动量、机械能练习
- 格式:doc
- 大小:38.50 KB
- 文档页数:2
【物理】物理动量定理练习题及答案一、高考物理精讲专题动量定理1.蹦床运动是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目。
一个质量为60kg的运动员,从离水平网面3.2m高处自由下落,着网后沿竖直方向蹦回离水平网面5.0m 高处。
已知运动员与网接触的时间为1.2s,若把这段时间内网对运动员的作用力当作恒力来处理,求此力的大小和方向。
(g取10m/s2)【答案】1.5xl03N;方向向上【解析】【详解】设运动员从人处下落,刚触网的速度为匕=,2ghi=8m/s运动员反弹到达高度生,,网时速度为v2=q2gh2=10m/s在接触网的过程中,运动员受到向上的弹力F和向下的重力mg,设向上方向为正,由动量定理有(F-)得F=1.5xlO3N方向向上2. 一质量为0.5kg的小物块放在水平地面上的八点,距离八点5m的位置B处是一面墙,如图所示,物块以vo=9m/s的初速度从人点沿方向运动,在与墙壁碰撞前瞬间的速度为7m/s,碰后以6m/s的速度反向运动直至静止.g取10m/s2.为质点)放在的木板左端,物块与木板间的动摩擦因数〃=0.4。
质量m°=0.005kg的子弹以速度%=300m/s沿水平方向射入物块并留在其中(子弹与物块作用时间极短),木板足够长,g取3B⑴求物块与地面间的动摩擦因数〃;(2)若碰撞时间为0.05s,求碰撞过程中墙面对物块平均作用力的大小F.【答案】(1)〃=0.32(2)F=130N【解析】试题分析:(1)对A到墙壁过程,运用动能定理得:代入数据解得:户032.(2)规定向左为正方向,对碰墙的过程运用动量定理得:Fat=mv—mv,代入数据解得:F=130N.3.如图所示,质量M=l.Okg的木板静止在光滑水平面上,质量m=0.495kg的物块(可视10m/s2。
求:(1)物块的最大速度VI:(2)木板的最大速度(3)物块在木板上滑动的时间t%m【答案】(l)3m/s;(2)lm/s:(3)0.5s o【解析】【详解】(1)子弹射入物块后一起向右滑行的初速度即为物块的最大速度,取向右为正方向,根据子弹和物块组成的系统动量守恒得:movo=(m+m。
第三章动量守恒定律和能量守恒定律1.如图所示,圆锥摆的摆球质量为m 速率为V,圆半径为R,当摆球在轨道上运动半周时,摆球所受重力冲量的大小为2. 一物体质量为10 kg,受到方向不变的力F= 30+ 40t (SI)作用,在开始的两秒内,此力冲量的大小等于____________ ;若物体的初速度大小为10 m/s,方向与力F的方向相同,则在2s末物体速度的大小等于3. _____________________________ 如左图所示,A B两木块质量分别为m v77777^77777777777777777~和m,且m= 2m,两者用一轻弹簧连接后静止于光滑水平桌面上,如图所示•若用外力将两木块压近使弹簧被压缩,然后将外力撤去,则此后两木块运动动能之比E K A/E B为__ .4. ____________________ 质量m= 1kg 的物体,在坐标原点处从静止出 发在水平面内沿x 轴运动,其所受合力方向与运 动方向相同,合力大小为 F = 3 +2x (SI),那么当 x = 3m 时,其速率v= ,物体在开始运动的 3m 内,合力所作的功W ________ 。
5. 一质点在二恒力的作用下 ,位移为r = 3i + 8j(SI), 在此过程中,动能增量为24J,已知其中一 恒力F ! = 12 i - 3j (SI), 则另一恒力所作的功为1、计算题6.如图,质量为M=1.5kg 的物体,用 一根长为l =1.25m 的细绳悬挂在天 花板上,今有一质量为m=10g 的子弹 以v °=500m/s的水平速度射穿 物体,刚穿出物体时子弹的速度大小v =30m/s,设穿透时间极短,求:(1) 子弹刚穿出时绳中张力的大小;(2) 子弹在穿透过程中所受的冲量.V 0 l V _mi=> m M7.质量为M 的很短的试管,用长 度为L 、质量可忽略的硬直杆悬挂 如图,试管内盛有乙醚液滴,管 口用质量为m 的软木塞封闭.当 加热试管时软木塞在乙醚蒸汽的压力下飞出.如果试管绕悬点 0在竖直平面内作 一完整的圆运动,那么软木塞飞出的最小速度为 多少?若将硬直杆换成细绳,结果如何?答案: 一、填空题1. Rmg/ v2. , 24m/S3. 24. 18J , 6m/s5. 12J.二、计算题6. 子弹与物体组成的系统水平方向动量守恒,设子弹刚穿出物体时的物体速度为v ,有mv =mv+Mvv =n (v o v )/M (1)绳中张力 T = Mg+M v 2/l2 2 =Mg+ m ( v o v ) / ( Ml )=⑵子弹所受冲量 I = m ( v v °)= •s负号表示与子弹入射方向相反 .7.解:设V 1为软木塞飞出的最小速度的大小,软木塞和试管系统水平方向动量守恒,该试管速度的大小为 V 2, Mv 2 mv 1 0,贝Uv 1 Mv 2 / m 2 分(1)当用硬直杆悬挂时, M 到达最高点时速度须略大于零,由机械能守恒: 1 分•0 L I —^im M1 2 ______________________ Mv 2 Mg2L v 2 4gLv 1 2M gL/m1 即 v 、gL 1 分 由机械能守恒:^Mv f 2 1 5 Mg2L ^Mv 2 5MgL 2 2 2 应有v 2 5gL 故这时v 1 M . 5gL/m 1 分 即 (2)若悬线为轻绳,则试管到达最高点的速度 v 须满足。
