第5章-小尺度衰落
- 格式:ppt
- 大小:2.69 MB
- 文档页数:127
一、题型和试题分布二、复习重点第一部分概述1.了解移动通信的发展情况1. 发展史:(1). 萌芽阶段:(2). 开拓阶段:1935年,阿姆斯特朗发明了FM方式无线电,是移动通信中的第一个大分水岭。
(3). 商业阶段:1987年11月18日第一个TACS模拟蜂窝移动系统在省建成并投入商用。
1994年12月底首先开通了GSM数字移动网。
2. 蜂窝小区系统设计目的:频率复用,解决大容量需求与有限频谱资源的矛盾。
3. ITU通过的第三代移动通信系统主流标准:WCDMA、cdma2000、TDSCDMA、DECT。
4. 移动通信的标准化容: 技术体制标准化、网络设备标准化、测试方法标准化。
5. 常用移动通信的应用系统:(1). 寻呼系统:给用户发送简单消息(数字、字母、声音)的系统;通过基站将携带寻呼信息的载波以广播的形式发送到整个覆盖区。
每个基站为了能有最大的覆盖围,就需要采用大的发射功率(以千瓦计)和低的数据速率。
(2). 蜂窝式移动通信系统:当移动台通话时从一个小区到另一个小区时,移动交换中心自动将呼叫从原基站的信道转移到新基站的信道上,叫越区切换。
(3). 无绳系统:简单的无绳系统分为座机和手机两部分。
无绳系统是使用无线链路来连接便携手机和基站的全双工系统,是一种以有线网为依托的通信方式。
第一代模拟无绳(CT0,CT1)是模拟系统。
第二代数字无绳系统(CT2)只有单向呼叫能力,不能被叫。
第三代无绳系统(DECT)可实现双向呼叫,漫游及切换功能。
蜂窝移动通信具有自己独立的组网能力,无绳系统强调其接入能力,依附于其他通讯网(公用网,蜂窝移动网,数据通信网等)。
2.了解双工方式1. 双工方式:频分双工(FDD)、时分双工(TDD)。
3.了解功率换算方法1. 两个功率之比的量度,用dB来表示: 10lg(P2/P1)dB。
)mdB。
有时也用分贝量度相对某些标准值:mdB=10lg(功率P0.001P第二部分移动通信的传播特性1.了解电波的传播方式1. 电波的传播方式:直射波,反射波,绕射波,散射波。
小尺度衰落产生原因可伸缩的移动模型透视和无线Ad-Hoc网络中的路由协议性能(Mobility Model Perspectives for Scalability and Routing Protocol Performances in Wireless Ad-Hoc Network)关键字: Ad-hoc网络可伸缩性移动路由协议1、介绍网络的发展刺激了经济的规模。
那是因为根据互联网用户或主机的数目,网络用户的花费随着网络规模的增大而减小。
Ad hoc 无线网络的可伸缩性引起了许多改变,如移动ad hoc网络(MANET)包括许多能够自由任意并且涉及到动态的编队拓扑中的移动节点。
从而MANET构成了一个自主移动系统。
并且MANET的一些其他特征如动态拓扑、宽带约束、资源约束和受限的物理安全。
从而以上所需的特性可以实现其独特的可伸缩性。
另一个设计可伸缩的ad hoc 网络的主要问题在于那些流动的可移动节点。
事实上那些节点的迅速复位和移动也是其中的一个难点所在。
不同的流动模型如随机的航路点等问题已经被提出来。
再说流动性模型在路由器发送方案的选择上起着主要的影响,从而影响其性能表现。
同时在一些如在场部署和应急响应操作的应用中,ad hoc网络同样能扩充到成百上千的节点。
从而拥要有广泛的流动性同时还缺乏有力的指导,纯ad hoc网络连入大型的伸缩节点是其设计中所面临的一个紧急挑战。
