第三章 有限元法应用中的若干问题.
- 格式:ppt
- 大小:329.50 KB
- 文档页数:38
有限元法在数学建模中的应用有限元法是数学建模中非常重要的一种技术,它广泛应用于工程、物理、材料等领域。
本文将重点探讨有限元法在数学建模中的应用,介绍有限元法的基本原理以及在实际问题的求解中如何使用有限元法。
一、有限元法基本原理有限元法是一种计算数值解的方法,主要用于求解偏微分方程的数值解。
有限元法的基本思想是将一个复杂的物理问题分解成许多小的单元,每个单元内近似为均匀的物理特性,然后利用这些小单元之间的相互作用来描述整个问题的行为。
具体而言,将一个有限区域分割成若干个小的有限元,形成一个有限元网格。
然后在每个有限元内选择一种适当的插值函数和数学方法,利用有限元法求解方程,计算各节点处的场量值。
最终通过将所有单元的解拼接成总体解来解决整个大型问题。
二、有限元法的应用在数学建模中,有限元法被广泛应用于求解各种物理问题。
以下几个问题是常见的应用场景。
1、弹性力学问题弹性力学问题涉及到力学中物体变形和应力分布的关系。
例如,通过有限元法求解一个材料的弹性力学问题,即在一定的边界条件下,计算出其内部的应力和变形分布等参数。
有限元法可以将复杂的材料变形和应力分布问题简化为有限元之间的局部线性问题。
在每个单元内用局部多项式函数近似表示物理量,并将各单元之间的信息连接起来,最终得到整个材料的应力和变形信息。
2、流体力学问题流体力学问题涉及到流体的流动、压力分布以及物体受到的阻力等问题。
通过有限元法求解流体力学问题,可以计算流体内部的压力、速度、流量等重要参数。
常见的有限元法方案包括有限元、有限体积法和有限差分法。
3、电磁场问题电磁场问题涉及到电磁波传播、电荷分布等问题。
通过有限元法求解电磁场问题,可以计算电荷、电势、磁场等电磁参数。
例如,有限元法可用于计算电磁波在介质中的传播和反射,以及导体中的电流分布。
三、有限元法在实践中的应用在实际应用中,有限元法需要通过软件来实现计算。
较为流行的有限元软件包有ANSYS、Comsol、ABAQUS等。
第三章用有限元素法建立结构振动的数学模型3.1 引言【工程要求】:对于简单的连续结构,如单件的杆、板、梁,可以建立结构振动的偏微分方程,但对于杆、板、梁组成的复杂结构,仍然采用建立偏微分方程的方法则十分困难。
如果用假设模态法(李兹方法),对实际工程结构假设出品质良好的整个结构的假设模态也十分困难。
要对结构振动进行数值分析,必须建立振动的数学模型——振动方程。
工程结构振动分析中,要采用将结构离散为有限自由度系统的方法——有限元素法,来建立结构的数学模型。
【发展简况】有限元素法,是在上一世纪五十年代中期,经过M.T.Turner及J.H.Argyris 等人的开拓性工作以及后来许多研究者的大量工作,发展起来的一种结构分析的有效方法,上一世纪六十年代初,由J.S.Archer及J.H.Argyris等人引入到结构动力学分析中来。
有限元素法发展到今天,已经非常成熟,而且与先进的计算机技术结合,已经形成了一个以有限元分析方法为基础的计算机辅助工程(CAE)的技术领域以及更进一步的虚拟产品设计(VPD)这样的先进概念。
世界上著名的CAE分析软件商主要有MSC.software和Ansys等公司的产品。
【有限元动力学分析的任务】在结构振动分析领域,有限元素法处理的问题主要是两类:结构固有振动特性计算和结构振动响应计算(包括频率响应分析与响应时间历程分析)。
两类问题中,用有限元法建立振动数学模型是最基础的工作。
【有限元素法(分析结构振动问题)的特点】:原则上,有限元素法由于其对复杂边界的适应性,它可以处理任何复杂的结构。
求解结果的精度可以根据需要不断改善,建模过程规范统一,计算形式适合于计算机求解。
【存在的问题】:随着精度要求的不断提高,所要求的计算机容量和计算时间急剧增加,从而引出了大型特征值问题的快速求解方法、将大型结构振动问题转化为若干小型结构振动问题集合的子结构求解方法,以及结构振动问题的并行求解方法等问题的研究。
