高考数学一轮总复习 专题二 三角函数与平面向量课件 文
- 格式:ppt
- 大小:693.50 KB
- 文档页数:20
第4讲 平面向量“奔驰定理”定理:如图,已知P为△ABC内一点,则有S△PBC·PA+S△PAC·PB+S△PAB·PC=0.由于这个定理对应的图象和奔驰车的标志很相似,我们把它称为“奔驰定理”.这个定理对于利用平面向量解决平面几何问题,尤其是解决跟三角形的面积和“四心”相关的问题,有着决定性的基石作用.例 (1)已知点A,B,C,P在同一平面内,PQ=PA,QR=QB,RP=RC,则S△ABC∶S△PBC 等于( )A.14∶3B.19∶4C.24∶5D.29∶6答案 B解析 由QR=QB,得PR-PQ=(PB-PQ),整理得PR=PB+PQ=PB+PA,由RP=RC,得RP=(PC-PR),整理得PR=-PC,∴-PC=PB+PA,整理得4PA+6PB+9PC=0,∴S△ABC∶S△PBC=(4+6+9)∶4=19∶4.(2)已知点P,Q在△ABC内,PA+2PB+3PC=2QA+3QB+5QC=0,则等于( )A.B.C.D.答案 A解析 根据奔驰定理得,S△PBC∶S△PAC∶S△PAB=1∶2∶3,S△QBC∶S△QAC∶S△QAB=2∶3∶5,∴S△PAB=S△QAB=S△ABC,∴PQ∥AB,又∵S△PBC=S△ABC,S△QBC=S△ABC,∴=-=.(3)过△ABC重心O的直线PQ交AC于点P,交BC于点Q,PC=AC,QC=n BC,则n的值为________.答案 解析 因为O是重心,所以OA+OB+OC=0,即OA=-OB-OC,PC=AC⇒OC-OP=(OC-OA)⇒OP=OA+OC=-OB-OC,QC=n BC⇒OC-OQ=n(OC-OB)⇒OQ=n OB+(1-n)OC,因为P,O,Q三点共线,所以OP∥OQ,所以-(1-n)=-n,解得n=.“奔驰定理”与三角形“四心”:已知点O在△ABC内部,有以下四个推论:(1)若O为△ABC的重心,则OA+OB+OC=0.(2)若O为△ABC的外心,则sin2A·OA+sin2B·OB+sin2C·OC=0.(3)若O为△ABC的内心,则a·OA+b·OB+c·OC=0.备注:若O为△ABC的内心,则sin A·OA+sin B·OB+sin C·OC=0也对.(4)若O为△ABC的垂心,则tan A·OA+tan B·OB+tan C·OC=0.1.点P在△ABC内部,满足PA+2PB+3PC=0,则S△ABC∶S△APC为( )A.2∶1B.3∶2C.3∶1D.5∶3答案 C解析 根据奔驰定理得,S△PBC∶S△PAC∶S△PAB=1∶2∶3.∴S△ABC∶S△APC=3∶1.2.点O为△ABC内一点,若S△AOB∶S△BOC∶S△AOC=4∶3∶2,设AO=λAB+μAC,则实数λ和μ的值分别为( )A.,B.,C.,D.,答案 A解析 根据奔驰定理,得3OA+2OB+4OC=0,即3OA+2(OA+AB)+4(OA+AC)=0,整理得AO=AB+AC,故选A.3.设点P在△ABC内且为△ABC的外心,∠BAC=30°,如图.若△PBC,△PCA,△PAB的面积分别为,x,y,则x+y的最大值是________.答案 解析 根据奔驰定理得,PA+x PB+y PC=0,即AP=2x PB+2y PC,平方得AP2=4x2PB2+4y2PC2+8xy|PB|·|PC|·cos∠BPC,又因为点P是△ABC的外心,所以|PA|=|PB|=|PC|,且∠BPC=2∠BAC=60°,所以x2+y2+xy=,(x+y)2=+xy≤+2,解得0<x+y≤,。
第2讲 向量共线定理的应用向量共线定理可以解决一些向量共线,点共线问题,也可由共线求参数;对于线段的定比分点问题,用向量共线定理求解则更加简洁.例1 (1)若点M是△ABC所在平面内一点,且满足|3AM-A B-AC|=0,则△ABM与△ABC的面积之比等于( )A.B.C.D.答案 C解析 ∵|3AM-AB-AC|=0,∴3AM-AB-AC=0,∴AB+AC=3AM.设BC的中点为G,则AB+AC=2AG,∴3AM=2AG,即AM=AG,∴点M在线段AG上,且=.∴==,易得==,∴=·=×=,即△ABM与△ABC的面积之比等于.(2)在△ABC中,AN=AC,P是BN上的一点,若AP=m AB+AC,则实数m的值为_____ ___.