第02章机器人的基本结构基础学习知识原理
- 格式:doc
- 大小:4.77 MB
- 文档页数:41
2机器人本体结构机器人本体结构是指机器人的物理实体,包括机器人的整体外形、机械结构、材料等方面。
机器人的整体外形通常是由设计师根据机器人的功能和使用环境进行设计的。
它可以是像人类一样的人形机器人,也可以是车辆、动物或其他形状的机器人。
机器人的外形设计一般需要满足人机工程学的要求,即能够方便地与人类进行交互,不引起不必要的干扰或恐惧。
机器人的机械结构是机器人的重要组成部分,它包括支撑骨架、关节、传动系统等。
支撑骨架一般由钢材、铝合金等材料制成,能够承受机器人整体的重量和外界的冲击力。
关节则为机器人提供了运动的自由度,使其能够模拟人类的运动方式。
关节的设计一般采用电机和传动装置,比如齿轮、弹簧等,以提供足够的力量和精确的控制。
机器人的材料选择一般根据机器人的用途和需求来确定。
常见的机器人材料包括金属、塑料、纤维材料等。
金属材料一般用于机器人的结构件,如支撑骨架和关节。
塑料材料具有轻质、易加工等特点,常用于机器人的外壳等部分。
纤维材料一般用于机器人的柔性传感器、驱动器等部分,可以提供机器人更精细的触觉和精确的运动控制。
除了上述部分,机器人的本体结构还包括一些附属装置,如传感器、执行器等。
传感器负责获取机器人周围环境的信息,包括视觉、听觉、触觉、力觉等方面。
执行器则根据机器人的任务需求,将控制信号转化为相应的运动,并驱动机器人进行操作。
总体来说,机器人的本体结构是一个复杂的系统工程,需要考虑机器人的功能需求、机械设计、材料选择等多个因素。
优秀的机器人本体结构设计既要能够满足机器人的功能需求,又要具有高度的可靠性、稳定性和适应性,以保证机器人在各种工作环境中的良好表现。
机器人的组成结构及原理机器人是一种能够自动执行任务的机械设备。
它们可以被用于各种各样的任务,从工业制造到医疗保健和军事应用等。
机器人的组成结构和原理是机器人技术的核心,这篇文章将会介绍机器人的组成结构和原理,以及机器人的应用领域。
一、机器人的组成结构机器人通常由以下几个部分组成:1. 机械结构:机械结构是机器人的骨架,它包括机器人的机身、关节、连接器、执行器等。
机械结构的设计直接影响机器人的稳定性、精度和速度。
2. 传感器:传感器是机器人的感知器,它们能够感知环境中的信息并将其转化为机器人能够理解的数据。
传感器包括摄像头、激光雷达、声音传感器、触摸传感器等。
3. 控制系统:控制系统是机器人的大脑,它负责控制机器人的运动和行为。
控制系统包括计算机、控制器、运动控制器等。
4. 能源系统:能源系统是机器人的动力源,它提供机器人所需的能量。
能源系统包括电池、液压系统、气压系统等。
二、机器人的原理机器人的原理是通过机械结构、传感器和控制系统的协同作用来实现机器人的运动和行为。
机器人的运动和行为通常通过以下几个步骤来实现:1. 感知环境:机器人通过传感器感知环境中的信息,并将其转化为机器人能够理解的数据。
2. 分析数据:机器人的控制系统对感知到的数据进行分析,并根据分析结果制定相应的行动计划。
3. 运动控制:机器人的控制系统通过运动控制器控制机械结构的运动,从而实现机器人的运动和行为。
4. 反馈控制:机器人在运动和行为过程中,通过传感器不断反馈环境的变化信息给控制系统,从而实现机器人的自适应控制。
三、机器人的应用领域机器人的应用领域非常广泛,以下是几个典型的应用领域:1. 工业制造:机器人在工业制造中的应用非常广泛,如汽车制造、电子制造、食品加工等。
机器人能够提高生产效率、降低成本、提高产品质量。
2. 医疗保健:机器人在医疗保健中的应用也越来越广泛,如手术机器人、康复机器人、护理机器人等。
机器人能够提高手术精度、减少手术创伤、提高康复效果。
机器人的组成结构及原理机器人作为一种能够替代人力完成各种任务的智能装置,在现代社会中扮演着越来越重要的角色。
为了更好地理解机器人的工作原理和组成结构,本文将从机器人的基本组成部分、传感器及感知技术、中央处理器、执行器和电源系统等方面进行探讨。
一、机器人的基本组成部分机器人的基本组成部分包括机械结构、电子设备及软件系统。
机械结构是机器人最为显著和重要的特征之一,它是机器人的外部框架,用于支撑和连接各个部分。
