七年级数学上册第二章有理数及其运算第2节数轴北师大版!
- 格式:doc
- 大小:92.50 KB
- 文档页数:4
第2章有理数及其运算——数轴动点问题专题(二)1.在一条不完整的数轴上从左到右有点A,B,D,C,其中AB=2,BD=3,DC=1,如图所示,设点A,B,D,C所对应数的和是p.(1)若以B为原点,写出点A,D,C所对应的数,并计算p的值;(2)若原点O在图中数轴上点C的右边,且CO=1,求p的值.2.已知:数轴上A.B两点表示的有理数为a、b,且(a﹣1)2+|b+2|=0.(1)A、B各表示哪一个有理数?(2)点C在数轴上表示的数是c,且与A、B两点的距离和为11,求多项式a(bc+3)﹣|c2﹣3(a﹣c2)|的值;(3)小蚂蚁甲以1个单位长度/秒的速度从点B出发向其左边6个单位长度处的一颗饭粒爬去,3秒后位于点A的小蚂蚁乙收到它的信号,以2个单位长度/秒的速度也迅速爬向饭粒,小蚂蚁甲到达后背着饭粒立即返回,与小蚂蚁乙在数轴上D点相遇,则点D表示的有理数是什么?从出发到此时,小蚂蚁甲共用去多少时间?3.如图,数轴上A、B、C三点表示的数分别为a、b、c,且a、b满足|a+8|+(b﹣12)2=0.(1)则a=,b=;(2)动点P从A点出发,以每秒10个单位的速度沿数轴向右运动,到达B点停留片刻后立即以每秒6个单位的速度沿数轴返回到A点,共用了6秒;其中从C到B,返回时从B到C(包括在B点停留的时间)共用了2秒.①求C点表示的数c;②设运动时间为t秒,求t为何值时,点P到A、B、C三点的距离之和为23个单位?4.数轴上点A,C对应的数分别是a,c,且a,c满足:|a+6|+(c﹣1)2=0,点B对应的数是﹣2.(1)填空:a=,c=;在数轴上描出点A,B,C;(2)若点M在数轴上对应的数为m,且满足|m﹣1|+|m+6|=15,则m=;(3)若A,B两点同时沿数轴正方向匀速运动,点A的速度为每秒2个单位长度,点B的速度为每秒1个单位长度,在运动过程中,点A到点C的距离是点B到点C距离的3倍时,点A对应的数是多少?5.如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,数轴上有一点C,且C 点到A点的距离是C点到B点距离的2倍,且a、b满足|a+4|+(b﹣11)2=0.(1)直接写出点C表示的数;(2)点P从A点以每秒4个单位的速度向右运动,点Q同时从B点以每秒3个单位的速度向左运动,若AP+BQ=2PQ,求时间t;(3)数轴上有一定点N,N点在数轴上对应的数为2,若点P与点M同时从A点出发,一起向右运动,P点的速度为每秒6个单位,M点的速度为每秒3个单位,在P点到达点B之前:①的值不变;②2BM﹣BP的值不变,其中只有一个正确,请你找出正确的结论并求出其值.6.数轴上A,B,C三点对应的数a,b,c满足(a+40)2+|b+10|=0,B为线段AC的中点.(1)直接写出A,B,C对应的数a,b,c的值.(2)如图1,点D表示的数为10,点P,Q分别从A,D同时出发匀速相向运动,点P的速度为6个单位/秒,点Q的速度为1个单位/秒.当点P运动到C后迅速以原速返回到A又折返向C点运动;点Q 运动至B点后停止运动,同时P点也停止运动.求在此运动过程中P,Q两点相遇点在数轴上对应的数.(3)如图2,M,N为A,C之间两点(点M在N左边,且它们不与A,C重合),E,F分别为AN,CM的中点,求的值.7.如图,数轴上有A、B、C三个点,A、B、C对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c﹣10)2=0,动点P从A出发,以每秒1个单位的速度向终点C运动,设运动时间为t秒.(1)求a、b、c的值;(2)若点P到A点的距离是点P到B点的距离的2倍,求点P对应的数;(3)当点P运动到B点时,点Q从点A出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.在点Q开始运动后第几秒时,P、Q两点之间的距离为4?请说明理由.8.如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,C是AB的中点,且a、b满足|a+2|+(b+2a)2=0(1)求点C表示的数;(2)若点P从A向右运动,点M为AP中点,在P点到达点B之前,求证:2BM﹣BP为定值(3)点P从A点以每秒2个单位的速度向右运动,点Q同时从B点出发以每秒1个单位的速度向左运动,若AP+BQ=2PQ,求时间t.9.