答案 解析 方法一 ∵B,P,N三点共线,∴BP∥PN,∴存在实数λ,使得BP=λPN(λ>0),∴AP-AB=λ(AN-AP),∵λ>0,∴AP=AB+AN.∵AN=AC,AP=m AB+AC,∴AP=m AB+AN,∴解得方法二 ∵AN=AC,AP=m AB+AC,∴AP=m AB+AN.∵B,P,N三点共线,∴m+=1,∴m=.例2 (1)(2020·河北省石家庄一中质检)在△ABC中,D为线段AC的中点,点E在边BC 上,且BE=EC,AE与BD交于点O,则AO等于( )A.AB+ACB.AB+ACC.AB+ACD.AB+AC答案 A解析 如图,设AO=λAE(λ>0),又AE=AB+BC=AB+AC,∴AO=λAB+λAC=λAB+λAD.又B,O,D三点共线,∴λ+λ=1,∴λ=,∴AO=AB+AC.(2)在△ABC中,过中线AD的中点E任作一直线分别交AB,AC于M,N两点,设AM=x AB,AN=y AC(xy≠0),则4x+y的最小值是________.答案 解析 由D为BC的中点知,AD=AB+AC,又AM=x AB,AN=y AC(xy≠0),E为AD的中点,故AE=AD=AM+AN,∵M,E,N三点共线,∴+=1,∴4x+y=(4x+y)=++≥2+=,当且仅当=,即x=,y=时取等号.∴4x+y的最小值为.(1)若OA=λOB+μOC(λ,μ为常数),则A,B,C三点共线的充要条件是λ+μ=1.(2)使用条件“两条线段的交点”时,可转化成两次向量共线,进而确定交点位置.1.如图,△ABC中,AD=DB,AE=EC,CD与BE交于点F,设AB=a,AC=b,AF=x a+y b,则(x,y)等于( )A. B.C. D.答案 C解析 由题意得,AF=x a+y b=x AB+2y AE,∵B,F,E三点共线,∴x+2y=1,①同理,AF=2x AD+y AC,∵D,F,C三点共线,∴2x+y=1,②由①②得x=y=,∴(x,y)=.2.(2020·河北省石家庄二中调研)已知在△ABC中,AB=AC=3,D为边BC上一点,AB·AD=6,AC·AD=,则AB·AC的值为________.答案 解析 ∵D为边BC上一点,可设BD=λBC,∴A D=AB+BD=(1-λ)AB+λAC.∴①+②得,9+AB·AC=,∴AB·AC=.3.如图,在直角梯形ABCD中,AB∥CD,∠DAB=90°,AD=AB=4,CD=1,动点P 在边BC上,且满足AP=m AB+n AD(m,n均为正实数),则+的最小值为________.答案 解析 设AB=a,AD=b,则BC=BA+AD+DC=-a+b+b=-a+b.设BP=λBC,则AP=AB+BP=a+λb.因为AP=m a+n b,所以1-λ=m,λ=n,消去λ得m+n=1,+==1+++≥+2=,当且仅当m=4-2,n=-4时等号成立.。
高考数学一轮复习之三角函数与平面向量
1.三角函数作为一种重要的基本初等函数,是中学数学的重要内容,也是高考命题的热点之一。
近几年对三角函数的要求基本未作调整,主要考察三角函数的定义、图象与性质以及同角三角函数的基本关系式、诱导公式、和角与倍角公式等。
高考对三角函数与三角恒等变换内容的考察,一是设置一道或两道客观题,考察三角函数求值、三角函数图象与性质或三角恒等变换等外容;二是设置一道解答题,考察三角函数的性质、三角函数的恒等变换或三角函数的实践运用,普通出如今前两个解答题的位置。
无论是客观题还是解答题,从难度来说均属于中高档标题,所占分值在20分左右,约占总分值的13.3%。
2.平面向量是衔接代数与几何的桥梁,是高考的重要内容之一。
高考常设置1个客观题或1个解答题,对平面向量知识停止片面的考察,其分值约为10分,约占总分的7%。
近年高考中平面向量与解三角形的试题是难易适中的基础题或中档题,一是直接考察向量的概念、性质及其几何意义;二是考察向量、正弦定理与余弦定理在代数、三角函数、几何等效果中的运用。
1.2021年高考试题预测
(1)剖析近几年高考对三角函数与三角恒等变换局部的命题特点及开展趋向,以下仍是今后高考的主要内容:
①三角函数的图象与性质是高考考察的中心内容,经过图象求解析式、经过解析式研讨函数性质是罕见题型。