通常,机械结构由连接杆、关节和整体骨架等组成。
电子设备则是机器人的"大脑",用于控制和操纵机械结构。
软件系统是机器人的指令和运行程序,它决定了机器人的行为和任务执行方式。
二、传感器及感知技术机器人的传感器起到了感知环境和获取信息的关键作用。
传感器可以接收并转换环境中的物理量和信号,进而将其转化为数字信号,以供机器人进行分析和判断。
常见的机器人传感器包括视觉传感器、声音传感器、力传感器、光传感器等。
这些传感器能够帮助机器人感知和识别人类的动作、声音、姿势以及环境中的物体和障碍物等。
感知技术的发展不仅提高了机器人的自主性和智能化水平,还为机器人与人类之间的互动提供了更加精确和准确的基础。
三、中央处理器中央处理器是机器人的控制中枢,类似于人类的大脑。
它能够接收传感器传来的信息,并进行处理和分析。
中央处理器负责决策机器人的行动和执行任务的顺序。
在中央处理器中,通常会嵌入一些算法和软件,用于机器人的导航、路径规划、动作控制等方面。
中央处理器的性能决定了机器人的反应速度和智能水平。
四、执行器执行器是机器人的身体部分,用于执行各种动作和任务。
常见的执行器包括电机、液压装置、气动装置等。
机器人的执行器通过接收中央处理器的指令,将其转化为力、速度或位移等物理功能,从而实现机器人的运动和动作。
不同类型的机器人会采用不同的执行器,比如工业机器人常使用电机来完成各种机械操作。
五、电源系统电源系统为机器人提供所需的电能,以保证它的正常运行和工作。
机器人的组成结构及原理1.引言机器人是一种可以执行各种任务的自动化设备,由多个组成部分组成。
本文将探讨机器人的组成结构以及其原理。
2.机器人的组成结构2.1机械结构机械结构是机器人的物理结构,它决定了机器人的外形、尺寸和运动方式。
机械结构一般由连杆、齿轮、轴承、电机等组件构成。
连杆用于连接各个部件,齿轮用于传动力,轴承用于减小摩擦,电机用于提供动力。
2.2电子结构电子结构包括机器人的传感器和执行器。
传感器用于获取周围环境的信息,如光线、声音、温度等。
常见的传感器包括摄像头、声音传感器、温度传感器等。
执行器用于使机器人实际执行任务,如电机、液压驱动系统等。
2.3控制系统控制系统是机器人的大脑,负责控制机器人的运动和执行任务。
控制系统通常由微处理器、逻辑电路、软件等组成。
微处理器是机器人的核心处理器,负责处理输入信息并输出指令控制机器人的运动。
逻辑电路用于执行各种判断和决策,如自主导航、避障等。
软件则是机器人控制系统的程序,包括运动控制、任务规划等。
3.机器人的工作原理机器人的工作原理涉及到机械、电子和控制系统的相互协调和配合。
下面将对机器人的工作原理进行简要介绍。
3.1机械原理机器人的机械结构决定了其运动方式和工作范围。
通过控制机械结构中的电机和传动机构,机器人可以实现不同的运动方式,如直线运动、旋转运动等。
机械结构也决定了机器人的可控自由度,即机器人可以同时控制的独立运动轴数目。
3.2传感器原理机器人通过传感器获取周围环境的信息,并将其转化为数字信号,通过输入到控制系统中进行分析和处理。
传感器原理涉及到各种物理传感器的工作原理,如摄像头通过感光元件拍摄图像,声音传感器通过麦克风转化声音信号等。
3.3控制系统原理控制系统原理包括机器人的算法和软件。
控制系统通过输入传感器的信息,并进行决策和规划后,输出指令控制机器人的运动和执行任务。
控制系统原理涉及到机器人运动学和动力学的理论,以及各种控制算法的实现。
机器人的基本结构和工作原理机器人这一词汇以及与之相关的技术随着科技的飞速发展越来越为人们所熟知和使用。
人们可以利用机器人来辅助生产、使用机器人进行学习、机器人也能够在危险区域代替人类进行工作等。
然而,虽然人类已经拥有了各种各样的机器人,然而,这些机器人是如何结构并运作的呢?一、机器人的基本结构机器人的基本结构通常包括两个主要组成部分:机械结构和电路系统。
机械结构部分主要是由臂、关节以及手指等零部件组成,电路系统则是由控制器和执行器组成。
因为机器人各种各样,并有各自的功能和任务,所以它们的各个零部件的形状和大小,也各有不同。
1. 机械部分机械部分是机器人中最基本的部分,是它的“骨架”。
它的代码通常由由臂、关节以及手指等不同的部件组成,以多自由度(DOF)张的方式设计。