如图:在数轴上A点表示数a,B点表示数b,C点表示数c,b是最大的负整数,且a、c满足|a+3|与(c﹣5)2互为相反数.(1)a=,b=,c=;(2)若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒2个单位长度的速度向左运动,同时,点B和点C 分别以每秒1个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC.①请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.②探究:在(3)的情况下,若点A、C向右运动,点B向左运动,速度保持不变,3BC﹣4AB的值是否随着时间t的变化而改变若变化,请说明理由;若不变,请求其值.10.如图,在数轴上的A点表示数a,B点表示数b,a、b满足(a+2)2+|b﹣4|=0.(1)点A表示的数为,点B表示的数为.(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒).①t=1时,甲小球到原点的距离=;乙小球到原点的距离=.当t=3时,甲小球到原点的距离=;乙小球到原点的距离=.②试探究:甲、乙两小球到原点的距离可能相等吗?若不能,请说明理由;若能,请举例说明.11.根据如图给出的数轴,解答下面的问题:(1)点A表示的数是,点B表示的数是.若将数轴折叠,使得A与﹣5表示的点重合,则B 点与数表示的点重合;(2)观察数轴,与点A的距离为4的点表示的数是:;(3)已知M点到A、B两点距离和为8,求M点表示的数.12.已知,数轴上点A在原点左边,到原点的距离为8个单位长度,点B在原点的右边,从点A走到点B,要经过32个单位长度.(1)求A、B两点所对应的数;(2)若点C也是数轴上的点,点C到点B的距离是点C到原点的距离的3倍,求点C对应的数;(3)已知,点M从点A向右出发,速度为每秒1个单位长度,同时点N从点B向右出发,速度为每秒2个单位长度,设线段NO的中点为P,线段PO﹣AM的值是否变化?若不变求其值.13.已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0,请回答问题:(1)请直接写出a、b、c的值:a=,b=,c=;(2)数轴上a,b,c所对应的点分别为A,B,C,点M是A,B之间的一个动点,其对应的数为m,请化简|2m|(请写出化简过程);(3)在(1)、(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.14.根据给出的数轴及已知条件,解答下面的问题:(1)已知点A,B,C表示的数分别为1,﹣2.5,﹣3观察数轴,B,C两点之间的距离为;与点A的距离为3的点表示的数是;(2)若将数轴折叠,使得A点与C点重合,则与B点重合的点表示的数是;若此数轴上M,N两点之间的距离为2020(M在N的左侧),且当A点与C点重合时,M点与N点也恰好重合,则M、N两点表示的数分别是:M:,N:.(3)若数轴上P,Q两点间的距离为m(P在Q左侧),表示数n的点到P,Q两点的距离相等,则将数轴折叠,使得P点与Q点重合时,P,Q两点表示的数分别为:P,Q.(用含m,n的式子表示这两个数)15.阅读下面材料,回答问题.已知点A,B在数轴上分别表示有理数a,b.A,B两点之间的距离表示AB.(一)当A,B两点中有一点在原点时,不妨设点A在原点,如图1,AB=OB=|b|﹣|a|=b﹣a=|a﹣b|.(二)当A,B两点都不在原点时,①如图2,点A,B都在原点的右边,AB=OB﹣OA=|b|﹣|a|=b﹣a=|a﹣b|.②如图3,点A,B都在原点的左边,AB=OB﹣OA=|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b|.③如图4,点A,B在原点的两边,AB=OA+OB=|a|+|b|=a+(﹣b)=a﹣b=|a﹣b|.综上,数轴A,B两点的距离AB=|a﹣b|.利用上述结论,回答以下几个问题:(1)数轴上点A表示的数是1,点B表示的数是x,且点B与点A在原点的同侧,AB=3,则x=.(2)数轴上点A到原点的距离是1,点B表示的数绝对值是3,则AB=.