2008高考物理专题复习 机械能守恒定律和动量守恒定律练习题一、例题例1、如图7-1所示,长度相同的三根轻杆构成一个正三角形支架,在A 处固定质量为2m 的小球,B 处固定质量为m 的小球,支架悬挂在O 点,可绕过O 点并与支架所在平面相垂直的固定轴转动,开始时OB 与地面相垂直,放手后开始运动,在不计任何阻力的情况下,下列说法正确的是( )A .A 球到达最低点时速度为零B .A 球机械能减少量等于B 球机械能增加量C .B 球向左摆动所能达到的最高位置应高于A 球开始运动时的高度D .当支架从左向右回摆动时,A 球一定能回到起始高度例2、如图7-2所示,光滑水平面上有大小相同的A 、B 两球在同一直线上运动。
两球质量关系为A B m m 2=,规定向右为正方向,A 、B 两球的动量均为s m kg /6⋅,运动中两球发生碰撞,碰撞后A 球的动量增量为s m kg /4⋅-,则 ( ) A. 左方是A 球,碰撞后A 、B 两球速度大小之比为5:2 B. 左方是A 球,碰撞后A 、B 两球速度大小之比为10:1 C. 右方是A 球,碰撞后A 、B 两球速度大小之比为5:2 D. 右方是A 球,碰撞后A 、B 两球速度大小之比为10:1 二、巩固提高训练1.A 、B 两球在光滑水平面上沿同一直线、同一方向运动,A 球的动量是5kg .m/s ,B 球的动量是7kg .m/s ,当A 球追上B 球时发生碰撞,则碰撞后A 、B 两球的动量的可能值是( ) A .-4 kg ·m/s 、14 kg ·m/s B .3kg ·m/s 、9 kg ·m/s C .-5 kg ·m/s 、17kg ·m/ D .6 kg ·m/s 、6 kg ·m/s2.长度为l 的均匀链条放在光滑水平桌面上,且使其长度的4l垂在桌边,如图7′-1所示。
图2图3动量及机械能守恒练习1.一个篮球竖直向上抛出后回到抛出点,假设篮球在运动过程中受到的阻力大小不变,比较篮球由抛出点上升到最高点和从最高点下降到抛出点的过程,有A .上升过程中篮球受到的重力的冲量的大小大于下降过程中篮球受到的重力的冲量B .上升过程中篮球受到的重力的冲量的大小等于下降过程中篮球受到的重力的冲量C .上升过程中篮球受到的重力的冲量的大小小于下降过程中篮球受到的重力的冲量D .上升过程中篮球的动量变化的方向与下降过程中篮球动量变化的方向相反2.在光滑水平面上,动能为E 0,动量大小为p 0的小钢球1与静止小钢球2发生碰撞,碰撞前后球1的运动方向相反.将碰撞后球1的动能和动量的大小分别计为E 1、p 1,球2的动能和动量的大小分别计为E 2、p 2,则必有A .E 1< E 0B .E 2> E 0C .p 1< p 0D .p 2> p 03.光滑水平面上有大小相同的A 、B 两球在同一直线上运动.两球质量关系为m B =2m A ,规定向右为正方向,A 、B 两球的动量均为6kg •m /s ,运动中两球发生碰撞,碰撞后A 球的动量增量为-4kg •m /s ,则A .左方是A 球,碰撞后A 、B 两球速度大小之比为2∶5B .左方是A 球,碰撞后A 、B 两球速度大小之比为1∶10C .右方是A 球,碰撞后A 、B 两球速度大小之比为2∶5D .右方是A 球,碰撞后A 、B 两球速度大小之比为1∶104.质量相同的三个小球a 、b 、c ,在光滑水平面上以相同的速率分别与原来静止的三个小球A 、B 、C 发生正碰;a 与A 碰后,a 球继续沿原来方向运动;b 与B 相碰后,b 球静止不动;c 与C 碰后,c 球被弹回而反向运动.可知碰后A 、B 、C 三球动量大小的关系是A .p A <pB <pC B .p A >p B >p C C .p B >p C >p AD .p A =p B =p C5.质量为M 的木块在光滑的水平面上以速度v 1向右运动,质量为m 的子弹以速度v 2水平向左射入木块(子弹留在木块内),要使木块停下来,必须发射子弹的数目为A .12)(mv v m M +B .21)(v m M Mv +C .21mv MvD .21Mv mv 6.如图2所示,两块小木块A 和B ,中间夹上轻弹簧,用线扎在一起,放在光滑的水平台面上,烧断线,弹簧将木块A 、B 弹出,最后落到水平地面上,根据图中的有关数据,可以判定下列说法中正确的有(弹簧原长远小于桌面长度)A .木块A 先落到地面上B .弹簧推木块时,两木块加速度之比a A ∶a B =1∶2C .从烧断线时到两木块滑离桌面前,两木块各自所受合冲量之比I A ∶I B =l ∶2D .两木块在空中飞行时所受的冲量之比I A ′∶I B ′=2∶17.如图所示,弹簧的一端固定在竖直墙上,质量为m 的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m 的小球从槽高h 处开始自由下滑 ( )A .在以后的运动过程中,小球和槽的动量始终守恒B .在下滑过程中小球和槽之间的相互作用力始终不做功C .被弹簧反弹后,小球和槽都做速率不变的直线运动D .被弹簧反弹后,小球和槽的机械能守恒,小球能回到槽高h 处8.如图所示,在小车的一端高h 的支架上固定着一个半径为R 的1/4圆弧光滑导轨,一质量为m =0.2kg 的物体从圆弧的顶端无摩擦地滑下,离开圆弧后刚好从车的另一端擦过落到水平地面,车的质量M =2kg ,车身长L =0.22m ,车与水平地面间摩擦不计,图中h =0.20m ,重力加速度g =10m /s 2,求R .9.如图所示,在光滑水平面上有木块A 和B ,m A =0.5kg ,m B =0.4kg ,它们的上表面是粗糙的,今有一小铁块C ,m C =0.1kg ,以初速v 0=10m /s 沿两木块表面滑过,最后停留在B 上,此时B 、C 以共同速度v =1.5m /s 运动,求:(1)A 运动的速度v A =? 0.5(2)C 刚离开A 时的速度v C ′=? 5.510.如图所示,位于竖直平面内的光滑轨道,由一段斜的直轨道和与之相切的圆形轨道连接而成,圆形轨道的半径为R ,一质量为m 的小物块从斜轨道上某处由静止开始下滑,然后沿圆形轨道运动.要求物块能通过圆形轨道最高点,且在该最高点与轨道间的压力不能超过5mg (g 为重力加速度).求物块初始位置相对于圆形轨道底部的高度h 的取值范围.mC。