②解三角函数标题的进程普通是经过三角恒等变换化简三角函数式,再研讨其图象与性质,所以熟练掌握三角恒等变换的方法和技巧尤为重要,比如升幂(降幂)公式、asinx+bcosx的常考内容。
③经过实践背景考察同窗们的数学建模才干和数学应意图识。
新高考数学大一轮复习专题:第1讲 平面向量[考情分析] 1.平面向量是高考的热点和重点,命题突出向量的基本运算与工具性,在解答题中常与三角函数、直线和圆锥曲线的位置关系问题相结合,主要以条件的形式出现,涉及向量共线、数量积等.2.常以选择题、填空题形式考查平面向量的基本运算,中低等难度;平面向量在解答题中一般为中等难度. 考点一 平面向量的线性运算 核心提炼1.平面向量加减法求解的关键是:对平面向量加法抓住“共起点”或“首尾相连”.对平面向量减法应抓住“共起点,连两终点,指向被减向量的终点”,再观察图形对向量进行等价转化,即可快速得到结果.2.在一般向量的线性运算中,只要把其中的向量当作一个字母看待即可,其运算方法类似于代数中合并同类项的运算,在计算时可以进行类比.例1 (1)如图所示,AD 是△ABC 的中线,O 是AD 的中点,若CO →=λAB →+μAC →,其中λ,μ∈R ,则λ+μ的值为( )A .-12B.12 C .-14D.14答案 A解析 由题意知,CO →=12(CD →+CA →)=12×⎝ ⎛⎭⎪⎫12CB →+CA →=14(AB →-AC →)+12CA →=14AB →-34AC →, 则λ=14,μ=-34,故λ+μ=-12.(2)已知e 1,e 2是不共线向量,a =m e 1+2e 2,b =n e 1-e 2,且mn ≠0.若a ∥b ,则m n=________. 答案 -2解析 ∵a ∥b ,∴m ×(-1)=2×n ,∴m n=-2.(3)A ,B ,C 是圆O 上不同的三点,线段CO 与线段AB 交于点D ,若OC →=λOA →+μOB →(λ∈R ,μ∈R ),则λ+μ的取值范围是________.答案 (1,+∞)解析 由题意可得,OD →=kOC →=kλOA →+kμOB →(0<k <1),又A ,D ,B 三点共线,所以kλ+kμ=1,则λ+μ=1k>1,即λ+μ的取值范围是(1,+∞).易错提醒 在平面向量的化简或运算中,要根据平面向量基本定理恰当地选取基底,变形要有方向,不能盲目转化.跟踪演练1 (1)如图,在平行四边形ABCD 中,E ,F 分别为边AB ,BC 的中点,连接CE ,DF ,交于点G .若CG →=λCD →+μCB →(λ,μ∈R ),则λμ=________.答案 12解析 由题意可设CG →=xCE →(0<x <1), 则CG →=x (CB →+BE →)=x ⎝ ⎛⎭⎪⎫CB →+12CD →=x 2CD →+xCB →.因为CG →=λCD →+μCB →,CD →与CB →不共线,所以λ=x 2,μ=x ,所以λμ=12.(2)如图,在扇形OAB 中,∠AOB =π3,C 为弧AB 上的一个动点,若OC →=xOA →+yOB →,则x +3y的取值范围是________.答案 [1,3]解析 设扇形的半径为1,以OB 所在直线为x 轴,O 为坐标原点建立平面直角坐标系(图略), 则B (1,0),A ⎝ ⎛⎭⎪⎫12,32,C (cos θ,sin θ)⎝ ⎛⎭⎪⎫其中∠BOC =θ,0≤θ≤π3.则OC →=(cos θ,sin θ)=x ⎝ ⎛⎭⎪⎫12,32+y (1,0),即⎩⎪⎨⎪⎧x 2+y =cos θ,32x =sin θ,解得x =23sin θ3,y =cos θ-3sin θ3,故x +3y =23sin θ3+3cos θ-3sin θ=3cos θ-33sin θ,0≤θ≤π3. 令g (θ)=3cos θ-33sin θ, 易知g (θ)=3cos θ-33sin θ在⎣⎢⎡⎦⎥⎤0,π3上单调递减,故当θ=0时,g (θ)取得最大值为3, 当θ=π3时,g (θ)取得最小值为1,故x +3y 的取值范围为[1,3].考点二 平面向量的数量积 核心提炼1.若a =(x ,y ),则|a |=a ·a =x 2+y 2. 2.若A (x 1,y 1),B (x 2,y 2),则|AB →|=x 2-x 12+y 2-y 12.3.