FTIR红外光谱原理及图谱解析资料
- 格式:ppt
- 大小:6.29 MB
- 文档页数:178
FTIR红外光谱原理及图谱解析完整版本课件(一)FTIR红外光谱原理及图谱解析完整版本课件简介FTIR红外光谱是一种常用的物质分析方法,广泛应用于化学、生物、环境等领域。
本文介绍FTIR红外光谱的原理和图谱解析方法。
一、红外光谱原理FTIR红外光谱的原理是基于物质分子振动的吸收和散射行为。
当分子中的化学键振动时,将会吸收红外光谱区域的能量,产生特定的吸收峰。
FTIR光谱分析仪通过红外光源和可变波长的光学器件将可见光波长转化为红外波长,使其能够与物质的振动共振。
经过物质样品后,经过红外光谱检测器,将该区域的光强度转换为物质光谱图。
二、FTIR光谱图谱解析方法1.波数和吸收峰FTIR光谱图中,横坐标为波数,纵坐标为吸收率或透过率。
不同物质的振动特性存在差异,因此所产生的吸收峰位置也不同。
FTIR光谱图分析可以通过峰的波数来推断物质中的官能团,并可定性或定量分析样品中成分的存在。
2.峰形及其宽度FTIR光谱图中峰形和宽度提供了有关振动模式和分子结构的信息。
当样品存在着两种或更多种不同类型的化学键时,产生的峰可能是峰形尖锐的或不对称的,而单一类型的化学键则产生峰形较为平缓的吸收峰。
3.吸收强度FTIR光谱中吸收强度是定量分析制备样品中成分存在的重要指标,吸收峰强度和峰的面积可用于计算样品中成分的含量。
吸收因素可能包括洗涤和处理的语句、溶剂效应、仪器信噪比等因素。
4.干扰峰物质在FTIR光谱测试过程中,可能会产生应力、化学作用、示谐频和空气湿度等干扰峰。
为了避免这些因素影响光谱数据,应采取适当的标准条件、仪器校准等措施来进行分析,避免由于干扰而得到错误的结果。
结语FTIR红外光谱分析是一种重要的化学分析技术。
理解FTIR红外光谱的原理和图谱解析方法,能够帮助我们准确、敏捷地进行样品分析。
傅里叶变换红外(FTIR)光谱是一种常用的分析技术,它通过分析物质在红外光谱范围内的吸收和散射特性,来研究样品的成分、结构和性质。
本文将从以下几个方面对傅里叶变换红外光谱进行介绍和解析。
一、傅里叶变换红外光谱原理简介傅里叶变换红外光谱是利用物质分子对红外光的吸收和散射特性来研究其结构和成分的一种技术。
当物质分子受到红外光的激发时,会发生特定振动和转动,这些振动和转动对应了物质分子内部的特定结构和键的存在。
傅里叶变换红外光谱仪利用光源产生的连续光通过样品后,得到经过样品吸收、散射后的光信号,并使用傅里叶变换算法将这些信号转换成详细的光谱图像。
通过解析这些光谱图像,可以获得样品中存在的各种成分的信息,包括它们的分子结构、官能团和键的类型、含量等。
二、傅里叶变换红外光谱的应用领域傅里叶变换红外光谱广泛应用于化学、材料、制药、生物、环境和食品等领域。
在化学领域,它常被用来鉴定有机化合物的结构、功能团的存在和含量,以及分子之间的相互作用;在材料领域,它常被用来研究材料的成分、性能和结构变化;在制药领域,它常被用来分析药品的成分和质量;在生物领域,它常被用来研究蛋白质、多糖等生物大分子的结构和功能。
三、傅里叶变换红外光谱的特点和优势傅里叶变换红外光谱具有快速、准确、非破坏性等特点。
相比传统的红外光谱技术,傅里叶变换红外光谱仪具有更高的光谱分辨率和灵敏度,可以检测到更低浓度的样品成分,还能够通过多种光谱技术的组合来获得更多细致的信息。
傅里叶变换红外光谱技术还可以与其他分析技术相结合,如拉曼光谱、质谱等,扩大了其应用范围和分析能力。
四、结语傅里叶变换红外光谱技术作为一种强大的分析工具,为科学研究和工程实践提供了重要的支持。
随着技术的不断发展,傅里叶变换红外光谱将在更多领域发挥其作用,为人们的生活和工作带来更多便利和科学发现。
傅里叶变换红外光谱(FTIR)技术是一种非常重要的分析技术,在许多领域都有着广泛的应用。
FTIR⼯作原理红外光谱分析法实验讲义红外光谱仪主要有两种类型:⾊散型和⼲涉型(傅⽴叶变换红外光谱仪)。
⾊散型红外光谱仪是以棱镜或光栅作为⾊散元件,这类仪器的能量受到严格限制,扫描时间慢,且灵敏度、分辨率和准确度都较低。
随着计算⽅法和计算技术的发展,20世纪70年代出现新⼀代的红外光谱测量技术及仪器——傅⽴叶变换红外光谱仪。
⼀、Fou rier变换红外光谱仪(FTIR)Fourier变换红外光谱仪没有⾊散元件,主要由光源(硅碳棒、⾼压汞灯)、Michelson⼲涉仪、检测器、计算机和记录仪组成。
核⼼部分为Michelson ⼲涉仪,它将光源来的信号以⼲涉图的形式送往计算机进⾏Fourier变换的数学处理,最后将⼲涉图还原成光谱图。
它与⾊散型红外光度计的主要区别在于⼲涉仪和电⼦计算机两部分。
这种新技术具有很⾼的分辨率、波数精度⾼、扫描速度极快(1秒内可完成)、光谱范围宽、灵敏度⾼等优点。
