2)加速变轨:卫星的速率变大时,使得万有引力小于所需向心力,即G Mm r 2<m v 2r,卫星做离心运动,轨道半径将变大。
2.变轨过程(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上,如图所示。
(2)在A 点(近地点)点火加速,由于速度变大,万有引力不足以提供在轨道Ⅰ上做圆周运动的向心力,卫星做离心运动进入椭圆轨道Ⅱ。
(3)在B 点(远地点)再次点火加速进入圆轨道Ⅲ。
3.变轨过程各物理量分析(1)两个不同轨道的“切点”处线速度v 不相等,图中v Ⅲ>v ⅡB ,v ⅡA >v Ⅰ。
(2)同一个椭圆轨道上近地点和远地点线速度大小不相等,从远地点到近地点线速度逐渐增大。
(3)两个不同圆轨道上的线速度v 不相等,轨道半径越大,v 越小,图中v Ⅰ>v Ⅲ。
(4)不同轨道上运行周期T 不相等。
根据开普勒第三定律r 3T 2=k 知,内侧轨道的周期小于外侧轨道的周期。
图中T Ⅰ<T Ⅱ<T Ⅲ。
(5)两个不同轨道的“切点”处加速度a 相同,图中a Ⅲ=a ⅡB ,a ⅡA =a Ⅰ。
【例1】 (2020·湖南长沙一中高二月考)1999年11月21日,我国“神舟”号宇宙飞船成功发射并收回,这是我国航天史上重要的里程碑。