1.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为0.1R m=,半圆形轨道的底端放置一个质量为0.1m kg=的小球B,水平面上有一个质量为0.3M kg=的小球A以初速度04.0/sv m=开始向着木块B滑动,经过时间0.80t s=与B发生弹性碰撞,设两个小球均可以看作质点,它们的碰撞时间极短,且已知木块A与桌面间的动摩擦因数0.25μ=,求:(1)两小球碰前A的速度;(2)小球B运动到最高点C时对轨道的压力(3)确定小球A所停的位置距圆轨道最低点的距离。
2.如图所示,一质量为mB=2kg的木板B静止在光滑的水平面上,其右端上表面紧靠一固定斜面轨道的底端(斜面底端与木板B右端的上表面之间由一段小圆弧平滑连接),轨道与水平面的夹角θ=37°。
一质量也为mA=2kg的物块A由斜面轨道上距轨道底端x=8m处静止释放,物块A刚好没有从木板B的左端滑出。
已知物块A与斜面轨道间的动摩擦因数为μ1=0.25,与木板B上表面间的动摩擦因数为μ2=0.2,sinθ=0.6,cosθ=0.8,g取10m/s2,物块A可看作质点。
请问:(1)物块A刚滑上木板B时的速度为多大?(2)物块A从刚滑上木板B到相对木板B静止共经历了多长时间?(3)木板B有多长?3.如图所示,质量为M的平板车P高h,质量为m的小物块Q的大小不计,位于平板车的左端,系统原来静止在光滑水平面地面上.一不可伸长的轻质细绳长为R,一端悬于Q正上方高为R处,另一端系一质量也为m的小球(大小不计).今将小球拉至悬线与竖直位置成60°角,由静止释放,小球到达最低点时与Q的碰撞时间极短,且无能量损失,已知Q离开平板车时速度大小是平板车速度的两倍,Q与P之间的动摩擦因数为μ,M∶m=4∶1,重力加速度为g.求:(1)小物块Q离开平板车时速度为多大?(2)平板车P的长度为多少?4.如图所示,水平固定一个光滑长杆,有一个质量为m 小滑块A 套在细杆上可自由滑动。
能量与动量综合练习1.如图所示,在光滑的水平轨道上,质量为2m 的球A 以v A 的速度与质量为m 的静止球B 发生碰撞。
设在两球相碰过程中没有能量损失,并且B 球能通过与水平轨道相连接的、在同一竖直平面内半径为R 的半圆轨道的最高点P ,半圆轨道也是光滑的。
试求:(1)碰撞前A 球的速度v A 至少要多大?(2)在最小的v A 条件下,碰撞后B 球从开始运动到运动到P 点时动量的变化量是多少?并说明这一变化量是由哪些力作用的结果。
解:(1)设碰后A 球的速度为'A v ,B 球的速度为B v碰撞过程,对A 、B 系统用动量守恒定律B A A mv mv mv +'=22 (2分) 由能量守恒得 22221221221B A A mv mv mv +'⋅=⋅… (2分)B 上升的过程由动能定理2221212B mv mv R mg -=⋅-….③ (2分) 为使B 球运动到P 点,需要gR v ≥……….④ (2分)联立上述方程得 453Rgv A ≥……… (2分) (2)在最小的v A 条件下,由③④式得gR v B 5= (2分) )51(+-=-=∆gR m mv mv P B B (选择向右为正方向), (2分) 是重力和轨道弹力作用的结果。
2.如图所示,用长为L 的细绳悬挂着质量为M 的小球,今有一质量为m 的子弹以水平速度v 击中小球并留在其中,为保证小球能在竖直平面内运动而悬线不会松驰,v 必须满足什么条件?A Bv≤gL 2m m M +,v≥gL 5m m M +3.A 物体自空中某处自由下落,同时B 物体从地面以s m /200=υ的初速度正对着A 竖直上抛,经过1秒钟,A 、B 相碰并粘在一起,已知质量3B A m m =.空气阻力不计,取210/g m s =.求:(1)AB 刚粘在一起时的速度。
(2)AB 落到地面时的速度是多少?经1秒种,A 的速度为./10110s m gt A =⨯==υ方向向下B 的速度为,/10110200s m gt t B =⨯-=-=υ方向向上碰撞时由动量守恒,取向上为正:1)(υυυB A B B A A m m m m +=+得:s m /51=υ 碰撞时的高度为:.1510210202222120m g h =⨯-=-=υυ 碰撞后满足机械能守恒:2221)(21)()(21υυB A B A B A m m gh m m m m +=+++ 得:./1353252s m ==υ4.水平桌上放一质量为1.0kg 条形金属盒,盒宽为1m,与水平桌面的动摩擦因数是0.25,在盒的A 端有一个与盒质量相等的小球B ,与盒间无摩擦。
综合强化练习题班级________姓名_________1。
一个物体沿着如图所示的固定斜面,自由地向下作匀减速直线运动,在经过A 点时的动能为60J ,到达B 点时恰好静止下来。
已知该物体经过这一过程(AB ),其机械能减少了80J 。
要想使得该物体自B 点开始,沿着该斜面自由地向正上方,作匀减速运动,到达A 点时又恰好能够停下来,那么,该物体在B 点时的初动能应该是多大?2。
如图所示,一木块沿倾角θ=37º的固定足够长斜面从某初始位置以v 0=6.0m/s 的初速度向上运动。
已知木块与斜面间的动摩擦因素μ=0.30。
规定木块初始位置处的重力势能为零。
试求木块动能等于重力势能处相对其初始位置的高度。
(6.037sin =︒,8.037cos =︒,g =10m/s 2 ,结果保留两位小数)3。
如图所示,在竖直平面内有一半径为R 的半圆形圆柱截面,用轻质不可伸长的细绳连接的A 、B 两球,悬挂在圆柱面边缘两侧,A 质量是B 质量的两倍。
现将A 球从圆柱边缘处由静止释放,已知A 始终不离开球面,且细绳足够长,圆柱固定,不计一切摩擦。
求:(1)A 球沿圆柱截面滑至最低点时的速度大小?(2)A 球沿圆柱截面运动的最大位移?4。