(3)若点A、B在数轴上表示的数分别是﹣4、2,设P在数轴上表示的数是x,当|PA|+|PB|=8时,直接写x的值.16.数轴上有A,B,C三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“关联点”.例如数轴上点A,B,C所表示的数分别为1,3,4,此时点B是点A,C的“关联点”.(1)若点A表示数﹣2,点B表示数1,下列各数﹣1,2,4,6所对应的点分别是C1,C2,C3,C4,其中是点A,B的“关联点”的是;(2)点A表示数﹣10,点B表示数15,P为数轴上一个动点:①若点P在点B的左侧,且点P是点A,B的“关联点”,求此时点P表示的数;②若点P在点B的右侧,点P,A,B中,有一个点恰好是其它两个点的“关联点”,请直接写出此时点P表示的数.17.数轴上有两点A,B,点C,D分别从原点O与点B出发,沿BA方向同时向左运动.(1)如图,若点N为线段OB上一点,AB=16,ON=2,当点C,D分别运动到AO,BN的中点时,求CD的长;(2)若点C在线段OA上运动,点D在线段OB上运动,速度分别为每秒1cm,4cm,在点C,D运动的过程中,满足OD=4AC,若点M为直线AB上一点,且AM﹣BM=OM,求的值.18.已知数轴的原点为O,如图所示,点A表示﹣2,点B表示3,请回答下列问题:(1)数轴是什么图形?数轴在原点右边的部分(包括原点)是什么图形?数轴上表示不小于﹣2,且不大于3的部分是什么图形?请你分别给它们取一个合适的名字;(2)请你在射线AO上再标上一个点C(不与A点重合),那么表示点C的值x的取值范围是.19.一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续向东走了1.5千米到达小红家,然后向西走了8.5千米到达小刚家,最后返回百货大楼.(1)以百货大楼为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点A表示,小红家用点B表示,小刚家用点C表示)(2)小明家与小刚家相距多远?(3)若货车每千米耗油0.2升,那么这辆货车此次送货共耗油多少升?20.如图,将一根木棒放在数轴(单位长度为1cm)上,木棒左端与数轴上的点A重合,右端与数轴上的点B重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B时,它的右端在数轴上所对应的数为30;若将木棒沿数轴向左水平移动,则当它的右端移动到点A时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为cm;(2)图中点A所表示的数是,点B所表示的数是;(3)由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:一天,妙妙去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要37年才出生;你若是我现在这么大,我就119岁啦!”请问奶奶现在多少岁了?。
北师大版七年级数学上册第二章知识点整理北师大版七年级数学上册第二章知识点整理七年级上册第二章有理数及其运算1.有理数:有理数=整数+分数(包括有限小数+无限循环小数)整数=正整数+0+负整数分数=正分数+负分数有理数=正有理数+0+负有理数正有理数=正整数+正分数负有理数=负整数+负分数l 正数的概念:数轴上0右边的数即比0大的数叫正数,形如+1,+0.5,+10.1,0.001…l 负数的概念:数轴上0左边的数,形如-3,-0.2,-100…(负号不能省略). l 0既不是正数也不是负数,0是整数也是偶数.① 正负数的表示方法:盈利,亏损;足球比赛胜,负;收入,支出;提高,降低;上升,下降;② 不投入不支出,不盈也不亏,海平面的海拔,某一个标准或基准….用0表示;2.数轴:概念:规定了原点,正方向和单位长度的直线数轴是一条可以向两端无限延伸的直线,数轴有三要素:原点,正方向,单位长度;画法:首先画一条直线;在这条直线上任取一点,作为原点;再确定正方向,一般规定向右为正,画上箭头,反方向为负方向;最后选取适应的长度作为单位长度;数轴上的点与有理数的关系:任意一个有理数都可以用数轴上的点来表示。