多自由度的机械结构能够帮助机器人以更加自由的方式运动和操作,完成各种各样的任务。
另外,其他的机械部分还包括Driving force、reducer、potentiometer、encoder 等基本要素。
2. 电路系统机器人的电路系统是包括了控制器和执行器。
控制器是机器人的大脑,可以根据程序控制机器人的运动。
执行器则可以将运动指令转化为机械结构的动作。
通过约定好的程序和传感器,控制器可以使执行器实现相应的动作。
这个过程中,控制器还可以将各种情况反馈给执行器,以便对机器人进行适当调整。
二、机器人的工作原理在完成各种任务之前,计算机通常会给机器人配合一个完备的程序,这个程序将告诉机器人完成什么任务以及何时做完任务。
机器人运作的过程中,它的大脑——控制器会始终运转,对机器人的整个运作过程进行管理。
控制器将接受到来自不同的传感器的信息,这些传感器能够监测到机器人和环境中各种各样的数据,如:温度、压力、速度、形状等等。
控制器将根据传感器收到的信息进行对机器人进行调度,并且通过执行器进行相应的操作。
整个过程中,执行器能够帮助机器人处理信息,转化为机械动作。
机器人的基本结构一、引言机器人是指能够模仿人类的行为和动作,完成各种任务的智能设备。
机器人的基本结构是机械、电子、计算机和控制系统的综合体,下面将详细介绍机器人的基本结构。
二、机械结构机械结构是机器人的骨架,决定了机器人的外形和动作能力。
机械结构通常包括机器人的身体、关节、传动系统等部分。
1. 身体:机器人的身体是机械结构的基础,决定了机器人的形状和尺寸。
常见的机器人身体结构有人形、四足、六足等多种形式,不同形式的机器人身体结构适用于不同的任务。
2. 关节:关节是机器人身体的连接部分,使机器人能够进行各种运动。
关节通常由电机、减速器、传感器等组成,通过控制系统控制关节的运动。
3. 传动系统:传动系统是机器人的动力来源,将电机的转动转化为机器人身体的运动。
常见的传动系统有齿轮传动、带传动、链传动等,不同的传动系统能够满足不同的运动需求。
三、电子结构电子结构是机器人的神经系统,负责控制机器人的运动和感知环境。
电子结构通常包括传感器、执行器、控制器等部分。
1. 传感器:传感器是机器人感知外部环境的重要组成部分,能够获取各种物理量和信号。
常见的传感器有摄像头、激光雷达、压力传感器等,通过传感器可以实现机器人对环境的感知和识别。
2. 执行器:执行器是机器人的执行部件,根据控制信号实现机器人的运动。
常见的执行器有电机、液压缸、电磁阀等,通过执行器可以实现机器人的运动和操作。
3. 控制器:控制器是机器人的大脑,负责处理传感器的信息和发出运动指令。
控制器通常由嵌入式系统或计算机组成,能够实时控制机器人的运动和决策。
四、计算机结构计算机结构是机器人的智能中枢,负责处理和分析大量的数据。
计算机结构通常包括主控板、处理器、内存等部分。
1. 主控板:主控板是机器人计算机结构的核心,负责控制机器人的各个部分协调工作。
主控板通常集成了处理器、内存、接口等功能,是机器人的重要组成部分。
2. 处理器:处理器是机器人计算机结构的计算核心,负责进行各种算法和数据处理。
机器人的基本结构原理机器人已经成为现代社会中不可或缺的一部分,其在制造、医疗、服务等领域发挥着重要的作用。
机器人的基本结构原理包括机械结构、电子控制系统和感知系统。
一、机械结构机器人的机械结构是指其身体的物理形态和运动方式。
通常,机器人的机械结构由多个关节和连接部件构成。
机器人的关节可分为旋转关节和直线关节。
旋转关节使机器人能够在三维空间内进行旋转运动,而直线关节使机器人能够实现直线运动。
这些关节通过连接部件相互连接,形成机器人的身体结构。
机器人的身体结构根据具体应用需求可能有很多种形式,例如人形机器人、轮式机器人、足式机器人等。
在选择机器人的机械结构时,需要考虑其运动范围、承载能力和稳定性等因素。
二、电子控制系统机器人的电子控制系统是控制机器人运动和执行任务的关键部分。
电子控制系统通常由控制器、驱动器和传感器组成。
控制器是机器人的大脑,负责接收和处理指令,并控制机器人的动作。
驱动器将控制器发出的信号转化为电能或液压力,推动机器人的关节运动。
传感器用于感知环境和获取机器人身体部分的状态信息。