第三章MATLAB有限元分析与应用有限元分析(Finite Element Analysis, FEA)是一种工程计算方法,用于解决结构力学和流体力学等问题。
它将一个复杂的结构分割成多个简单的离散单元,通过建立数学模型和求解方程组,得到结构的力学、热力学和流体力学等性能参数。
MATLAB是一种功能强大的数学计算软件,具有直观的用户界面和丰富的工具箱,可以方便地进行有限元分析。
本章将介绍在MATLAB中进行有限元分析的基本步骤和方法,以及一些常见的应用例子。
首先,进行有限元分析需要将结构进行离散化。
常用的离散化方法有节点法和单元法。
节点法是将结构的几何形状划分为小的节点,并在节点上进行计算。
单元法是将结构划分为多个小的单元,并在每个单元内进行计算。
在MATLAB中,可以通过创建节点和单元的矩阵来描述结构和单元的关系。
例如,创建一个2D结构形式的节点矩阵:nodes = [0 0; 1 0; 0 1; 1 1];然后,通过创建描述节点连接关系的矩阵,来定义结构的单元:elements = [1 2 3; 2 4 3];这里的每一行代表一个单元,数字表示节点的编号。
接下来,需要定义材料的力学参数和边界条件。
材料的力学参数包括弹性模量、泊松比等。
边界条件包括支座约束和加载条件。
在MATLAB中,可以通过定义力学参数和边界条件的向量来描述。
例如,定义弹性模量和泊松比的向量:E=[200e9200e9];%弹性模量nu = [0.3 0.3]; % 泊松比定义支座约束的向量(1表示固定,0表示自由):constraints = [1 1; 0 0; 0 1; 0 1];定义加载条件的向量(包括点力和面力):最后,通过求解方程组得到结构的应力和位移等结果。
在MATLAB中,可以利用有限元分析工具箱中的函数进行计算。
例如,可以使用“assem”函数将节点和单元的信息组装成方程组,并使用“solveq”函数求解方程组。
有限元课后第三章习题答案有限元课后第三章习题答案第一题:根据题目给出的信息,我们可以得出以下结论:1. 题目中提到了一个平面问题,即只考虑二维情况。
2. 材料的弹性模量为E = 210 GPa。
3. 材料的泊松比为ν = 0.3。
4. 材料的厚度为t = 10 mm。
5. 材料的长度为L = 100 mm。
6. 材料的宽度为W = 50 mm。
7. 材料的边界条件为固定边界。
根据以上信息,我们可以开始解题。
首先,我们需要确定有限元模型的几何形状和单元类型。
由于题目给出的是一个平面问题,我们可以选择使用二维平面应力单元来建模。
根据题目给出的材料尺寸,我们可以选择一个矩形区域作为有限元模型的几何形状。
接下来,我们需要确定有限元模型的单元划分。
由于题目没有给出具体的单元划分要求,我们可以根据经验选择适当的单元尺寸和划分密度。
在这里,我们可以将矩形区域划分为若干个等大小的四边形单元。
然后,我们需要确定有限元模型的边界条件。
根据题目给出的信息,材料的边界条件为固定边界。
这意味着模型的边界上的节点在计算过程中将保持固定位置,不发生位移。
因此,我们需要将边界上的节点固定。
接下来,我们可以开始进行有限元计算。
首先,我们需要确定有限元模型的节点和单元编号。
然后,我们可以根据材料的弹性模量和泊松比,以及节点和单元的位置信息,计算出每个节点和单元的刚度矩阵。
然后,我们可以根据边界条件,将固定边界上的节点的位移设置为0。
这样,我们就可以得到一个由位移未知数构成的线性方程组。
通过求解这个线性方程组,我们可以得到模型中每个节点的位移。
最后,我们可以根据节点的位移和单元的刚度矩阵,计算出每个单元的应力和应变。
根据题目给出的材料厚度,我们可以得到每个单元的应力和应变的平均值。
综上所述,根据题目给出的信息,我们可以使用有限元方法来求解这个平面问题。
通过建立有限元模型,确定边界条件,进行有限元计算,我们可以得到模型中每个节点的位移和每个单元的应力和应变。