若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角, 则cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22. 例2 (1)(2020·全国Ⅲ)已知向量a ,b 满足|a |=5,|b |=6,a ·b =-6,则cos 〈a ,a +b 〉等于( )A .-3135B .-1935C.1735D.1935答案 D解析 ∵|a +b |2=(a +b )2=a 2+2a ·b +b 2=25-12+36=49, ∴|a +b |=7,∴cos〈a ,a +b 〉=a ·a +b |a ||a +b |=a 2+a ·b|a ||a +b |=25-65×7=1935. (2)已知扇形OAB 的半径为2,圆心角为2π3,点C 是弧AB 的中点,OD →=-12OB →,则CD →·AB →的值为( )A .3B .4C .-3D .-4 答案 C解析 如图,连接CO ,∵点C 是弧AB 的中点, ∴CO ⊥AB ,又∵OA =OB =2,OD →=-12OB →,∠AOB =2π3,∴CD →·AB →=(OD →-OC →)·AB →=-12OB →·AB →=-12OB →·(OB →-OA →)=12OA →·OB →-12OB →2=12×2×2×⎝ ⎛⎭⎪⎫-12-12×4=-3. (3)已知在直角梯形ABCD 中,AB =AD =2CD =2,∠ADC =90°,若点M 在线段AC 上,则|MB →+MD →|的取值范围为________________.答案 ⎣⎢⎡⎦⎥⎤255,22 解析 以A 为坐标原点,AB ,AD 所在直线分别为x 轴,y 轴, 建立如图所示的平面直角坐标系,则A (0,0),B (2,0),C (1,2),D (0,2),设AM →=λAC →(0≤λ≤1),则M (λ,2λ), 故MD →=(-λ,2-2λ),MB →=(2-λ,-2λ), 则MB →+MD →=(2-2λ,2-4λ), ∴|MB →+MD →|=2-2λ2+2-4λ2=20⎝⎛⎭⎪⎫λ-352+45,0≤λ≤1, 当λ=0时,|MB →+MD →|取得最大值为22, 当λ=35时,|MB →+MD →|取得最小值为255,∴|MB →+MD →|∈⎣⎢⎡⎦⎥⎤255,22.易错提醒 两个向量的夹角的范围是[0,π],在使用平面向量解决问题时要特别注意两个向量的夹角可能是0或π的情况,如已知两个向量的夹角为钝角时,不仅要求其数量积小于零,还要求不能反向共线.跟踪演练2 (1)(2019·全国Ⅰ)已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为( )A.π6B.π3C.2π3D.5π6 答案 B解析 方法一 设a 与b 的夹角为θ,因为(a -b )⊥b ,所以(a -b )·b =a ·b -|b |2=0, 又因为|a |=2|b |,所以2|b |2cos θ-|b |2=0, 即cos θ=12,又θ∈[0,π],所以θ=π3,故选B. 方法二 如图,令OA →=a ,OB →=b ,则BA →=OA →-OB →=a -b .因为(a -b )⊥b ,所以∠OBA =π2,又|a |=2|b |,所以∠AOB =π3,即a 与b 的夹角为π3,故选B.(2)(2020·新高考全国Ⅰ)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP →·AB →的取值范围是( ) A .(-2,6) B .(-6,2) C .(-2,4) D .(-4,6)答案 A解析 如图,取A 为坐标原点,AB 所在直线为x 轴建立平面直角坐标系,则A (0,0),B (2,0),C (3,3),F (-1,3). 设P (x ,y ),则AP →=(x ,y ),AB →=(2,0),且-1<x <3. 所以AP →·AB →=(x ,y )·(2,0)=2x ∈(-2,6).(3)设A ,B ,C 是半径为1的圆O 上的三点,且OA →⊥OB →,则(OC →-OA →)·(OC →-OB →)的最大值是( ) A .1+ 2 B .1- 2 C.2-1 D .1答案 A解析 如图,作出OD →,使得OA →+OB →=OD →.