例如,机器人可能配备摄像头、激光雷达、压力传感器等,以便感知周围环境并作出相应的反应。
电子控制系统的设计与实现需要考虑能效、响应速度和可靠性等方面的要求。
三、感知系统机器人的感知系统是指机器人如何感知和理解周围环境的能力。
感知系统通常由多个传感器组成,用于获取机器人所需的视觉、听觉、触觉等信息。
视觉传感器例如摄像头可用于机器人的视觉感知,听觉传感器例如麦克风可用于机器人的声音感知,触觉传感器例如力传感器可用于机器人的触觉感知。
感知系统不仅能够帮助机器人感知实时的环境信息,还能够对这些信息进行处理和解析,以支持机器人的决策和行动。
总结起来,机器人的基本结构原理包括机械结构、电子控制系统和感知系统。
机械结构决定了机器人的身体形态和运动方式,电子控制系统是机器人运动和执行任务的核心,而感知系统则帮助机器人感知和理解周围环境。
机器人的组成结构及原理机器人是一种能够自主工作的机械设备,是由电子、机械和控制系统组成的复杂系统。
它们使用不同的形式和尺寸的机器人臂来执行各种任务。
下面将阐述机器人主要的组成结构及其原理。
1. 机械结构机械结构是机器人主体的结构,是连接和支撑机器人各部分的基础。
它包括机器人臂、关节、运动系统等。
机器人臂是机器人最重要的部分,它可以根据需求伸缩、旋转和弯曲。
关节是连接机器人臂和其他部分的主要部件,它们可以围绕任意三个轴自由旋转。
运动系统则负责控制机器人的运动。
2. 传感器机器人需要大量的传感器来感知周围环境,从而做出正确的决策。
这些传感器可以包括相机、声音传感器、压力传感器等。
相机可以用来捕获图像,声音传感器可以检测声音,压力传感器可以检测机器人与其他物体之间的压力。
3. 控制系统机器人的控制系统是机器人的大脑。
它包括计算机、编码器、运动控制器和传感器等。
计算机负责计算和传递指令,编码器用于测量怎样从一种状态到达另一种状态,运动控制器控制运动系统的操作,传感器用于提供精确的位置和姿态信息。
4. 电气系统电气系统包括电池、电动机和电机控制器。
电池是机器人的能源来源,它们需要充电才能正常运行。
电动机是机器人的动力系统,它们与机器人的运动部分相连,驱动机器人移动和工作。
电机控制器则负责控制电动机的速度和方向。
5. 软件系统软件系统是机器人的“思考”系统,可以根据程序执行任务。
它包括机器人的程序和算法,这些程序可以由人工智能和机器学习算法支持。
这些算法允许机器人学习并调整其行为,以根据输入数据做出更好的决策。
以上是机器人的主要组成结构及其功能原理。
了解这些原理可以帮助我们更好地理解机器人是如何工作的,以及如何使用它们来完成各种任务。
在未来,机器人将进一步改变我们的生活和工作方式,因为它们能够在许多领域自动化,从而提高效率和生产力。
机器人的组成结构及原理机器人是一种能够自主执行任务的自动化设备。
它的出现极大地推动了现代工业的进步。
机器人的组成结构和原理是机器人技术的核心,本文将对其进行详细介绍。
一、机器人的组成结构机器人的组成结构可以分为机械结构、电气结构和控制系统。
1. 机械结构机械结构是机器人的物理结构,包括机械臂、关节、传感器和执行器等。
机械臂是机器人最重要的部分,它是机器人进行操作的主要手段。
机械臂的结构通常由多个关节连接而成,每个关节都能进行运动。
机械臂的长度、质量、刚度等参数对机器人的性能有重要影响。
2. 电气结构电气结构包括机器人的电路、电机、传感器和控制器等。
电路是机器人的电气系统,包括电源、信号处理器和驱动器等。
电机是机器人的动力来源,它可以将电能转化为机械能,驱动机械臂进行运动。
传感器是机器人的感知系统,可以感知环境和物体的位置、形状、重量等信息。
控制器是机器人的大脑,它对机器人进行控制和指令的下发。
3. 控制系统控制系统是机器人的核心,它包括感知、决策和执行三个环节。
感知环节是机器人获取环境信息和目标信息的过程,决策环节是机器人根据感知信息和任务要求进行决策的过程,执行环节是机器人根据决策结果进行动作的过程。
控制系统需要具备高效、精确、稳定的特点,以确保机器人能够完成任务。
二、机器人的原理机器人的原理包括机器人的运动学、动力学、控制和感知等方面。
1. 运动学运动学是研究机器人运动的学科,它主要研究机器人的位置、速度和加速度等运动参数。