已知地球半径为R ,地球表面重力加速度为g ,质量为m 的物体在地球附近的万有引力势能为rmgR E p 2-=(以无穷远引力势能为零,r 表示物体到地心的距离),质量为m 的飞船以速率v 在某一圆轨道上绕地球作匀速圆周运动。
(1)求此飞船距地面的高度;(2)要使飞船到距地面的高度再增加h 的轨道上绕地球作匀速圆周运动,求飞船发动机至少要做多少功?5。
如图所示,质量为m 1的物体A 经一轻质弹簧与下方地面上的质量为m 2的物体B 相连,弹簧的劲度系数为k ,A 、B 都处于静止状态。
一条不可伸长的轻绳绕过轻滑轮,一端连物体A ,另一端连一轻挂钩。
开始时各段绳都处于伸直状态,A 上方的一段绳沿竖直方向。
…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前2022年教育机构训练题一机械能守恒定理、动量守恒定理解答题1.在光滑水平面上静置有质量均为m 的木板和滑块,木板上表面粗糙,滑块上表面是光滑的14圆弧,其始端D 点切线水平且在木板上表面内,它们紧靠在一起,如图所示。
一可视为质点的物块P ,质量也为m ,从木板的右端以初速度0v 滑上木板,过B 点时速度为02B vv ,又滑上滑块,最终恰好能滑到滑块圆弧的最高点C 处。
已知物块P 与木板间的动摩擦因数为μ。
求:(1)物块滑到B 处时木板的速度;(2)木板的长度L ;(3)滑块圆弧的半径。
2.如图所示,半径为R 的14光滑圆弧轨道AB (圆心为O )与上表面粗糙的足够长水平滑板BC 相连并相切于B 点。
轨道放置在光滑水平面上,左侧恰好与竖直墙面接触,一质量为m 的小滑块(视为质点)从14光滑圆弧轨道的最高点A 由静止释放,重力加速度大小为g ,求:(1)整个过程中竖直墙面对轨道的冲量大小I ;(2)小滑块在下滑的过程中对轨道的最大压力F m 。
试卷第2页,共18页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※3.如图所示,从A 点以某一水平速度v 0抛出一质量m =1kg 的小物块(可视为质点),当物块运动至B 点时,恰好沿切线方向进入∠B O C=37°的固定光滑圆弧轨道BC ,经圆弧轨道后滑上与C 点等高、静止在粗糙水平面上的长木板上,圆弧轨道C 端的切线水平。
已知长木板的质量M=4kg ,A 、B 两点距C 点的高度分别为H =0.6m 、h =0.15m ,R =0.75m ,物块与长木板之间的动摩擦因数μ1=0.7,长木板与地面间的动摩擦因数μ2=0.2,g =10m/s 2求:(sin 37°=0.6,cos 37°=0.8)(1)小物块的初速度v 0及在B 点时的速度大小;(2)小物块滑至C 点时,对圆弧轨道的压力大小;(3)长木板至少为多长,才能保证小物块不滑出长木板。
高中物理动量守恒定律解题技巧及练习题(含答案)一、高考物理精讲专题动量守恒定律1.如下图,质量M=1kg的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽局部嵌有cd 和ef两个光滑半圆形导轨,c与e端由导线连接,一质量m=lkg的导体棒自ce端的正上方h=2m处平行ce由静止下落,并恰好从ce端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好.磁场的磁感应强度B=0.5T,导轨的间距与导体棒的长度均为L=0.5m,导轨的半径r=0.5m ,导体棒的电阻R=1 Q,其余电阻均不计,重力加速度g=10m/s2,不计空气阻力.⑴求导体棒刚进入凹槽时的速度大小;(2)求导体棒从开始下落到最终静止的过程中系统产生的热量;(3)假设导体棒从开始下落到第一次通过导轨最低点的过程中产生的热量为16J,求导体棒第一次通过最低点时回路中的电功率.9 _【答案】(1) v 2、10m/s (2)25J (3)P - W4【解析】【详解】解:⑴根据机械能守恒定律,可得:mgh - mv2 2解得导体棒刚进入凹槽时的速度大小:v 2g0m / s(2)导体棒早凹槽导轨上运动过程中发生电磁感应现象,产生感应电流,最终整个系统处于静止,圆柱体停在凹槽最低点根据水平守恒可知,整个过程中系统产生的热量:Q mg(h r) 25J(3)设导体棒第一次通过最低点时速度大小为V I ,凹槽速度大小为v2,导体棒在凹槽内运动时系统在水平方向动量守恒,故有:mv1 Mv?1 2 1 2由能重寸恒可得:一mv1 mv2 mg(h r) Q12 2导体棒第一次通过最低点时感应电动势: E BLv1 BLv2E2回路电功率:P. ........ . 9联立解得:P -W42.如图,两块相同平板P i、P2置于光滑水平面上,质量均为m = 0.1kg. P2的右端固定一轻质弹簧,物体P置于P i的最右端,质量为M = 0.2kg且可看作质点.P i与P以共同速度vo= 4m/s向右运动,与静止的P2发生碰撞,碰撞时间极短,碰撞后P i与P2粘连在一起,压缩弹簧后被弹回(弹簧始终在弹性限度内).平板P i的长度L=1m , P与P i之间的动摩擦因数为科=0.2, P2上外表光滑.求:-厂। A B vWm(i)P i、P2刚碰完时的共同速度v i;(2)此过程中弹簧的最大弹性势能E P.(3)通过计算判断最终P能否从P i上滑下,并求出P的最终速度V2.【答案】(i) v i=2m/s (2)E P=0.2J (3)v2=3m/s【解析】【分析】【详解】(i) P i、P2碰撞过程,由动量守恒定律mV. 2mM解得V i v°- 2m / s,方向水平向右;2(2)对P i、P2、P系统,由动量守恒定律2mv i Mv o (2m M )V2…3斛得v2 -v0 3m/s,方向水平向右,4i o i o i o此过程中弹簧的最大弹性势能E P -?2mv i2 + -Mv2 — (2m M )v22 0.2J -2 2 2(3)对P i、F2、P系统,由动量守恒定律2mv i Mv o 2mv3 Mv?i o i o i c 1c由能重寸恒TH律得一2mv〔+ Mv 02mv3Mv2 + Mg L2 2 2 2解得P的最终速度v2 3m/s 0,即P能从P i上滑下,P的最终速度v2 3m/s3.