则(OC →-OA →)·(OC →-OB →)=OC →2-OA →·OC →-OB →·OC →+OA →·OB →=1-(OA →+OB →)·OC →=1-OD →·OC →,由图可知,当点C 在OD 的反向延长线与圆O 的交点处时,OD →·OC →取得最小值,最小值为-2,此时(OC →-OA →)·(OC →-OB →)取得最大值,最大值为1+ 2.故选A.专题强化练一、单项选择题1.已知四边形ABCD 是平行四边形,点E 为边CD 的中点,则BE →等于( )A .-12AB →+AD →B.12AB →-AD →C.AB →+12AD →D.AB →-12AD →答案 A解析 由题意可知,BE →=BC →+CE →=-12AB →+AD →.2.(2020·广州模拟)加强体育锻炼是青少年生活学习中非常重要的组成部分,某学生做引体向上运动,处于如图所示的平衡状态时,若两只胳膊的夹角为π3,每只胳膊的拉力大小均为400 N ,则该学生的体重(单位:kg)约为(参考数据:取重力加速度大小为g =10 m/s 2,3≈1.732)( )A .63B .69C .75D .81 答案 B解析 设该学生的体重为m ,重力为G ,两臂的合力为F ′,则|G |=|F ′|,由余弦定理得|F ′|2=4002+4002-2×400×400×cos 2π3=3×4002,∴|F ′|=4003,∴|G |=mg =4003,m =403≈69kg.3.已知向量a =(1,2),b =(2,-2),c =(λ,-1),若c ∥(2a +b ),则λ等于( ) A .-2B .-1C .-12D.12答案 A解析 ∵a =(1,2),b =(2,-2),∴2a +b =(4,2),又c =(λ,-1),c ∥(2a +b ),∴2λ+4=0,解得λ=-2,故选A.4.(2020·潍坊模拟)在平面直角坐标系xOy 中,点P (3,1),将向量OP →绕点O 按逆时针方向旋转π2后得到向量OQ →,则点Q 的坐标是( )A .(-2,1)B .(-1,2)C .(-3,1)D .(-1,3) 答案 D解析 由P (3,1),得P ⎝⎛⎭⎪⎫2cos π6,2sin π6,∵将向量OP →绕点O 按逆时针方向旋转π2后得到向量OQ →,∴Q ⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π6+π2,2sin ⎝ ⎛⎭⎪⎫π6+π2, 又cos ⎝⎛⎭⎪⎫π6+π2=-sin π6=-12,sin ⎝ ⎛⎭⎪⎫π6+π2=cos π6=32,∴Q (-1,3).5.(2020·泰安模拟)如图,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB →=mAM →,AC →=nAN →,则m +n 等于( )A .0B .1C .2D .3 答案 C解析 如图,连接AO ,由O 为BC 的中点可得,AO →=12(AB →+AC →)=m 2AM →+n 2AN →, ∵M ,O ,N 三点共线, ∴m 2+n2=1. ∴m +n =2.6.在同一平面中,AD →=DC →,BE →=2ED →.若AE →=mAB →+nAC →(m ,n ∈R ),则m +n 等于( ) A.23B.34C.56D .1 答案 A解析 由题意得,AD →=12AC →,DE →=13DB →,故AE →=AD →+DE →=12AC →+13DB →=12AC →+13(AB →-AD →)=12AC →+13⎝ ⎛⎭⎪⎫AB →-12AC →=13AB →+13AC →,所以m =13,n =13,故m +n =23.7.若P 为△ABC 所在平面内一点,且|PA →-PB →|=|PA →+PB →-2PC →|,则△ABC 的形状为( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .等腰直角三角形答案 C解析 ∵|PA →-PB →|=|PA →+PB →-2PC →|,∴|BA →|=|(PA →-PC →)+(PB →-PC →)|=|CA →+CB →|,即|CA →-CB →|=|CA →+CB →|,两边平方整理得,CA →·CB →=0,∴CA →⊥CB →,∴△ABC 为直角三角形.故选C. 8.