小尺度衰落
- 格式:ppt
- 大小:3.03 MB
- 文档页数:127
小尺度衰落产生原因可伸缩的移动模型透视和无线Ad-Hoc网络中的路由协议性能(Mobility Model Perspectives for Scalability and Routing Protocol Performances in Wireless Ad-Hoc Network)关键字: Ad-hoc网络可伸缩性移动路由协议1、介绍网络的发展刺激了经济的规模。
那是因为根据互联网用户或主机的数目,网络用户的花费随着网络规模的增大而减小。
Ad hoc 无线网络的可伸缩性引起了许多改变,如移动ad hoc网络(MANET)包括许多能够自由任意并且涉及到动态的编队拓扑中的移动节点。
从而MANET构成了一个自主移动系统。
并且MANET的一些其他特征如动态拓扑、宽带约束、资源约束和受限的物理安全。
从而以上所需的特性可以实现其独特的可伸缩性。
另一个设计可伸缩的ad hoc 网络的主要问题在于那些流动的可移动节点。
事实上那些节点的迅速复位和移动也是其中的一个难点所在。
不同的流动模型如随机的航路点等问题已经被提出来。
再说流动性模型在路由器发送方案的选择上起着主要的影响,从而影响其性能表现。
同时在一些如在场部署和应急响应操作的应用中,ad hoc网络同样能扩充到成百上千的节点。
从而拥要有广泛的流动性同时还缺乏有力的指导,纯ad hoc网络连入大型的伸缩节点是其设计中所面临的一个紧急挑战。
移动自组网在是实际中是多跳的。
因此自组网络的可伸缩性底层的路由协议直接相关。
比如说一个移动自组网络可以通过减少路由协议的开销来实现更好的伸缩性。
所以在这篇论文里面我们调查一下移动自组网的可伸缩性。
自从MANET的路由协议在移动自组网的设计中起着关键作用,我们看到了那些在可伸缩条件下的协议表现的问题。
也是因为流动性模型对可伸缩性有着巨大影响,我们扩展了MANET在不同的流动模型中的路由协议的表现分析。
全文的组织如下:在第二部分,我们分析了各种不同的MANET路由协议和他们的对应的性能指标。
信道衰落系数1. 介绍信道衰落系数是无线通信领域中一项重要的参数,用于描述无线信号在传播过程中的衰减情况。
信道衰落系数直接影响着无线通信系统的性能和可靠性。
本文将介绍信道衰落系数的定义、分类以及影响因素,并探讨常用的信道衰落模型和衰落预测方法。
2. 信道衰落系数的定义和分类2.1 定义信道衰落系数是指无线信号在传播过程中的衰减倍数。
它描述了信号在传输过程中所遭受的损失,衡量了信号的强度变化程度。
2.2 分类根据信道衰落的性质,信道衰落系数可以分为以下几种类型: 1. 大尺度衰落:大尺度衰落是指由于传输距离的增加而引起的信号衰减。
在宏蜂窝系统中,建筑物、地形等会导致大尺度衰落的发生。
2. 小尺度衰落:小尺度衰落是指由于信号的多径传播而引起的信号强度的快速变化。
它主要受到多径传播中的多径干扰、相位差异、多径信号相加减的影响。
3. 快衰落:快衰落是指信道衰落系数随时间迅速变化。
主要受到信号的多普勒频移引起的变化。
4. 慢衰落:慢衰落是指信道衰落系数随时间缓慢变化。
主要受到大尺度衰落引起的变化。
3. 影响因素信道衰落系数受到多种因素的影响,包括但不限于以下几个方面: 1. 传输距离:信道衰落系数随着传输距离的增加而增加。
传输距离越远,信号所受到的衰减越大。
2. 建筑物和地形:在城市环境中,建筑物和地形对信号传播起着重要的作用。
建筑物的阻挡会导致信号衰减,而地形的起伏也会影响多径传播和信号的反射衰落。
3. 天气条件:天气条件对无线信号的传播也有一定影响。
例如,大雨、大雾等天气会增加信道衰落系数。
4. 传输频率:不同频率的信号传播特性不同。
一般来说,较高频率的信号传播衰减较快。
5. 环境噪声:环境中存在的各种噪声,如热噪声、干扰等,会对信号传播产生干扰和衰减效果。
4. 常用的信道衰落模型为了更好地描述信道衰落特性,在通信系统设计和性能分析中,常使用一些经验模型来模拟信道衰落。
以下是几种常用的信道衰落模型: 1. 瑞利衰落模型:瑞利衰落是指没有直达路径的多径传播情况。
156第六章小尺度衰落信道前面已经介绍无线信道的传播模型可分为大尺度(Large-Scale)传播模型和小尺度(Small-Scale)衰落两种[2],三、四、五章已经介绍了大尺度传播。
所谓小尺度是描述短距离(几个波长)或短时间(秒级)内接收信号强度快速变化的;而移动无线信道的主要特征是多径,由于这些多径使得接收信号的幅度急剧变化,产生了衰落,因此,本章将介绍小尺度衰落信道,这对我们移动通信研究中传输技术的选择和数字接收机的设计尤为重要。