有理数的大小比较:在数轴上表示的两个数,右边的数比左边的数大,正数都大于0,负数都小于0,正数大于负数.3. 相反数:(1)只有符号不同的两个数叫做互为相反数(在数轴上互为相反数的两点位于原点两侧,并且到原点的距离相等),0的相反数是0;a,b互为相反数 a+b=0;(2)求一个数的相反数,只要在它的前面添上负号“-”即得原数的相反数,当原数是多个数的和差时,要用括号括起来再添“-”;下面的a,b即可以是数字,字母,也可以是代数式;(3)一般地,数a的相反数是-a,这里的a表示任意一个数,可以是正数、负数、0.4. 绝对值:(1)几何定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值;(2)代数定义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0;互为相反数的两个数的绝对值相等.(3)对于任何有理数a,都有a的绝对值≥0 ,即绝对值非负性;若几个数的绝对值的和等于0,则这几个数同时为0;(4)比较两个负数,绝对值大的反而小;5.倒数:(1)乘积为1的两个数互为倒数,所以数a(a≠0) 的倒数是 1/a,0没有倒数;(2)求一个整数的倒数,写成这个整数分之一;求一个小数的倒数,先将其化成分数,再求其倒数;求一个带分数的倒数,先将其化为假分数,再求出倒数.(3)用1除以一个非0数,商就是这个数的倒数.6. 有理数的四则运算:⑴ 加法法则:① 同号两数相加,符号不变,把绝对值相加;② 异号两数相加,绝对值相等时(即互为相反数的两个数)相加得0;绝对值不相等时,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③ 一个数同0相加,仍得这个数;有理数加法运算律:交换律和结合律(互为相反数的可先相加;相加可得整数的可先相加;同分母的分数可先相加;符号相同的可先相加;易于通分的可先相加).⑵ 减法法则:① 减去一个数,等于加上这个数的相反数,依据加法法则② 加减混合运算,通过减法法则将减法转化为加法,统一成只含有加法运算的和式;减法没有交换律.⑶ 乘法法则:① 两数相乘,同号得正,异号得负,把绝对值相乘;② 任何数同0相乘,得0;(另外1乘任何数都等于这个数本身;-1乘以任何数都等于这个数的相反数.)③ 几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数的个数是奇数时,积为负;当负因数的个数是偶数时,积为正.乘法的运算律:交换律、结合律、乘法对加法的分配律.⑷ 除法法则:① 两数相除,同号得正,异号得负,把绝对值相除;② 0除以任何非0的数都得0.③ 除以一个数,等于乘上这个数的倒数,即 .⑸ 乘方:① 求几个相同因数积的运算,叫做乘方;乘方的结果叫做幂;,表示n个相同因数乘积的运算;② 负数乘方要用括号括起来;分数乘方要用括号括起来;当指数是1时,可省略不写;③ 正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数(奇次幂 2n+1,2n-1; 偶次幂 2n);0的正整数次幂都是0.⑹ 混合运算:① 从左到右的顺序进行;② 先乘方,再乘除,后加减;如有括号,应先算括号里面的;7. 科学记数法(1)把一个大于10的数表示成的形式(其中a是整数数位只有一位的数,n是正整数,它的值等于原数的整数位数减1,),这种记数方法叫科学记数法;(2)准确数与近似数:与实际完全相符的数是准确数;与实际相接近的数是近似数;(3)精确度:近似数与准确数的接近程度,可以用精确度表示;一般地,把一个数四舍五入到哪一位,就说这个数精确到了那一位;所以,精确度是描述一个近似数的近似程度的量;(4)有效数字:在近似数中,从左边第一个不是0的数字起,到精确的数位止,所有的数字都叫做这个数的有效数字;一共包含的数字的个数,叫做有效数字的个数;。
北师大版七年级数学上册第二章知识点整理北师大版七年级数学上册第二章知识点整理七年级上册第二章有理数及其运算1. 有理数:有理数=整数+分数(包括有限小数+无限循环小数)整数=正整数+0+负整数分数=正分数+负分数有理数=正有理数+0+负有理数正有理数=正整数+正分数负有理数=负整数+负分数l 正数的概念:数轴上0 右边的数即比0 大的数叫正数,形如+1, +0.5 , +10.1 , 0.001 …l 负数的概念:数轴上0 左边的数,形如-3 ,-0.2 ,-100…(负号不能省略).l 0 既不是正数也不是负数,0是整数也是偶数.①正负数的表示方法:盈利,亏损;足球比赛胜,负;收入,支出;提高,降低;上升,下降;②不投入不支出,不盈也不亏,海平面的海拔,某一个标准或基准… . 用0 表示;2. 数轴:概念:规定了原点,正方向和单位长度的直线数轴是一条可以向两端无限延伸的直线,数轴有三要素:原点,正方向,单位长度;画法:首先画一条直线;在这条直线上任取一点,作为原点;再确定正方向,一般规定向右为正,画上箭头,反方向为负方向;最后选取适应的长度作为单位长度;数轴上的点与有理数的关系:任意一个有理数都可以用数轴上的点来表示。