已知P 是边长为3的等边三角形ABC 外接圆上的动点,则||PA →+PB →+2PC →的最大值为( )A .23B .33C .43D .5 3 答案 D解析 设△ABC 的外接圆的圆心为O , 则圆的半径为332×12=3,OA →+OB →+OC →=0, 故PA →+PB →+2PC →=4PO →+OC →.又||4PO →+OC→2=51+8PO →·OC →≤51+24=75, 故||PA →+PB →+2PC →≤53, 当PO →,OC →同向共线时取最大值.9.如图,圆O 是边长为23的等边三角形ABC 的内切圆,其与BC 边相切于点D ,点M 为圆上任意一点,BM →=xBA →+yBD →(x ,y ∈R ),则2x +y 的最大值为( )A.2B.3C .2D .2 2 答案 C解析 方法一 如图,连接DA ,以D 点为原点,BC 所在直线为x 轴,DA 所在直线为y 轴,建立如图所示的平面直角坐标系.设内切圆的半径为r ,则圆心为坐标(0,r ),根据三角形面积公式,得12×l △ABC ×r =12×AB ×AC ×sin60°(l △ABC 为△ABC 的周长),解得r =1.易得B (-3,0),C (3,0),A (0,3),D (0,0), 设M (cos θ,1+sin θ),θ∈[0,2π),则BM →=(cos θ+3,1+sin θ),BA →=(3,3),BD →=(3,0), 故BM →=(cos θ+3,1+sin θ)=(3x +3y ,3x ),故⎩⎨⎧cos θ=3x +3y -3,sin θ=3x -1,则⎩⎪⎨⎪⎧x =1+sin θ3,y =3cos θ3-sin θ3+23,所以2x +y =3cos θ3+sin θ3+43=23sin ⎝⎛⎭⎪⎫θ+π3+43≤2.当θ=π6时等号成立.故2x +y 的最大值为2.方法二 因为BM →=xBA →+yBD →,所以|BM →|2=3(4x 2+2xy +y 2)=3[(2x +y )2-2xy ]. 由题意知,x ≥0,y ≥0, |BM →|的最大值为232-32=3,又2x +y 24≥2xy ,即-2x +y 24≤-2xy ,所以3×34(2x +y )2≤9,得2x +y ≤2,当且仅当2x =y =1时取等号. 二、多项选择题10.(2020·长沙模拟)已知a ,b 是单位向量,且a +b =(1,-1),则( ) A .|a +b |=2 B .a 与b 垂直C .a 与a -b 的夹角为π4D .|a -b |=1 答案 BC解析 |a +b |=12+-12=2,故A 错误;因为a ,b 是单位向量,所以|a |2+|b |2+2a ·b =1+1+2a ·b =2,得a ·b =0,a 与b 垂直,故B 正确;|a -b |2=a 2+b 2-2a ·b =2,|a -b |=2,故D 错误;cos 〈a ,a -b 〉=a ·a -b |a ||a -b |=a 2-a ·b 1×2=22,所以a 与a -b 的夹角为π4,故C 正确. 11.设向量a =(k,2),b =(1,-1),则下列叙述错误的是( )A .若k <-2,则a 与b 的夹角为钝角B .|a |的最小值为2C .与b 共线的单位向量只有一个为⎝ ⎛⎭⎪⎫22,-22 D .若|a |=2|b |,则k =22或-2 2 答案 CD解析 对于A 选项,若a 与b 的夹角为钝角,则a ·b <0且a 与b 不共线,则k -2<0且k ≠-2,解得k <2且k ≠-2,A 选项正确;对于B 选项,|a |=k 2+4≥4=2,当且仅当k =0时等号成立,B 选项正确;对于C 选项,|b |=2,与b 共线的单位向量为±b |b |,即与b 共线的单位向量为⎝⎛⎭⎪⎫22,-22或⎝ ⎛⎭⎪⎫-22,22,C 选项错误;对于D 选项,∵|a |=2|b |=22,∴k 2+4=22,解得k =±2,D 选项错误.12.已知△ABC 是边长为2的等边三角形,D ,E 分别是AC ,AB 上的两点,且AE →=EB →,AD →=2DC →,BD 与CE 交于点O ,则下列说法正确的是( )A.AB →·CE →=-1B.OE →+OC →=0C .