光滑水平面上质量为ikg的小球A, 量为2kg的大小相同的小球B发生正碰I~~H J I,,,,,.Cbr,〞(i)碰后A球的速度大小;(2)碰撞过程中A、B系统损失的机械能. 以2.0m/s的速度与同向运动的速度为i.0m/s、质,碰撞后小球B以i.5m/s的速度运动.求:【答案】v A i.0m/s, E损0.25J【解析】试题分析:(1)碰撞过程中动量守恒,由动量守恒定律可以求出小球速度.(2)由能量守恒定律可以求出损失的机械能.解:(1)碰撞过程,以A的初速度方向为正,由动量守恒定律得:m A V A+m B V B=m A V A+m B v B代入数据解:v A=1.0m/s②碰撞过程中A、B系统损失的机械能量为:甘-1 2 1 2 _1 / 2 _1 」E损-彳与口『 A彳叫.B代入数据解得:E损=0.25J答:①碰后A球的速度为1.0m/s;②碰撞过程中A、B系统损失的机械能为0.25J.【点评】小球碰撞过程中动量守恒、机械能不守恒,由动量守恒定律与能量守恒定律可以正确解题,应用动量守恒定律解题时要注意正方向的选择.4.在日常生活中,我们经常看到物体与物体间发生反复的屡次碰撞.如下图,一块外表水平的木板静止放在光滑的水平地面上,它的右端与墙之间的距离L= 0.08 m.现有一小物块以初速度vo = 2 m/s从左端滑上木板,木板和小物块的质量均为 1 kg,小物块与木板之间的动摩擦因数-0.1,木板足够长使得在以后的运动过程中小物块始终不与墙接触, 木板与墙碰后木板以原速率反弹,碰撞时间极短可忽略,取重力加速度g=10 m/s2.求:可________________ 「J(1)木板第一次与墙碰撞时的速度大小;(2)从小物块滑上木板到二者到达共同速度时,木板与墙碰撞的总次数和所用的总时间;(3)小物块和木板到达共同速度时 ,木板右端与墙之间的距离.【答案】(1) 0.4 s 0.4 m/s (2) 1.8 s. (3) 0.06 m【解析】试题分析:(1)物块滑上木板后,在摩擦力作用下,木板从静止开始做匀加速运动,设木板加速度为a,经历时间T后与墙第一次碰撞,碰撞时的速度为V I那么mg ma,解得a g 1m/s2①,1 , 2 LL - at ②,v1 at ③ 2联立①②③ 解得t 0.4s, v1 0.4m/s④(2)在物块与木板两者到达共同速度前,在每两次碰撞之间,木板受到物块对它的摩擦力作用而做加速度恒定的匀减速直线运动,因而木板与墙相碰后将返回至初态,所用时间也为T.设在物块与木板两者到达共同速度v前木板共经历n次碰撞,那么有:v V O 2nT t a a t ⑤式中At是碰撞n次后木板从起始位置至到达共同速度时所需要的时间.由于最终两个物体一起以相同的速度匀速前进,故⑤ 式可改写为2v V o 2nTa⑥由于木板的速率只能处于 .到v1之间,故有0 v02nTa 2v1⑦求解上式得1.5 n 2.5由于n是整数,故有n=2®由①⑤⑧ 得:t 0.2s⑨;v 0.2m/s⑩从开始到物块与木板两者到达共同速度所用的时间为:t 4T t 1.8s (11)即从物块滑上木板到两者到达共同速度时,木板与墙共发生三次碰撞,所用的时间为1. 8s.............. 一…,……、、,,一 1 2(3)物块与木板到达共同速度时,木板与墙之间的距离为s L — a t2 (12)2联立①与(12)式,并代入数据得s 0.06m即到达共同速度时木板右端与墙之间的距离为0. 06m.考点:考查了牛顿第二定律,运动学公式【名师点睛】此题中开始小木块受到向后的摩擦力,做匀减速运动,长木板受到向前的摩擦力做匀加速运动;当长木板反弹后,小木块继续匀减速前进,长木板匀减速向左运动, 一直回到原来位置才静止;之后长木板再次向右加速运动,小木块还是匀减速运动;长木板运动具有重复性,由于木板长度可保证物块在运动过程中不与墙接触,故直到两者速度相同,一起与墙壁碰撞后反弹;之后长木板向左减速,小木块向右减速,两者速度一起减为零.5.如下图,固定的光滑圆弧面与质量为6kg的小车C的上外表平滑相接,在圆弧面上有一个质量为2kg的滑块A,在小车C的左端有一个质量为2kg的滑块B,滑块A与B均可看做质点.现使滑块A从距小车的上外表高h=1.25m处由静止下滑,与B碰撞后瞬间粘合在一起共同运动,最终没有从小车C上滑出.滑块A、B与小车C的动摩擦因数均为斤0.5,小车C与水平地面的摩擦忽略不计,取g=10m/s2.求:(1)滑块A与B弹性碰撞后瞬间的共同速度的大小;【试题分析】(1)根据机械能守恒求解块A滑到圆弧末端时的速度大小,由动量守恒定律求解滑块A与B碰撞后瞬间的共同速度的大小;(2)根据系统的能量守恒求解小车C上外表的最短长度.(1)设滑块A滑到圆弧末端时的速度大小为v i,由机械能守恒定律有:m A gh — m A V i2代入数据解得v i ,2gh 5m/s .设A、B碰后瞬间的共同速度为V2,滑块A与B碰撞瞬间与小车C无关,滑块A与B组成的系统动量守恒, m A V i m A m B V2代入数据解得V2 2.5m/s .(2)设小车C的最短长度为L,滑块A与B最终没有从小车C上滑出,三者最终速度相同设为V3,根据动量守恒定律有:m A m B v2m A m B m C v31 2 1 2根据能重寸恒TH律有:m A m B gL= m A m B v2m A m B m C v;2 2联立以上两代入数据解得L 0.375m【点睛】此题要求我们要熟练掌握机械能守恒、能量守恒和动量守恒的条件和公式,正确把握每个过程的物理规律是关键.6.如下图,一轻质弹簧的一端固定在滑块B上,另一端与滑块C接触但未连接,该整体静止放在离地面高为H的光滑水平桌面上.