有理数的大小比较:在数轴上表示的两个数,右边的数比左边的数大,正数都大于0,负数都小于0,正数大于负数.3. 相反数:(1)只有符号不同的两个数叫做互为相反数(在数轴上互为相反数的两点位于原点两侧,并且到原点的距离相等),0 的相反数是0;a,b 互为相反数a+b=0;(2)求一个数的相反数,只要在它的前面添上负号“ 即得原数的相反数,当原数是多个数的和差时,要用括号括起来再添“ - ”;下面的a,b 即可以是数字,字母,也可以是代数式;(3)一般地,数a 的相反数是-a, 这里的a 表示任意一个数,可以是正数、负数、0.4. 绝对值:(1)几何定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值;(2)代数定义:正数的绝对值是它本身;负数的绝对值是它的相反数;0 的绝对值是0;互为相反数的两个数的绝对值相等.(3)对于任何有理数a,都有a的绝对值》0 ,即绝对值非负性;若几个数的绝对值的和等于0,则这几个数同时为0;( 4) 比较两个负数,绝对值大的反而小;5. 倒数:(1)乘积为1的两个数互为倒数,所以数a(a工0) 的倒数是1/a ,0没有倒数;( 2)求一个整数的倒数,写成这个整数分之一;求一个小数的倒数,先将其化成分数,再求其倒数;求一个带分数的倒数,先将其化为假分数,再求出倒数.( 3)用1 除以一个非0 数,商就是这个数的倒数.6. 有理数的四则运算:⑴ 加法法则:①同号两数相加,符号不变,把绝对值相加;②异号两数相加,绝对值相等时(即互为相反数的两个数) 相加得0;绝对值不相等时,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③一个数同0 相加,仍得这个数;有理数加法运算律:交换律和结合律(互为相反数的可先相加;相加可得整数的可先相加;同分母的分数可先相加;符号相同的可先相加;易于通分的可先相加)⑵ 减法法则:①减去一个数,等于加上这个数的相反数,依据加法法则②加减混合运算,通过减法法则将减法转化为加法,统一成只含有加法运算的和式;减法没有交换律.⑶ 乘法法则:①两数相乘,同号得正,异号得负,把绝对值相乘;②任何数同0 相乘,得0 ;(另外1 乘任何数都等于这个数本身;-1 乘以任何数都等于这个数的相反数. )③几个不等于0 的数相乘,积的符号由负因数的个数决定,当负因数的个数是奇数时,积为负;当负因数的个数是偶数时,积为正.乘法的运算律:交换律、结合律、乘法对加法的分配律⑷ 除法法则:① 两数相除,同号得正,异号得负,把绝对值相除;② 0 除以任何非0 的数都得0.③除以一个数,等于乘上这个数的倒数,即.⑸ 乘方:① 求几个相同因数积的运算,叫做乘方;乘方的结果叫做幂;,表示n 个相同因数乘积的运算;② 负数乘方要用括号括起来;分数乘方要用括号括起来;当指数是1 时,可省略不写;③正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数(奇次幂2n+1,2n-1; 偶次幂2n );0 的正整数次幂都是0.⑹ 混合运算:① 从左到右的顺序进行;② 先乘方,再乘除,后加减;如有括号,应先算括号里面的;7. 科学记数法(1)把一个大于10的数表示成的形式(其中a是整数数位只有一位的数,n 是正整数,它的值等于原数的整数位数减1 , ),这种记数方法叫科学记数法;( 2) 准确数与近似数:与实际完全相符的数是准确数;与实际相接近的数是近似数;( 3) 精确度:近似数与准确数的接近程度,可以用精确度表示;一般地,把一个数四舍五入到哪一位,就说这个数精确到了那一位;所以,精确度是描述一个近似数的近似程度的量;(4)有效数字:在近似数中,从左边第一个不是0的数字起,到精确的数位止,所有的数字都叫做这个数的有效数字;一共包含的数字的个数,叫做有效数字的个数;。