Fourier变换红外光谱仪的内部结构:Nicolet公司的A V ATAR 360 FT-IRFourier变换红外光谱仪⼯作原理:⼯作原理:光源发出的红外辐射,经⼲涉仪转变成⼲涉图,通过试样后得到含试样信息的⼲涉图,由电⼦计算机采集,并经过快速傅⽴叶变换,得到吸收强度或透光度随频率或波数变化的红外光谱图。
⼲涉图从数学观点讲,就是傅⽴叶变换,计算机的任务是进⾏傅⽴叶逆变换。
Michelson⼲涉仪⼯作原理:仪器的核⼼部分是Michelson⼲涉仪,如图:M1和M2为两块平⾯镜,它们直互垂直直放置,固定不动,则可沿图⽰⽅向作微⼩的移动,称为动镜。
在和之间放置⼀呈45度⾓的半透膜光束分裂器BS(beam-splitters),可使50%的⼊射光透过,其余部分被反射。
当光源发出的⼊射光进⼊⼲涉仪后就被光束分裂器分成两束光——透射光1和反射光2,其中透射光1穿过BS被动镜反射,沿原路回到BS并被反射到达探测器D,反射光2则由固定镜沿原路反射回来通过BS到达D。
ftir测试原理FTIR测试原理FTIR(Fourier-transform infrared spectroscopy)是一种基于红外光谱的无损测试技术,常用于材料分析、化学物质鉴定和质量控制等领域。
本文将介绍FTIR测试的原理和应用。
1. 红外光谱红外光谱是指物质吸收、透射或散射红外辐射时产生的光谱。
红外辐射的频率范围为10^12 Hz至10^14 Hz,对应的波长范围为1微米至100纳米。
不同物质的分子结构和化学键会引起不同的红外吸收峰,因此通过红外光谱可以了解物质的组成和结构。
2. FTIR测试原理FTIR测试利用傅里叶变换技术将红外光谱转换为频谱图。
其基本原理是将一束连续的宽谱光通过一个干涉仪,将光分成两束,一束通过样品,另一束则绕过样品。
经过样品后,光会被吸收或散射,其红外光谱会发生变化。
两束光再次汇合后,通过干涉仪的干涉产生干涉光谱,然后通过傅里叶变换得到频谱图。
3. FTIR测试仪器FTIR测试主要使用傅里叶变换红外光谱仪。
该仪器由光源、样品室、干涉仪和探测器等部分组成。
光源通常使用红外辐射源,样品室用于放置样品,干涉仪则用于产生干涉光谱,探测器用于接收光信号并将其转换为电信号。
仪器还包括光学系统、光栅和计算机等辅助设备。
4. FTIR测试步骤(1)准备样品:将待测试的物质制备成适当的样品,如固体样品可制成片状,液体样品可倒入透明的样品室。
(2)校准仪器:对仪器进行校准,包括设置仪器参数、调整光路和进行背景扫描等。
(3)获取光谱:将样品放入样品室,启动仪器开始扫描。
仪器会自动记录光谱数据,包括吸收峰的位置和强度。
(4)数据处理:使用傅里叶变换将光谱数据转换为频谱图,可以使用专业的软件进行数据处理和分析。
(5)结果解读:根据频谱图分析样品的组成和结构信息,比对库中的光谱数据进行鉴定。
5. FTIR应用领域FTIR测试广泛应用于材料科学、化学分析、环境监测、食品安全和药物研发等领域。
红外光谱的原理及应用(一)红外吸收光谱的定义及产生分子的振动能量比转动能量大,当发生振动能级跃迁时,不可避免地伴随有转动能级的跃迁,所以无法测量纯粹的振动光谱,而只能得到分子的振动-转动光谱,这种光谱称为红外吸收光谱红外吸收光谱也是一种分子吸收光谱。
当样品受到频率连续变化的红外光照射时,分子吸收了某些频率的辐射,并由其振动或转动运动引起偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透射光强度减弱。
记录红外光的百分透射比与波数或波长关系曲线,就得到红外光谱(二)基本原理1产生红外吸收的条件(1)分子振动时,必须伴随有瞬时偶极矩的变化。
对称分子:没有偶极矩,辐射不能引起共振,无红外活性。
如:N2、O2、Cl2 等。
非对称分子:有偶极矩,红外活性。
(2)只有当照射分子的红外辐射的频率与分子某种振动方式的频率相同时,分子吸收能量后,从基态振动能级跃迁到较高能量的振动能级,从而在图谱上出现相应的吸收带。
2分子的振动类型伸缩振动:键长变动,包括对称与非对称伸缩振动弯曲振动:键角变动,包括剪式振动、平面摇摆、非平面摇摆、扭曲振动3几个术语基频峰:由基态跃迁到第一激发态,产生一个强的吸收峰,基频峰;倍频峰:由基态直接跃迁到第二激发态,产生一个弱的吸收峰,倍频峰;组频:如果分子吸收一个红外光子,同时激发了基频分别为v1和v2的两种跃迁,此时所产生的吸收频率应该等于上述两种跃迁的吸收频率之和,故称组频。
特征峰:凡是能用于鉴定官能团存在的吸收峰,相应频率成为特征频率。
相关峰:相互可以依存而又相互可以佐证的吸收峰称为相关峰4影响基团吸收频率的因素(1 外部条件对吸收峰位置的影响:物态效应、溶剂效应(2分子结构对基团吸收谱带的影响:诱导效应:通常吸电子基团使邻近基团吸收波数升高,给电子基团使波数降低。
共轭效应:基团与吸电子基团共轭,使基团键力常数增加,因此基团吸收频率升高,基团与给电子基团共轭,使基团键力常数减小,因此基团吸收频率降低。