移动自组网在是实际中是多跳的。
因此自组网络的可伸缩性底层的路由协议直接相关。
比如说一个移动自组网络可以通过减少路由协议的开销来实现更好的伸缩性。
所以在这篇论文里面我们调查一下移动自组网的可伸缩性。
自从MANET的路由协议在移动自组网的设计中起着关键作用,我们看到了那些在可伸缩条件下的协议表现的问题。
也是因为流动性模型对可伸缩性有着巨大影响,我们扩展了MANET在不同的流动模型中的路由协议的表现分析。
全文的组织如下:在第二部分,我们分析了各种不同的MANET路由协议和他们的对应的性能指标。
156第六章小尺度衰落信道前面已经介绍无线信道的传播模型可分为大尺度(Large-Scale)传播模型和小尺度(Small-Scale)衰落两种[2],三、四、五章已经介绍了大尺度传播。
所谓小尺度是描述短距离(几个波长)或短时间(秒级)内接收信号强度快速变化的;而移动无线信道的主要特征是多径,由于这些多径使得接收信号的幅度急剧变化,产生了衰落,因此,本章将介绍小尺度衰落信道,这对我们移动通信研究中传输技术的选择和数字接收机的设计尤为重要。
本章将先介绍小尺度的衰落和多径的物理模型和数学模型,使读者从概念上清楚地认识移动无线信道的主要特点,并建立一个统一的数学模型,为以后讨论各种模型奠定基础;接着将介绍移动多径信道的三组色散参数——时间色散参数(时延扩展,相关带宽)、频率色散参数(多普勒扩展,相关时间)、角度色散参数(角度扩展,相关距离),为之后的信道分类奠定了基础;接下来介绍衰落信道的一阶包络统计特性、二阶统计特性,大量的实测数据表明,在没有直达路径的情况下(如市区),信道的包络服从瑞利分布,在有直达路径的情况下(如郊区),信号包络服从莱斯分布,因此,一阶包络统计特性主要介绍瑞利衰落分布和莱斯衰落分布,二阶统计特性主要介绍一组对偶参数——时间电平交叉率和平均衰落持续时间,简要介绍其他两组对偶参数——频域电平交叉率和平均衰落持续带宽,空间电平交叉率和平均衰落持续距离;在已经介绍了多径信道的三组色散参数之后,将介绍小尺度衰落信道相对应的不同分类。
6.1 衰落和多径6.1.1 衰落和多径的物理模型陆地移动信道的主要特征是多径传播。
传播过程中会遇到很多建筑物,树木以及起伏的地形,会引起能量的吸收和穿透以及电波的反射,散射及绕射等,这样,移动信道是充满了反射波的传播环境。
到达移动台天线的信号不是单一路径来的,而是许多路径来的众多反射波的合成。
由于电波通过各个路径的距离不同,因而各路径来的反射波到达时间不同,相位也就不同。
移动通信复习资料移动通信原理与系统复习资料第⼀章:1.在4G系统中,⽹元间的协议是基于IP的,每⼀个MT(移动终端)都有各⾃的IP地址。
2.IP核⼼⽹:它不是专门⽤作移动通信,⽽是作为⼀种统⼀的⽹络,⽀持有线和⽆线接⼊。
主要功能是:完成位置管理和控制、呼叫控制和业务控制。
3.4G⽹络应该是⼀个⽆缝连接的⽹络,也就是说各种有线和⽆线⽹都能以IP协议为基础连接到IP核⼼⽹。
当然为了与传统的⽹络互联则需要⽤⽹关建⽴⽹络的互联,所以将来的4G⽹络将是⼀个复杂的多协议的⽹络。
4.移动通信的定义:指通信双⽅或⾄少有⼀⽅处于运动中进⾏信息交换的通信⽅式。
5.移动通信系统包括:⽆绳电话、⽆线寻呼、陆地蜂窝移动通信、卫星移动通信等。
6.⽆线通信是移动通信的基础。
7.移动通信所受⼲扰种类:(1):互调⼲扰:指两个或多个信号作⽤在通信设备的⾮线性器件上,产⽣与有⽤信号频率相近的组合频率。
从⽽对通信系统构成⼲扰的现象。