《数轴》教课方案基本信息课题北师大版七年级数学上册第二章有理数及其运算第二节《数轴》教材剖析.. 本节课主要内容是数轴,它是学生学习数学中数形联合的起点,为此后的函数学习打下前提基础,在数学学习上起到了基石的作用。
在学生学习了上一节有理数观点的基础上,从认识认识温度计表示温度高低这个生活实例,引出数轴观点,概括数轴的三因素及画法和用数轴上的点表示数的方法,进一步理解用数轴上的点的地点比较有理数的大小,初步指引学生接触数形联合的思想。
.. 数轴的学习不单是学生初步接触数形联合的起点更是学生在今后学习数学的一个重要工具,同时也是学生学习直角坐标系及函数图像等内容的起点基础。
学情剖析.经过对第一章基本图形的学习,以学生的单元检测成绩来看,学生基本上具备了对图形的察看能力和基本的空间想象能力,这是学习数轴及数形联合的基本。
.在小学学生已经初步接触了图形同时也学习了线和射线,联合第一章的图形的学习,学习已经拥有了基本的图形认识能力和初步的空间想象能力。
为学习数形联合思想打下了基础。
.本节课的难点在于数轴观点的形成及用数轴上的点表示数的方法,这是数形联合思想的初步表现。
教课目的知识与能力目标:① . 经过对温度计认识和类比,使学生认识数轴,并能用数轴上的点表示有理数;②.借助数轴理解相反数观点,知道互为相反数的一对数在数轴上的地点关系,能利用数轴比较有理数的大小。
③.会求一个有理数的相反数;教课要点和难点教课要点:数轴与相反数的观点,比较有理数的大小。
教课难点:理解“数”与“形”的联合的数学思想即“数形联合思想”教课过程教课环节教师活动预设学生行为设计企图问题 :你知道温度计吗?会读温度计吗?请你试试读创建情境问出课本页图中三个温度各个学习小组分工合题, 能够激发学生一、计所表示的温度?作,议论并每个小组派学习热忱 , 增强学创建情境(指引学生领会用直线出一名学生代表回答。
生的合作沟通能问题,建上的点表示数字的方(基本能回答出一个力,表现生活中的立数轴概法。
七年级数学上册第二章有理数及其运算2 数轴知识点解读素材(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学上册第二章有理数及其运算2 数轴知识点解读素材(新版)北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学上册第二章有理数及其运算2 数轴知识点解读素材(新版)北师大版的全部内容。
《数轴》知识点解读知识点1 数轴(重点)1。
数轴的概念画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度。
规定直线上向右的方向为正方向,就得到数轴.如下图2。
任何一个有理数都可以用数轴上的一个点来表示.注意:(1)在取原点位置和确定单位长度时,要根据题目的不同特点,灵活选取。
(2)所有的有理数都可以用数轴上的点来表示,但数轴上的点不都可以表示有理数.(今后要学的无理数也可以用数轴上的点来表示)典例剖析【例1】指出下图中的数轴上各点表示的数.解析读出在数轴上的点表示的有理数分两步:(1)根据点在原点的左右边确定有理数的符合;(2)根据点与原点的距离确定数值。
答案 A点表示—212;B点表示-1,C点表示0;D点表示2;E点表示212。
【类型突破】画出数轴,并用数轴上的点来表示下列各数:+4,-2,—4。
5,113,0。
答案知识点2 有理数大小的比较(重点)利用数轴可比较有理数的大小,即(1)在数轴上表示的两个数,右边的数总比左边的数大.(2)由正数、负数、0在数轴上的位置可知:正数都大于0,负数都小于0,正数大于一切负数.提示:正负数的表示方法:因为正数都大于0,反过来,大于0的数都是正数,所以可用a〉0表示a是正数;反之,知道a是正数也可以表示为a〉0.同理,a<0表示a是负数;反之,a是负数也可以表示为a<0.典例剖析【例2】将下列各数在数轴上描出其对应点,并用“<”将它们连接起来.—312,3,-2,32,—0。
课题:数轴
●教学目标:
一、知识与技能目标:
1.学生能正确理解数轴的意义,掌握数轴的三要素;
2.学生能由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;
二、过程与方法目标:
1.通过对数轴的学习,体会数形结合的思想;
2.小组合作探究讨论,感受合作学习的魅力.