|OA →+OB →+OC →|=32D.ED →在BC →方向上的投影为76答案 BCD解析 因为AE →=EB →,△ABC 是等边三角形,所以CE ⊥AB ,所以AB →·CE →=0,选项A 错误;以E 为坐标原点,EA →,EC →的方向分别为x 轴,y 轴正方向建立平面直角坐标系,如图所示,所以E (0,0),A (1,0),B (-1,0),C (0,3),D ⎝ ⎛⎭⎪⎫13,233, 设O (0,y ),y ∈(0,3),则BO →=(1,y ),DO →=⎝ ⎛⎭⎪⎫-13,y -233, 又BO →∥DO →,所以y -233=-13y ,解得y =32, 即O 是CE 的中点,OE →+OC →=0,所以选项B 正确;|OA →+OB →+OC →|=|2OE →+OC →|=|OE →|=32, 所以选项C 正确;ED →=⎝ ⎛⎭⎪⎫13,233,BC →=(1,3),ED →在BC →方向上的投影为ED →·BC →|BC →|=13+22=76,所以选项D 正确. 三、填空题13.(2020·全国Ⅱ)已知单位向量a ,b 的夹角为45°,k a -b 与a 垂直,则k =________. 答案 22解析 由题意知(k a -b )·a =0,即k a 2-b ·a =0.因为a ,b 为单位向量,且夹角为45°,所以k ×12-1×1×22=0,解得k =22. 14.在△ABC 中,AB =1,∠ABC =60°,AC →·AB →=-1,若O 是△ABC 的重心,则BO →·AC →=________.答案 5解析 如图所示,以B 为坐标原点,BC 所在直线为x 轴,建立平面直角坐标系.∵AB =1,∠ABC =60°,∴A ⎝ ⎛⎭⎪⎫12,32.设C (a,0). ∵AC →·AB →=-1,∴⎝ ⎛⎭⎪⎫a -12,-32·⎝ ⎛⎭⎪⎫-12,-32 =-12⎝ ⎛⎭⎪⎫a -12+34=-1,解得a =4. ∵O 是△ABC 的重心,延长BO 交AC 于点D ,∴BO →=23BD →=23×12()BA →+BC → =13⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12,32+4,0=⎝ ⎛⎭⎪⎫32,36. ∴BO →·AC →=⎝ ⎛⎭⎪⎫32,36·⎝ ⎛⎭⎪⎫72,-32=5. 15.(2020·石家庄模拟)在锐角三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,点O为△ABC 的外接圆的圆心,A =π3,且AO →=λAB →+μAC →,则λμ的最大值为________. 答案 19解析 ∵△ABC 是锐角三角形,∴O 在△ABC 的内部,∴0<λ<1,0<μ<1.由AO →=λ(OB →-OA →)+μ(OC →-OA →), 得(1-λ-μ)AO →=λOB →+μOC →,两边平方后得,(1-λ-μ)2AO →2=(λOB →+μOC →)2=λ2OB →2+μ2OC →2+2λμOB →·OC →,∵A =π3,∴∠BOC =2π3,又|AO →|=|BO →|=|CO →|. ∴(1-λ-μ)2=λ2+μ2-λμ,∴1+3λμ=2(λ+μ),∵0<λ<1,0<μ<1,∴1+3λμ≥4λμ,设λμ=t ,∴3t 2-4t +1≥0,解得t ≥1(舍)或t ≤13, 即λμ≤13⇒λμ≤19,∴λμ的最大值是19.16.(2020·浙江)已知平面单位向量e 1,e 2满足|2e 1-e 2|≤2,设a =e 1+e 2,b =3e 1+e 2,向量a ,b 的夹角为θ,则cos 2θ的最小值是________. 答案 2829解析 设e 1=(1,0),e 2=(x ,y ),则a =(x +1,y ),b =(x +3,y ).由2e 1-e 2=(2-x ,-y ),故|2e 1-e 2|=2-x 2+y 2≤2,得(x -2)2+y 2≤2.又有x 2+y 2=1,得(x -2)2+1-x 2≤2,化简,得4x ≥3,即x ≥34,因此34≤x ≤1.cos 2θ=⎝ ⎛⎭⎪⎫a ·b|a |·|b |2=⎣⎢⎡⎦⎥⎤x +1x +3+y 2x +12+y 2x +32+y 22=⎝ ⎛⎭⎪⎫4x +42x +26x +102=4x +12x +13x +5=4x +13x +5=433x +5-833x +5=43-833x +5,。