(2):邻道⼲扰:指相邻或邻近的信道之间的⼲扰,是由于⼀个强信号串扰弱信号⽽造成的⼲扰。
(3):同频⼲扰:指相同频率电台之间的⼲扰。
8.移动通信的⼯作⽅式:(1):单⼯通信:指通信双⽅电台交替地进⾏收信和发信。
它常⽤于点到点通信。
(2)双⼯通信:指通信双⽅。
收发信机均同时⼯作。
即任⼀⽅讲话时都可以听到对⽅的话⾳,没有“按-讲”开关。
(3)半双⼯通信第⼆章:1. 移动通信的信道:指基站天线、移动⽤户天线和两幅天线之间的传播路径。
2. 从某种意义上来说,对移动⽆线电波传播特性的研究就是对移动信道的研究。
(判断)3. 移动信道的基本特性就是衰落特性。
4. ⽆线电波的传播⽅式:直射、反射、绕射和散射以及它们的合成。
5. 移动信道是⼀种时变信道。
在这种信道中传播表现出来的衰落⼀般为:随信号传播距离变化⽽导致的传播损耗和弥散。
6. (1)阴影衰落:由于传播环境中的地形起伏、建筑物及其它障碍物对电磁波的遮蔽所引起的衰落。
各类信号衰落的特点
不同类型的信号衰落具有不同的特点。
以下是一些常见类型的信号衰落特点:
1. 多径衰落:在无线通信中,信号往往通过多个路径传播到接收器。
由于路径的不同长度和反射、折射、散射等现象的影响,各路径的信号会以不同的相位和幅度到达接收器,导致信号的多径衰落。
多径衰落的特点包括多次反射、多普勒频移、相位反转等。
2. 大尺度衰落:大尺度衰落是指由于信号传播距离较大或障碍物较多而引起的信号衰减。
在城市或山区等环境中,建筑物、山脉等障碍物会引起信号的大尺度衰落。
大尺度衰落的特点是信号功率随距离变化而衰减,通常可以通过路径损耗模型进行建模。
3. 小尺度衰落:小尺度衰落是由于信号的传播路径或环境中的微小变化引起的短时域波动。
这些波动通常由反射、散射、多普勒效应等引起,并且在时间和空间上具有快速变化的特点。
小尺度衰落会导致信道的快速变化,给无线通信系统带来信号失真和传输误差。
4. 多普勒衰落:当信号的发射源或接收器相对于传输介质运动时,信号会产生多普勒频移。
多普勒效应会导致信号频率发生变化,使得接收到的信号频率与理想频率不一致,从而引起信号的衰落。
多普勒衰落的特点是信号频率的快速变化,可以通过多普勒频移模型进行建模。
以上是一些常见类型的信号衰落特点,不同衰落类型的特点会影响无线通信系统的传输性能和可靠性。
信号的衰落分类
信号衰落分类是基于接收信号场强变化的区间大小。
大尺度衰落:大尺度衰落主要由移动台与基站之间的距离变化引起,也称为路径损耗。
随着移动台与基站之间距离的增加,信号强度会逐渐减弱。
大尺度衰落通常在数百米至几千米的范围内发生,是由于信号传播路径中的阻挡、散射和多径效应等因素引起的。
中尺度衰落:中尺度衰落通常由信号传播路径中的地形、建筑物和植被等引起,导致信号在特定区域内发生明显的衰落。
这种衰落通常在几十米至几百米的范围内发生,例如在城市中的街道、建筑群或森林中的区域。
小尺度衰落:小尺度衰落是由于多径传播引起的信号幅度和相位的快速变化。
当信号在传播过程中经历多条路径(如直射路径和反射路径)时,不同路径上的信号会以不同的时间到达接收端,导致信号产生相位差和幅度变化。
小尺度衰落通常在几厘米至几米的范围内发生,例如在室内、城市街道的拐角或树木间的缝隙中。
1。
小尺度衰落产生原因作者:白舸摘要:本文先对小尺度衰落的有关概念进行了解释和梳理,然后就小尺度衰落的产生原因提出了作者自己的看法,并试图通过实验论证自己的观点。
关键词:小尺度衰落,多径时延扩展,多普勒扩展1、引言从上世纪60至70年代,贝尔实验室的研究人员提出了蜂窝的概念起,人们开始研究移动通信的信道,移动通信要克服的一大困难就是小尺度衰落,因此,小尺度衰落历来是无线电波传播研究的重要环节。