现有一滑块A从光滑曲面上离桌面h高处由静止开始滑下,与滑块B发生碰撞并粘在一起压缩弹簧推动滑块C向前运动,经一段时间,滑块C脱离弹簧,继续在水平桌面上匀速运动一段后从桌面边缘飞出.(1)滑块A与滑块B碰撞结束瞬间的速度V;(2)被压缩弹簧的最大弹性势能E pmax;(3)滑块C落地点与桌面边缘的水平距离s.【答案】(1) v 1V l I J2gh (2) mg" (3)—VHh 3 3 6 3【解析】【详解】解:(1)滑块A从光滑曲面上h高处由静止开始滑下的过程,机械能守恒,设其滑到底面的1 2速度为v1,由机械能守恒定律有:m A gh —m A%解之得:v 1 2gh滑块A 与B 碰撞的过程, A 、B 系统的动量守恒,碰撞结束瞬间具有共同速度设为 v,由动量守恒定律有: m A v 1 m A m B v1 1 ----- 斛之信:vV i — 2gh 3 3 ,(2)滑块A 、B 发生碰撞后与滑块 C 一起压缩弹簧,压缩的过程机械能守恒,被压缩弹簧的 弹性势能最大时,滑块 A 、B 、C 速度相等,设为速度 V 2 由动量守恒定律有:m A v 1 m A m B m C v 2122由机械能寸恒TH 律有: E Pmax (m A m B )v m A m B m C v 221解得被压缩弹簧的最大弹性势能:E Pmax -mgh Pmax6(3)被压缩弹簧再次恢复自然长度时,滑块C 脱离弹簧,设滑块 A 、B 的速度为V3,滑块C 的速度为V4,分别由动量守恒定律和机械能守恒定律有:121 21 2-m A m B v m A m B v -m e v^ 2221 -------解之得:v 3 0, v 4 -42gh3 . 滑块C 从桌面边缘飞出后做平抛运动:s v 4t12H2g t2解之得滑块C 落地点与桌面边缘的水平距离:s — JHh3R= 0.4 m 的四分之一圆弧轨道 AB 在最低点B 与光滑水平轨道BC 相切.质量m 2 = 0.2 kg 的小球b 左端连接一轻质弹簧,静止在光滑水平轨道上,另 一质量m 〔 = 0.2 kg 的小球a 自圆弧轨道顶端由静止释放,运动到圆弧轨道最低点 B 时对轨道的压力为小球a 重力的2倍,忽略空气阻力,重力加速度(1)小球a 由A 点运动到B 点的过程中,摩擦力做功 W f ;(2)小球a 通过弹簧与小球b 相互作用的过程中,弹簧的最大弹性势能 E p ; (3)小球a 通过弹簧与小球 b 相互作用的整个过程中,弹簧对小球 b 的冲量I .【答案】(1)四:(2) E P =0.2J ⑶ I=0.4N?sm A m B v m A m B v m C v 47.如下图,内壁粗糙、半径g= 10 m/s 2.求:【解析】(1)小球由静止释放到最低点B的过程中,据动能定理得小球在最低点B时: 据题意可知乐=2四乱联立可得悭f=-0网(2)小球a与小球b把弹簧压到最短时,弹性势能最大,二者速度相同,此过程中由动量守恒定律得::,1 1=4mi + m* 超 + & 由机械能守恒定律得2 2户弹簧的最大弹性势能E p=0.4J小球a与小球b通过弹簧相互作用的整个过程中, a球最终速度为由动量守恒定律啊也=mi0 + m*4由能量守恒定律: 根据动量定理有:得小球a通过弹簧与小球b相互作用的整个过程中,弹簧对小球b的冲量I的大小为I=0.8N s8.如下图,在沙堆外表放置一长方形木块A,其上面再放一个质量为m=0.10kg的爆竹B,木块的质量为M=6.0kg.当爆竹爆炸时,因反冲作用使木块陷入沙中深度h=5cm,而木块所受的平土阻力为f=80N .假设爆竹的火药质量以及空气阻力可忽略不计, g取10m/s2,求爆竹能上升的最大高度.【答案】h 60m【解析】试题分析:木块下陷过程中受到重力和阻力作用,根据动能定理可得1 2 ,、(mg f )h 0 Mv1 (1)2爆竹爆炸过程中木块和爆竹组成的系统动量守恒,故有mv2 Mv i (2)爆竹完后,爆竹做竖直上抛运动,故有v2 2gh(3)联立三式可得:h 600m考点:考查了动量守恒定律,动能定理的应用点评:根底题,比拟简单,此题容易错误的地方为在A下降过程中容易将重力丢掉9.在竖直平面内有一个半圆形轨道ABC,半彳空为R,如下图,A、C两点的连线水平,B点为轨道最低点.其中AB局部是光滑的,BC局部是粗糙的.有一个质量为m的乙物体静止在B处,另一个质量为2m的甲物体从A点无初速度释放,甲物体运动到轨道最低点与乙物体发生碰撞,碰撞时间极短,碰撞后结合成一个整体,甲乙构成的整体滑上BC轨道,最高运动到D点,OD与OB连线的夹角0 60°甲、乙两物体可以看作质点,重力加速度为g,求:(1)甲物与乙物体碰撞过程中,甲物体受到的冲量.(2)甲物体与乙物体碰撞后的瞬间,甲乙构成的整体对轨道最低点的压力.(3)甲乙构成的整体从B运动到D的过程中,摩擦力对其做的功.【答案】⑴—mj2gR ,方向水平向右.(2)压力大小为:一mg ,方向竖直向3 31下.(3)W f= - mgR .【解析】【分析】(1)先研究甲物体从A点下滑到B点的过程,根据机械能守恒定律求出A刚下滑到B点时的速度,再由动量守恒定律求出碰撞后甲乙的共同速度,即可对甲,运用动量定理求甲物与乙物体碰撞过程中,甲物体受到的冲量.(2)甲物体与乙物体碰撞后的瞬间,对于甲乙构成的整体,由牛顿第二定律求出轨道对整体的支持力,再由牛顿第三定律求得整体对轨道最低点的压力.(3)甲乙构成的整体从B运动到D的过程中,运用动量定理求摩擦力对其做的功.【详解】1甲物体从A点下滑到B点的过程,1 2根据机械能守恒定律得:2mgR — 2mv2,2解得:v0"2gR,甲乙碰撞过程系统动量守恒,取向左方向为正,根据动量守恒定律得:2mv o m 2m mv ,解得:v —J2gR ,甲物与乙物体碰撞过程,对甲,由动量定理得:I甲2mv 2mv0 2 m,2gR ,方向:水平向右;2甲物体与乙物体碰撞后的瞬间,对甲乙构成的整体,2由牛顿第二定律得:F m 2mg m 2m —R (17)斛得:F —mg,根据牛顿第三定律,对轨道的压力F' F ——mg 方向:竖直向下;3o _ _ 1 _ 23对整体,从B到D过程,由动能定理得:3mgR 1 cos60 W f 0 — 3mv2一... ... ...................... 