机器人的运动学是机器人控制的基础,它可以确定机器人的运动轨迹和动作方式,从而实现机器人的操作。
2. 动力学动力学是研究机器人动力学特性的学科,它主要研究机器人的力学特性、惯性特性和动态响应特性等。
机器人的动力学研究是机器人控制的重要组成部分,它可以确定机器人的动力学模型,从而实现机器人的精确控制和运动优化。
3. 控制机器人的控制是机器人技术的核心,它主要包括开环控制、闭环控制和自适应控制等。
工业机器人内部结构及基本组成原理详解一、工业机器人的内部结构1.机械结构:工业机器人的机械结构是支撑和传输力量的基础,它由臂体、关节和末端执行器组成。
臂体是机器人的主要结构,一般由相互连接的柔性关节组成。
关节是进行转动的连接部件,通过电机和减速器实现驱动力。
末端执行器是机器人的工具,根据不同的任务可以配备不同的执行器,如夹持器、焊接枪、喷涂枪等。
2.控制系统:工业机器人的控制系统是实现机器人自动操作和运动能力的核心部分,它由控制器、电机和传动系统组成。
控制器是机器人的大脑,负责接收和处理传感器的信号,生成控制指令,并通过电机和传动系统实现机械结构的运动。
电机是驱动机械结构运动的动力源,通常使用伺服电机配合减速器实现精确控制。
传动系统是将电机的旋转运动转换为机械结构的线性运动的装置,常见的传动方式包括齿轮传动、皮带传动和丝杆传动等。
3.传感器:工业机器人的传感器用于感知和监测外部环境和机器人内部状态,以实现自适应和高精度的操作。
常见的传感器包括力传感器、视觉传感器、触觉传感器、温度传感器等。
力传感器用于测量机器人与周围环境之间的力量和力矩,以保证机器人操作的稳定性和安全性。
视觉传感器用于识别和定位目标物体,实现机器人的视觉引导和视觉跟踪。
触觉传感器用于模拟人类手的触摸感应能力,实现机器人的触觉控制和力适应操作。
温度传感器用于监测机器人的工作温度,以确保机器人的运行稳定和安全。
二、工业机器人的基本组成原理1.位置控制:工业机器人的位置控制是确定机器人末端执行器的位置和姿态,以实现精确的定位和操作。
位置控制通常采用正逆运动学的方法,正运动学是指已知机械结构的运动参数,通过计算得到末端执行器的位置和姿态;逆运动学是指已知末端执行器的位置和姿态,通过求解逆运动方程得到机械结构的运动参数。
2.路径规划:工业机器人的路径规划是确定机器人从初始位置到目标位置的最优路径,以实现高效的运动和操作。
路径规划通常采用离散采样的方法,将机器人的可行空间细分为多个离散的点,通过算法找到最短路径。
第二章机器人系统简介2.1 机器人的运动机构(执行机构)机器人的运动机构是机器人实现对象操作及移动自身功能的载体,可以大体分为操作手(包括臂和手)和移动机构两类。
对机器人的操作手而言,它应该象人的手臂那样,能把(抓持装工具的)手依次伸到预定的操作位置,并保持相应的姿态,完成给定的操作;或者能够以一定速度,沿预定空间曲线移动并保持手的姿态,并在运动过程中完成预定的操作。
移动机构应能将机器人移动到任意位置,并保持预定方位姿势。
为此,它应能实现前进、后退、各方向的转弯等基本移动功能。
在结构上它可以象人、兽、昆虫,具有二足、四足或六足的步行机构,也可以象车或坦克那样采用轮或履带结构2.1.1 机器人的臂结构机器人的臂通常采用关节——连杆链形结构,它由连杆和连杆间的关节组成。
关节,又称运动副,是两个构件组成相对运动的联接。
在关节的约束下,两连杆间只能有简单的相对运动。
机器人中常用的关节主要有两类:(1) 滑动关节(Prismatic joint): 与关节相连的两连杆只能沿滑动轴做直线位移运动,移动的距离是滑动关节的主要变量,滑动轴一般和杆的轴线重合或平行。
(2)转动关节(Revolute joint): 与关节相连的两连杆只能绕关节轴做相对旋转运动,其转动角度是关节的主要变量,转动轴的方向通常与轴线重合或垂直。
杆件和关节的构成方法大致可分为两种:(1) 杆件和手臂串联连接,开链机械手(2) 杆件和手臂串联连接,闭链机械手。
以操作对象为理想刚体为例,物体的位置和姿态各需要3 个独立变量来描述。
我们将确定物体在坐标系中位姿的独立坐标数目称为自由度(DOF(degree of freedom))。
而机器人的自由度是由有关节数和每个关节所具有的自由度数决定的(每个关节可以有一个或多个自由度,通常为1 个)。