本章将先介绍小尺度的衰落和多径的物理模型和数学模型,使读者从概念上清楚地认识移动无线信道的主要特点,并建立一个统一的数学模型,为以后讨论各种模型奠定基础;接着将介绍移动多径信道的三组色散参数——时间色散参数(时延扩展,相关带宽)、频率色散参数(多普勒扩展,相关时间)、角度色散参数(角度扩展,相关距离),为之后的信道分类奠定了基础;接下来介绍衰落信道的一阶包络统计特性、二阶统计特性,大量的实测数据表明,在没有直达路径的情况下(如市区),信道的包络服从瑞利分布,在有直达路径的情况下(如郊区),信号包络服从莱斯分布,因此,一阶包络统计特性主要介绍瑞利衰落分布和莱斯衰落分布,二阶统计特性主要介绍一组对偶参数——时间电平交叉率和平均衰落持续时间,简要介绍其他两组对偶参数——频域电平交叉率和平均衰落持续带宽,空间电平交叉率和平均衰落持续距离;在已经介绍了多径信道的三组色散参数之后,将介绍小尺度衰落信道相对应的不同分类。
6.1 衰落和多径6.1.1 衰落和多径的物理模型陆地移动信道的主要特征是多径传播。
传播过程中会遇到很多建筑物,树木以及起伏的地形,会引起能量的吸收和穿透以及电波的反射,散射及绕射等,这样,移动信道是充满了反射波的传播环境。
到达移动台天线的信号不是单一路径来的,而是许多路径来的众多反射波的合成。
由于电波通过各个路径的距离不同,因而各路径来的反射波到达时间不同,相位也就不同。
各类信号衰落的特点
不同类型的信号衰落具有不同的特点。
以下是一些常见类型的信号衰落特点:
1. 多径衰落:在无线通信中,信号往往通过多个路径传播到接收器。
由于路径的不同长度和反射、折射、散射等现象的影响,各路径的信号会以不同的相位和幅度到达接收器,导致信号的多径衰落。
多径衰落的特点包括多次反射、多普勒频移、相位反转等。
2. 大尺度衰落:大尺度衰落是指由于信号传播距离较大或障碍物较多而引起的信号衰减。
在城市或山区等环境中,建筑物、山脉等障碍物会引起信号的大尺度衰落。
大尺度衰落的特点是信号功率随距离变化而衰减,通常可以通过路径损耗模型进行建模。
3. 小尺度衰落:小尺度衰落是由于信号的传播路径或环境中的微小变化引起的短时域波动。
这些波动通常由反射、散射、多普勒效应等引起,并且在时间和空间上具有快速变化的特点。
小尺度衰落会导致信道的快速变化,给无线通信系统带来信号失真和传输误差。
4. 多普勒衰落:当信号的发射源或接收器相对于传输介质运动时,信号会产生多普勒频移。
多普勒效应会导致信号频率发生变化,使得接收到的信号频率与理想频率不一致,从而引起信号的衰落。
多普勒衰落的特点是信号频率的快速变化,可以通过多普勒频移模型进行建模。
以上是一些常见类型的信号衰落特点,不同衰落类型的特点会影响无线通信系统的传输性能和可靠性。
信号的衰落分类
信号衰落分类是基于接收信号场强变化的区间大小。
大尺度衰落:大尺度衰落主要由移动台与基站之间的距离变化引起,也称为路径损耗。
随着移动台与基站之间距离的增加,信号强度会逐渐减弱。
大尺度衰落通常在数百米至几千米的范围内发生,是由于信号传播路径中的阻挡、散射和多径效应等因素引起的。
中尺度衰落:中尺度衰落通常由信号传播路径中的地形、建筑物和植被等引起,导致信号在特定区域内发生明显的衰落。
这种衰落通常在几十米至几百米的范围内发生,例如在城市中的街道、建筑群或森林中的区域。
小尺度衰落:小尺度衰落是由于多径传播引起的信号幅度和相位的快速变化。
当信号在传播过程中经历多条路径(如直射路径和反射路径)时,不同路径上的信号会以不同的时间到达接收端,导致信号产生相位差和幅度变化。
小尺度衰落通常在几厘米至几米的范围内发生,例如在室内、城市街道的拐角或树木间的缝隙中。
1。
小尺度衰落产生原因作者:白舸摘要:本文先对小尺度衰落的有关概念进行了解释和梳理,然后就小尺度衰落的产生原因提出了作者自己的看法,并试图通过实验论证自己的观点。
关键词:小尺度衰落,多径时延扩展,多普勒扩展1、引言从上世纪60至70年代,贝尔实验室的研究人员提出了蜂窝的概念起,人们开始研究移动通信的信道,移动通信要克服的一大困难就是小尺度衰落,因此,小尺度衰落历来是无线电波传播研究的重要环节。
小尺度衰落指的是信号在小尺度区间(距离或时间的微小变化)的传播过程中,信号的幅度、相位和场强瞬时值的快速变化。
前人对小尺度衰落进行了很多研究,建立了多种模型,如Ricean 衰落、Reyleigh衰落和Nakagami衰落。
说到小尺度衰落的产生原因,很多人都会想到两个词:多径和多普勒。
但是与之相关的一些概念由于表述方式相近,导致人们对这些概念产生了误解,进而也影响到大家对小尺度衰落产生原因的理解。
本文将根据作者的体会,对小尺度衰落的生成原因进行阐述。
接下来的一节会说明与多径和多普勒有关的概念,第三节解释小尺度衰落与多径以及多普勒的关系,文章的最后一节将通过实验论证作者的观点。
2、多径和多普勒多径(multipath),是指在无线信道中,由于反射或者折射,在发射机和接收机之间不会只有单一视距传输路径,会形成的多种不同的传输路径。
不难理解,若信号从发射机到接收机有多条传输路径,通过每条路的传播时间以及传播距离就会不同,这可导致各多径分量上,信号到达接收机的时间也不一样。
这些路径中肯定存在一条最短路径,则信号通过其它路径到达接收机的时间,肯定会比通过最短路径到达接收机的时间延长,这种时间的延长称为多径时延(multipath time delay )。
在各径的时延中,有一部分时延并不大,使得接收机不能把它们跟最早到达的信号解析出来,这些时延信号相加,造成接收信号在时间上宽度扩展,这种现象叫多径时延扩展(delay spread)。