三、情感态度与价值观目标:
感受数学与生活的联系,用数学知识解决生活实际问题
●重点:
1.掌握数轴的三要素
2.由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来
●难点:由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来
●教学流程:
一、情境引入
从生活实例引入课堂,让学生体会数学与实际生活的联系。
我们在生病发烧的时候,会用温度计来测量体温,那大家会读温度计吗?
观察图片中温度计上的刻度有什么特点。
利用温度计测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.
温度计的汞柱随着温度的上升或者下降到达某个点,就会对应一个读数,而这些数就是我们所学的有理数。
二、讲授新知
在数学里为了形象的表示数的大小位置关系,我们引入了数轴。
画一条水平的直线,在这条直线上任取一点表示0(也叫原点),选取适当的长度作为单位长度,规定直线上从原点向右为正方向,就得到了数轴,如图:
在这条数轴上,+5可以用位于原点右边五个单位长度的点表示,-4可以用位于原点左边四个单位长度的点表示。
原点、正方向、单位长度是数轴的三要素。
例题:有一条笔直的自西向东的马路,马路上有一辆小货车,距离小货车东5m ,8m 分别有一辆自行车和小汽车,距离小货车西10m 处有一棵柳树。
你能否用数轴简明地表示自行车、小汽车、柳树与小货车的相对位置关系(方向、距离)?
需要注意:1.原点、单位长度和正方向三者缺一不可
2.单位长度要统一
3.负方向无箭头
学生活动:判断正确的数轴
三、思考探究
数轴为什么用直线表示?它能不能画成线段、射线或圆周呢?
如果数轴画成一条线段,那么规定了原点和单位长度后,就会发现:不管线段有多长,用它表示数总是不够长.比如,温度计只能表示某个范围内的温度值.
如果数轴画成一条射线,那么规定射线的端点为原点,射线的方向为正方向,并规定单位长度后,可以用它表示零和正数,但不能表示负数.即使把原点换成射线上的某一点,用它表示负数也总是不够.
如果用圆周上的点表示数,若一个点只表示一个数,则无法表示所有的数,若要表示所有的正数和负数,就会出现同一个点表示无数个数的麻烦.
四、举一反三
练习1:4
1、-1.5等有理数在数轴上怎么表示?
结论:任何一个有理数都可以用数轴上的点来表示。
五、实例讲解
1.数轴上 A, B, C, D 各点分别表示什么数?
解:点A表示-2,点B表示2,点C表示0,点D 表示-1.
2.画出数轴,并用数轴上的点表示下列各数
-3.5,0,5,-4,错误!未找到引用源。
解:
六、思考探究
数轴上的两个点,右边点表示的数与左边点表示的数有怎样的大小关系?
数轴上两个点表示的数,右边的总比左边的大,正数大于0,负数小于0,正数大于负数。
七、达标检测
1.利用数轴比较下列每组数的大小
(1)+2和-8 (2)-5和-8 (3)+3和-6
解:根据题意画出数轴:
因为数轴上两个点表示的数,右边的总比左边的大,正数大于0,负数小于0,正数大于负数。
所以(1)+2>-8 (2)-5>-8 (3)+3>-6
2. 将-1所对应的点在数轴上先向右移动4个单位长度,再向左移动5个单位长度后,
得到的点对应的数是_____
答案:2
解析:-1所对应的点在数轴上先向右移动4个单位长度,得到3,再向左移动5个单位长度后,得到的点对应的数为-2.
八、拓展提升
1.在数轴上,A点和B点表示的数分别为-2和1,若使A点表示的数是B点表示的数的3
倍,应把A点_____
向右移动4个单位长度
解析: B点表示的数是1,A点表示的数是B点表示的数的3倍,即A点表示的是3,从-2到3,应该把A点向右移动4个单位长度。
2. 一辆货车从百货大楼出发负责送货,向东走4千米到达小明家,继续向东走1千米到
达小红家,然后向西走10千米到达小刚家,最后回到百货大楼。
以百货大楼为原点,向东的方向为正方向,用1个单位长度表示1千米,请你在数轴上表示出小明、小红、小刚家的位置。
九、体验收获
回顾本堂课的知识:
1.数轴的概念
2.数轴的画法
3.数轴上的已知点说出它所表示的数,将有理数用数轴上的点表示出来
4.用数轴比较大小
十、布置作业
教材106页习题第1、2、3、4题。