机器人的自由度是独立的单独运动的数目,是表示机器人运动灵活性的尺度。
(由驱动器能产生主动动作的自由度称为主动自由度,不能产生驱动力的自由度称为被动自由度。
教案首页课程名称农业机器人任课教师李玉柱第2章机器人的基本结构原理计划学时 3 教学目的和要求:1.弄清机器人的基本构成;2.了解机器人的主要技术参数;3.了解机器人的手部、腕部和臂部结构;4.了解机器人的机身结构;5.了解机器人的行走机构重点:1.掌握机器人的基本构成2.弄清机器人都有哪些主要技术参数3.机器人的手部、腕部和臂部结构难点:机器人的手部、腕部和臂部结构思考题:1.机器人由哪些部分组成?2.机器人的主要技术参数有哪些?3.机器人的行走机构共分几类,请想象未来的机器人能否有其它类型的行走机构?第2章概论教学主要内容:2.1机器人的基本构成2.2机器人的主要技术参数2.3人的手臂作用机能初步分析2.4机器人的机械结构构成2.5机器人的手部2.6机器人的手臂2.7机器人的机身2.8机器人的行走机构本章介绍了机器人的基本构成、主要技术参数,人手臂作用机能,在此基础上对机器人的手部、手腕、手部、。
机身、行走机构等原理及相关的结构设计进行讨论,使学生对机器人的机构和原理有较为清楚的了解。
2.1机器人的基本构成简单地说:机器人的原理就是模仿人的各种肢体动作、思维方式和控制决策能力。
不同类型的机器人其机械、电气和控制结构也不相同,通常情况下,一个机器人系统由三部分、六个子系统组成。
这三部分是机械部分、传感部分、控制部分;六个子系统是驱动系统、机械系统、感知系统、人机交互系统、机器人-环境交互系统、控制系统等。
如图2-1所示。
图2-1 机器人的基本构成● 机械..系统..是由关节连在一起的许多机械连杆的集合体,形成开环运动学链系。
连杆类似于人类的小臂、大臂等。
关节通常分为转动关节和移动关节,移动关节允许连杆做直线移动,转动关节仅允许连杆之间发生旋转运动。
由关节-连杆结构所构成的机械结构一般有3个主要部件,即手、腕、臂,它们可在规定的范围上运动。
● 驱动系统....是使各种机械部件产生运动的装置。
常规的驱动系统有气动传动、液压传动或电动传动,它们可以直接地与臂、腕或手上的机械连杆或关节连接在一起,也可以使用齿轮、带、链条等机械传动机构间接传动。
教案首页课程名称农业机器人任课教师李玉柱第2章机器人的基本结构原理计划学时 3 教学目的和要求:1.弄清机器人的基本构成;2.了解机器人的主要技术参数;3.了解机器人的手部、腕部和臂部结构;4.了解机器人的机身结构;5.了解机器人的行走机构重点:1.掌握机器人的基本构成2.弄清机器人都有哪些主要技术参数3.机器人的手部、腕部和臂部结构难点:机器人的手部、腕部和臂部结构思考题:1.机器人由哪些部分组成?2.机器人的主要技术参数有哪些?3.机器人的行走机构共分几类,请想象未来的机器人能否有其它类型的行走机构?第2章概论教学主要内容:2.1机器人的基本构成2.2机器人的主要技术参数2.3人的手臂作用机能初步分析2.4机器人的机械结构构成2.5机器人的手部2.6机器人的手臂2.7机器人的机身2.8机器人的行走机构本章介绍了机器人的基本构成、主要技术参数,人手臂作用机能,在此基础上对机器人的手部、手腕、手部、。
机身、行走机构等原理及相关的结构设计进行讨论,使学生对机器人的机构和原理有较为清楚的了解。
2.1机器人的基本构成简单地说:机器人的原理就是模仿人的各种肢体动作、思维方式和控制决策能力。
不同类型的机器人其机械、电气和控制结构也不相同,通常情况下,一个机器人系统由三部分、六个子系统组成。
这三部分是机械部分、传感部分、控制部分;六个子系统是驱动系统、机械系统、感知系统、人机交互系统、机器人-环境交互系统、控制系统等。
如图2-1所示。
图2-1 机器人的基本构成● 机械系统....是由关节连在一起的许多机械连杆的集合体,形成开环运动学链系。
连杆类似于人类的小臂、大臂等。
关节通常分为转动关节和移动关节,移动关节允许连杆做直线移动,转动关节仅允许连杆之间发生旋转运动。
由关节-连杆结构所构成的机械结构一般有3个主要部件,即手、腕、臂,它们可在规定的范围上运动。
● 驱动系统....是使各种机械部件产生运动的装置。