小尺度衰落指的是信号在小尺度区间(距离或时间的微小变化)的传播过程中,信号的幅度、相位和场强瞬时值的快速变化。
前人对小尺度衰落进行了很多研究,建立了多种模型,如Ricean 衰落、Reyleigh衰落和Nakagami衰落。
说到小尺度衰落的产生原因,很多人都会想到两个词:多径和多普勒。
但是与之相关的一些概念由于表述方式相近,导致人们对这些概念产生了误解,进而也影响到大家对小尺度衰落产生原因的理解。
本文将根据作者的体会,对小尺度衰落的生成原因进行阐述。
接下来的一节会说明与多径和多普勒有关的概念,第三节解释小尺度衰落与多径以及多普勒的关系,文章的最后一节将通过实验论证作者的观点。
2、多径和多普勒多径(multipath),是指在无线信道中,由于反射或者折射,在发射机和接收机之间不会只有单一视距传输路径,会形成的多种不同的传输路径。
不难理解,若信号从发射机到接收机有多条传输路径,通过每条路的传播时间以及传播距离就会不同,这可导致各多径分量上,信号到达接收机的时间也不一样。
这些路径中肯定存在一条最短路径,则信号通过其它路径到达接收机的时间,肯定会比通过最短路径到达接收机的时间延长,这种时间的延长称为多径时延(multipath time delay )。
在各径的时延中,有一部分时延并不大,使得接收机不能把它们跟最早到达的信号解析出来,这些时延信号相加,造成接收信号在时间上宽度扩展,这种现象叫多径时延扩展(delay spread)。
统计信道模型主要的三个区域一、引言统计信道模型是通信领域中非常重要的一个研究方向,它能够帮助我们更好地理解无线通信中的信道特性,从而为无线通信系统的设计、优化和性能评估提供有力的支持。
在统计信道模型中,主要有三个区域是非常重要的,包括大尺度衰落、小尺度衰落和多径传播效应。
下面将对这三个区域进行详细介绍。
二、大尺度衰落1. 概念大尺度衰落是指由于发射机与接收机之间的距离较远,或者由于存在遮挡物等因素导致的路径损耗。
在无线通信中,大尺度衰落可以用来描述不同位置之间的信号强度差异。
2. 特点大尺度衰落具有以下特点:(1)它是一种长期变化的现象,即在一个相对较长时间内保持不变。
(2)它受到环境因素影响较大,比如建筑物、树木等遮挡物会对其产生显著影响。
(3)它可以通过路径损耗系数来表示,在不同环境下具有不同的数值。
3. 应用大尺度衰落在无线通信系统中具有重要的应用价值,比如:(1)它可以用来评估无线信号的覆盖范围和质量。
(2)它可以用来优化基站的部署和天线的配置,从而提高无线网络的覆盖率和容量。
(3)它可以用来设计合适的功率控制策略,以实现更好的能量利用效率。
三、小尺度衰落1. 概念小尺度衰落是指由于多径传播效应导致接收信号强度在时间和频率上发生快速变化。
在无线通信中,小尺度衰落可以用来描述同一位置不同时间或不同频率下信号强度差异。
2. 特点小尺度衰落具有以下特点:(1)它是一种短期变化的现象,即在一个相对较短时间内发生变化。
(2)它受到多径传播效应影响较大,比如反射、散射、绕射等现象会对其产生显著影响。
(3)它可以通过功率谱密度函数来表示,在不同环境下具有不同的分布特性。
3. 应用小尺度衰落在无线通信系统中具有重要的应用价值,比如:(1)它可以用来评估不同调制方式和编码方式的性能表现。
(2)它可以用来设计合适的调制和编码方案,以提高无线通信系统的容量和可靠性。
(3)它可以用来研究多天线技术和空分复用技术等高级通信技术。