1 _解得,摩擦力对整体做的功为:W f -mgR ;6【点睛】解决此题的关键按时间顺序分析清楚物体的运动情况,把握每个过程的物理规律,知道碰撞的根本规律是动量守恒定律 .摩擦力是阻力,运用动能定理是求变力做功常用的方法.10.如下图,一质量为m=1 5kg的滑块从倾角为 .=37.的斜面上自静止开始滑下,斜面末端水平(水平局部光滑,且与斜面平滑连接,滑块滑过斜面末端时无能量损失),滑块离开斜面后水平滑上与平台等高的小车.斜面长s=10m,小车质量为M=3 5kg,滑块与斜面及小车外表的动摩擦因数科=0. 35,小车与地面光滑且足够长,取g=10m/s2.求:(1)滑块滑到斜面末端时的速度(2)当滑块与小车相对静止时,滑块在车上滑行的距离【答案】(1) 8 m/s (2) 6. 4m【解析】试题分析:(1)设滑块在斜面上的滑行加速度a,由牛顿第二定律,有mg (sin 0 -cos 0 ) =ma代入数据得:a=3. 2m/s2又:s= — at22解得t=2 . 5s到达斜面末端的速度大小v 0=at=8 m/s(2)小车与滑块到达共同速度时小车开始匀速运动,该过程中小车与滑块组成的系统在水平方向的动量守恒,那么:mv= (m+M v代入数据得:v=2 . 4m/s滑块在小车上运动的过程中,系统减小的机械能转化为内能,得:mgL= 1 mv o2- 1 〔m+M v2 2 2代入数据得:L=6. 4m考点:牛顿第二定律;动量守恒定律;能量守恒定律【名师点睛】此题考查动量守恒定律及功能关系的应用,属于多过程问题,需要分阶段求解;解题时需选择适宜的物理规律,用牛顿定律结合运动公式,或者用动量守恒定律较简单,此题是中档题.11.如下图,小球A质量为m,系在细线的一端,线的另一端固定在.点,.点到水平面的距离为h.物块B质量是小球的5倍,置于粗糙的水平面上且位于.点正下方,物块与水平面间的动摩擦因数为也现拉动小球使线水平伸直,小球由静止开始释放,运动到最低点时与物块发生正碰〔碰撞时间极短〕,反弹后上升至最高点时到水平面的距离为小球与物块均视为质点,不计空气阻力,重力加速度为g,求碰撞过程物块获得的冲16量及物块在地面上滑行的距离.气—一1 : hI**+ 'pl Ih【答案】——16【解析】【分析】对小球下落过程由机械能守恒定律可求得小球与物块碰撞前的速度;对小球由机械能守恒可求得反弹的速度,再由动量守恒定律可求得物块的速度;对物块的碰撞过程根据动量定理列式求解获得的冲量;对物块滑行过程由动能定理可求得其滑行的距离.【详解】小球的质量为m,设运动到最低点与物块相撞前的速度大小为v i,取小球运动到最低点时的重力势能为零,根据机械能守,值定律有:mgh=1mv i22解得:v i= 2ghh 1 ’2设碰撞后小球反弹的速度大小为V1,同理有:mg —— mv i16 2解得:〃1 =,设碰撞后物块的速度大小为V2,取水平向右为正方向,由动量守恒定律有:mv1=-mv' 1+5mv2解得:V2= 'g h由动量定理可得,碰撞过程滑块获得的冲量为I=5mv2=l m,2gh物块在水平面上滑行所受摩擦力的大小为F=5科mg设物块在水平面上滑行的时间为t,由动能定理有:1 2Fs 0 5mv22…口h解得:s16【点睛】此题综合考查动量守恒定律、机械能守恒定律及动能定理,要注意正确分析物理过程,选择适宜的物理规律求解.12.如下图,粗细均匀的圆木棒A下端离地面高H,上端套着一个细环B. A和B的质量均为m, A和B间的滑动摩擦力为f,且fvmg.用手限制A和B使它们从静止开始自由下落.当A与地面碰撞后,A以碰撞地面时的速度大小竖直向上运动,与地面发生碰撞时间极短,空气阻力不计,运动过程中A始终呈竖直状态.求:假设A再次着地前B不脱离A, A的长度应满足什么条件?y.8m好〞---------q【答案](mg + D【解析】试题分析:设木棒着地时的速度为l v°,由于木棒与环一起自由下落,那么即寸期木棒弹起竖直上升过程中,由牛顿第二定律有:对木棒:『+ mgwi=z:-解得:m,方向竖直向下对环:・mg 7G2 = ---------解得瓶方向竖直向下可见环在木棒上升及下降的全过程中一直处于加速运动状态,所以木棒从向上弹起到再次着地的过程中木棒与环的加速度均保持不变木棒在空中运动的时间为在这段时间内,环运动的位移为-- ■-要使环不碰地面,那么要求木棒长度不小于X,即12弁8叫?〞LW解得:Op +「考点:考查了牛顿第二定律与运动学公式的综合应用【名师点睛】连接牛顿第二定律与运动学公式的纽带就是加速度,所以在做这一类问题时,特别又是多过程问题时,先弄清楚每个过程中的运动性质,根据牛顿第二定律求加速度然后根据加速度用运动学公式解题或者根据运动学公式求解加速度然后根据加速度利用牛顿第二定律求解力。
动量守恒专题训练(含答案) 动量守恒定律成立的条件⑴系统不受外力或者所受外力之和为零;⑵系统受外力,但外力远小于内力,可以忽略不计;⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。
⑷全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。
【例1】 质量为M 的楔形物块上有圆弧轨道,静止在水平面上。
质量为m 的小球以速度v 1向物块运动。
不计一切摩擦,圆弧小于90°且足够长。
求小球能上升到的最大高度H 和物块的最终速度v。
2.子弹打木块类问题【例3】 设质量为m 的子弹以初速度v 0射向静止在光滑水平面上的质量为M 的木块,并留在木块中不再射出,子弹钻入木块深度为d 。
求木块对子弹的平均阻力的大小和该过程中木块前进的距离。