常规的驱动系统有气动传动、液压传动或电动传动,它们可以直接地与臂、腕或手上的机械连杆或关节连接在一起,也可以使用齿轮、带、链条等机械传动机构间接传动。
●感知系统....由一个或多个传感器组成,用来获取内部和外部环境中的有用信息,通过这些信息确定机械部件各部分的运行轨迹、速度、位置和外部环境状态,使机械部件的各部分按预定程序或者工作需要进行动作。
传感器的使用提高了机器人的机动性、适应性和智能化水平。
●控制系统....其任务是根据机器人的作业指令程序以及从传感器反馈回来的信号支配机器人的执行机构去完成规定的运动和功能。
若机器人不具备信息反馈特征,则为开环控制系统;若具备信息反馈特征,则为闭环控制系统。
根据控制原理,控制系统又可分为程序控制系统、适应性控制系统和人工控制系统。
根据控制运动的形式,控制系统还可分为点位控制和规矩控制。
●机器人......是实现机器人与外部环境中的设...-.环境交互系统备相互联系和协调的系统。
机器人可与外部设备集成为一个功能单元,如加工制造单元、焊接单元,也可以是多台机器人或设备集成为一个复杂任务的功能单元。
●人机交互系统......是使操作人员参与机器人控制并与机器人进行连续的装置。
例如计算机的标准终端、指令控制台、信息显示板及危险信号报警器等。
归纳起来人机交互系统可分为两大类:指令给定装置和信息显示装置。
机器人作为一个系统,它由如下部件构成:机械手或移动车这是机器人的主体部分,由连杆,活动关节以及其它结构部件构成,使机器人达到空间的某一位置。
如果没有其它部件,仅机械手本身并不是机器人。
(相当于人的身体或手臂)末端执行器连接在机械手最后一个关节上的部件,它一般用来抓取物体,与其他机构连接并执行需要的任务,机器人制造上一般不设计或出售末端执行器,多数情况下,他们只提供一个简单的抓持器。
(相当于人的手)末端执行器安装在机器人上以完成给定环境中的任务,如焊接,喷漆,涂胶以及零件装卸等就是少数几个可能需要机器人来完成的任务。
通常,末端执行器的动作由机器人控制器直接控制,或将机器人控制器的信号传至末端执行器自身的控制装置(如PLC)驱动器驱动器是机械手的“肌肉”。
常见的驱动器有伺服电机,步进电机,气缸及液压缸等,也还有一些用于某些特殊场合的新型驱动器,它们将在第6章进行讨论。
驱动器受控制器的控制。
传感器传感器用来收集机器人内部状态的信息或用来与外部环境进行通信。
机器人控制器需要知道每个连杆的位置才能知道机器人的总体构型。
人即使在完全黑暗中也会知道胳膊和腿在哪里,这是因为肌腱内的中枢神经系统中的神经传感器将信息反馈给了人的大脑。
大脑利用这些信息来测定肌肉伸缩程度进而确定胳膊和腿的状态。
对于机器人,集成在机器人内的传感器将每一个关节和连杆的信息发送给控制器,于是控制器就能决定机器人的构型。
机器人常配有许多外部传感器,例如视觉系统,触觉传感器,语言合成器等,以使机器人能与外界进行通信。
控制器机器人控制器从计算机获取数据,控制驱动器的动作,并与传感器反馈信息一起协调机器人的运动。
假如要机器人从箱柜里取出一个零件,它的第一个关节角度必须为35°,如果第一关节尚未达到这一角度,控制器就会发出一个信号到驱动器(输送电流到电动机),使驱动器运动,然后通过关节上的反馈传感器(电位器或编码器等)测量关节角度的变化,当关节达到预定角度时,停止发送控制信号。
对于更复杂的机器人,机器人的运动速度和力也由控制器控制。
机器人控制器与人的小脑十分相似,虽然小脑的功能没有人的大脑功能强大,但它却控制着人的运动。
处理器处理器是机器人的大脑,用来计算机器人关节的运动,确定每个关节应移动多少和多远才能达到预定的速度和位置,并且监督控制器与传感器协调动作。
处理器通常就是一台计算机(专用)。
它也需要拥有操作系统,程序和像监视器那样的外部设备等。
软件用于机器人的软件大致有三块。
第一块是操作系统,用来操作计算机。
第二块是机器人软件,它根据机器人运动方程计算每一个关节的动作,然后将这些信息传送到控制器,这种软件有多种级别,从机器语言到现代机器人使用的高级语言不等。
第三块是例行程序集合和应用程序,它们是为了使用机器人外部设备而开发的(例如视觉通用程序),或者是为了执行特定任务而开发的。
在许多系统中,控制器和处理器放置在同一单元中。
虽然这两部分放在同一装置盒内甚至集成在同一电路中,但他们有各自的功能。
2.2 机器人主要技术参数由于机器人的结构、用途和用户要求的不同,机器人的技术参数也不同。
一般来说,机器人的技术参数主要包括自由度、工作范围、工作速度、承载能力、精度、驱动方式、控制方式等。
●自由度...机器人的自由度是指机器人所具有的独立坐标轴运动的数目,但是一般不包括手部(末端操作器)的开合自由度。
自由度表示了机器人动作灵活的尺度。
机器人的自由度越多,越接近人手的动作机能,其......................通用性越好;但是自由度越多结构也越复杂。
....................图2-2 三自由度机器人图2-3 六自由度机器人●工作范围....机器人的工作范围是指机器人手臂或手部安装点所能达到的空间区域。
因为手部末端操作器的尺寸和形状是多种多样的,为了真实反映机器人的特征参数,这里指不安装末端操作器时的工作区域。
机器人工作范围的形状和大小十分重要,机器人在执行作业时可能会因为存在手部不能达到的作业死区而无法完成工作任务。
机器人所具有的自由度数目机器组合决定其运动图形;而自由度的变化量(即直线运动的距离和回转角度的大小)则决定着运动图形的大小。
●工作速度....指机器人在工作载荷条件下、匀速运动过程中,机械接口中心或工具中心点在单位时间内所移动的距离或转动的角度。
产品说明书中一般提供了主要运动自由度的最大稳定速度,但是在实际应用中仅考虑最大稳定速度是不够的。
这是因为运动循环包括加速启动、等速运行和减速制动三个过程。
如果最大稳定速度高允许的极限加速度小,则加减速的时间就会长一些,即有效速度就要低一些。
所以,在考虑机器人运动特性时,除了要注意最大稳定速度外,还应注意其最大允许的加减速度。
●承载能力....指机器人在工作范围内的任何位姿上所能承受的最大负载,通常可以用质量、力矩、惯性矩来表示。
承载能力不仅决定于负载的质量,而且还与机器人运行的速度和加速度的大小和方向有关。
一般低速运行时,承载能力大,为安全考虑,规定在高速运行时所能抓起的工件质量作为承载能力指标。
图2-4 排爆机器人●定位精度、重复精度和分辨率....是指机器人手部.............定位精度实际到达位置与目标位置之间的差异。
如果机器人重复执行某位置给定指令,它每次走过的距离并不相同,而是在一平均值附近变化,变化的幅度代表重复精度....。
分辨率...是指机器人每根轴能够实现的最小移动距离或最小转动角度。
定位精度、重复精度和分辨率并不一定相关,它们是根据机器人使用要求设计确定的,取决于机器人的机械精度与电气精度。
●驱动方式....是指机器人的动力源形式,主要有液压驱动、气压驱动和电力驱动等方式。
●控制方式....指机器人用于控制轴的方式,目前主要分为伺服控制和非伺服控制。
2.3 人的手臂作用机能初步分析人的上肢大体上可以分为大臂、小臂、手部三大部分。
大臂通过肩关节与躯干相连接,小臂与手之间通过腕关节相连接。
手部由手掌与五个手指构成。
从工程学的角度出发,将臂部从肩关节起到手腕关节的活动机能用自由度加以描述,则每个可看作缸体的部分,在空间都有沿x、y、z轴的三个移动自由度,以及绕x、y、z轴的三个转动自由度。
人手共有27个自由度。
图2-5 人臂的自由度图2-6 人手的自由度人的手指通过关节的屈伸,可以进行种种的复杂动作。
尤其是大拇指与其他四指不同,它除了有与其他四指相同的屈伸功能外,还具有内外转动的机能,以及与其他四个指对向的机能,这种对向动作,大大提高了手的把握机能。
从机构学的角度,将日常生活中常见手的握持动作大致可以区分。
在考虑机械手的把握机能时,除必须考虑机械手自身的机构和机构外,还必须对对象物及环境等进行分析。
作为机械手自身,存在手指的大小、形状、根数、手指接触表面的状态与手指的配置情况问题。
同时,还存在一个为充分发挥其作用,全体所具有的自由度数问题。
对象物的条件请参见表2-1 ,P13对于有条件约束的机械手,在确定手指所需握力时还应考虑由于惯性与振动的影响而产生的附加力。
如果在机械手上再加上感知性传感元件,感知到手指表面是否接触到对象物,抓着对象物时的强弱,以及被加在手上的外力大小,手指的开闭程度等,就成了具有智能的高级机械手。
2.4 机器人机械结构组成通常机器人由手部、手腕、手臂。
机身和行走机构组成。