3.反冲问题在某些情况下,原来系统内物体具有相同的速度,发生相互作用后各部分的末速度不再相同而分开。
这类问题相互作用过程中系统的动能增大,有其它能向动能转化。
可以把这类问题统称为反冲。
【例4】 质量为m 的人站在质量为M ,长为L 的静止小船的右端,小船的左端靠在岸边。
当他向左走到船的左端时,船左端离岸多远?【例5】 总质量为M 的火箭模型 从飞机上释放时的速度为v 0,速度方向水平。
火箭向后以相对于地面的速率u 喷出质量为m 的燃气后,火箭本身的速度变为多大?4.爆炸类问题【例6】抛出的手雷在最高点时水平速度为10m/s,这时忽然炸成两块,其中大块质量300g仍按原方向飞行,其速度测得为50m/s,另一小块质量为200g,求它的速度的大小和方向。
5.某一方向上的动量守恒【例7】如图所示,AB为一光滑水平横杆,杆上套一质量为M的小圆环,环上系一长为L质量不计的细绳,绳的另一端拴一质量为m的小球,现将绳拉直,且与AB平行,由静止释放小球,则当线绳与A B成θ角时,圆环移动的距离是多少?6.物块与平板间的相对滑动【例8】如图所示,一质量为M的平板车B放在光滑水平面上,在其右端放一质量为m 的小木块A,m<M,A、B间动摩擦因数为μ,现给A和B以大小相等、方向相反的初速度v0,使A开始向左运动,B开始向右运动,最后A不会滑离B,求:(1)A、B最后的速度大小和方向;(2)从地面上看,小木块向左运动到离出发点最远处时,平板车向右运动的位移大小。
动量、机械能练习
1.一个物体在运动过程中,如果始终有加速度,下列说法中正确的是()
A.物体的动能一定发生变化
B.合外力一定对这个物体做功
C.物体的速率一定发生变化
D. 物体的动量一定发生变化
2.质量均为M的A、B两船静止在水面上,水的阻力不计,当质量为M/2的人从A船上以相对于岸的速度υ跳到B船后,A、B两船速度大小之比为()
A、3:4
B、4:3
C、3:1
D、3:2
3.从距地面相同高度处水平抛出A、B两个相同的物体,A物体的水平初速度为υ,B物体的水平初速度为2υ,考虑空气阻力,则两物体从抛出到落地的过程中,下列说法正确的是()A.两物体的动能增量相同
B.两物体的动量增量相同
C.两物体重力的功相同
D.落地时重力对两物体做功的瞬时功率相同
4.如图所示,利用倾角为α的传送带把一个质量为m的木箱匀速传送L距
离,这时木箱升高h,木箱和传送带始终保持相对静止,在这过程中,
下列说法中正确的是……()
A.摩擦力对木箱做功为mgLsinα
B.木箱克服摩擦力做功mgh
C.摩擦力对木箱做功为μmgLcosα,其中μ为摩擦因数
D.摩擦力对木箱做功为mgh
5.如图所示,质量为m的物体静止在地面上,物体上面连一轻弹簧,用手拉着弹
簧上端将物体缓慢提高h,若不计物体动能的改变和弹簧重力,则人做的功
()
A.等于mgh B、小于mgh
C.大于mgh D、无法确定
6.将物体以80J的初动能竖直向上抛出,当它上升至某点P时,动能减少为20J,
机械能损失了12J,若空气阻力大小不变,那么物体落回抛出点的动能为()
A、36J
B、40J
C、48J
D、56J
7.从地面上方同一点向东与向西分别平抛出两个等质量的小物体,抛出速度大小分别为v和2v不计空气阻力,则两个小物体
①从抛出到落地动量的增量相同.②从抛出到落地重力做的功相同.
③从抛出到落地重力的平均功率相同.④落地时重力做功的瞬时功率相同.
以上说法正确的是()A.①②B.③④C.②③④D.①②③④
8.下面说法中正确的是
A. 第一类永动机不可能制成,因为它违反了能量守恒定律
B. 第二类永动机可能制成,因为它没有违反能量守恒定律
C. 气体压强的大小主要跟气体分子的平均动能和气体分了的个数有关
D. 一定质量的气体,体积越小,压强越大
9.下列有关分子势能的说法中正确的是
A. 温度和质量都相同的水和水蒸气具有相同的分子势能
B. 当两分子间的距离小于0r 时,分子间的距离越小,分子势能越小
C. 当两分子问的距离远远大于0r 时,分子力为零,分子势能最小
D. 当两分子问的距离大于0r 时,分子间的距离越大,分子势能越大
10.下列说法中正确的是
A. 内能大的物体一定会将内能转移一部分给内能小的物体
B. 自然界中所进行的涉及热现象的宏观过程不一定都具有方向性
C. 气体膨胀,气体的内能不一定减小
D. 两个分子间的距离不断减小,其分子间的势能一定减小
11.汽车在平直公路上行驶,汽车受到的阻力是车重的0.03倍,当汽车速度为4m/s 时,加速度为1m/s 2,若保持此时的功率不变继续行驶,则汽车可以达到的最大速度为 m/s 。
(g 取10m/s 2)
12.如图所示,一个人用恒力F 通过轻绳和定滑轮,将一个质量为M
的木块
从位置A 拉到位置
B ,若定滑轮的高度为H ,定滑轮和木块的大小可忽略不
计,木块在位置A 时轻绳与水平面面的夹角为α,木块在位置B 时轻绳与水
平面面的夹角为β,则在这过程中人做的功等于 。
13.如图所示为重物系一纸带通过打点计
时器做自由落体运动时得到的实际点迹,
测得A 、B 、C 、D 、E 五个连续点与第一个
点O 之间的距离分别为19.50、23.59、
28.07、32.94、38.20(单位:cm )。
已知当地的重力加速度的值为g=9.8m/s 2,交流电的频率f=50Hz 。
(1)从O 点开始计时,则B 点是计时器打下的第 个点
(2)以C 点为例,从O 点到C 点重物的重力势能减少了 ,动能增加了 ,在误差允许范围内验证了机械能守恒定律。
14.一列火车在机车牵引下沿水平轨道行驶,经过时间t ,其速度由0增大到υ,已知列车总质量为M ,机车功率P 保持不变,列车所受阻力恒为重力的K 倍,求这段时间列车通过的路程。
15.水平轨道与半径R=2m ,高为h=0.8m 的一段圆弧形光滑轨道连接,
如图所示,一个物体从水平轨道上以初速υ0冲上圆弧轨道并通过最
高点而没有脱离轨道,求υ0的范围。