一元一次方程和二元一次方程组
- 格式:ppt
- 大小:96.59 KB
- 文档页数:26
一元一次方程和二元一次方程组的联系下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一元一次方程和二元一次方程组的联系引言在数学中,一元一次方程和二元一次方程组是基础而重要的概念。
一元一次方程一、知识点:1.一元一次方程的定义、方程的解;2.一元一次方程的解法;3.一元一次方程的应用。
二、中考知识梳理1.会对方程进行适当的变形解一元一次方程解方程的基本思想就是转化,即对方程进行变形,变形时要注意两点,一是方程两边不能乘以(或除以)含有未知数的整式,否则所得方程与原方程的解可能不同;二是去分母时,不要漏乘没有分母的项,一元一次方程是学习二元一次方程组、一元二次方程、一元一次不等式及函数问题的基本内容。
2.正确理解方程解的定义,并能应用等式性质巧解考题方程的解应理解为,把它代入原方程是适合的,其方法就是把方程的解代入原方程,使问题得到了转化。
3.理解方程ax=b在不同条件下解的各种情况,并能进行简单应用方程ax=b:(1)a≠0时,方程有唯一解x=ba;(2)a=0,b=0时,方程有无数个解;(3)a=0,b≠0时,方程无解。
4.正确列一元一次方程解应用题列方程解应用题,关键是寻找题中的等量关系,可采用图示、列表等方法,根据近几年的考试题目分析,要多关注社会热点,密切联系实际,多收集和处理信息,解应用题时还要注意检查结果是否符合实际意义。
三、中考题型例析题型一方程解的应用例1(芜湖)已知方程32x-9x+m=0的一个根是1,则m的值是。
题型二巧解一元一次方程例2(江苏)解方程:341138 43242x x ⎡⎤⎛⎫--=⎪⎢⎥⎝⎭⎣⎦题型三根据方程ax=b解的情况,求待定系数的值例3已知关于x 的方程1(6)326x x a x +=--无解,则a 的值是( )A.1B.-1C.±1D.不等于1的数 题型四 一元一次方程的应用例4(福州)某班学生为希望工程共捐款131元,比每人平均2 元还多35元,设这个班的学生有x 人,根据题意列方程为_________________。
基础达标验收卷一、选择题1.(安徽)购某种三年期国债x 元,到期后可得本息和y 元,已知y=kx ,则这种国债的年利率为( ) A.k B.3k C.k-1 D.13k -2.(陕西)如果2(x+3)的值与3(1-x )的值互为相反数,那么x 等于( ) A.-8 B.8 C.-9 D.93.在公式P=F S t⋅中,已知P 、F 、t 都是正常数,则S 等于( )A.P t FB.F t PC.F P tD.PFt4.(山西)有一种足球是由32块黑白相间的牛皮缝制而成的,如图所示,黑皮可看做正五边形,白皮可看做正六边形,设白皮有x 块, 则黑皮有(32-x )块,每块白皮有六条边,共6x 条边,因每块白皮有三条边和黑皮连在一起, 故黑皮共有3x 条边,要求白皮、黑皮的块数,列出的方程正确的是( )A.3x=32-xB.3x=5(32-x )C.5x=3(32-x )D.6x=32-x 二、填空题1.(玉林)若-m=4,则m=____________。
各类方程组的解法 The pony was revised in January 2021一、一元一次方程步骤:系数化整、去分母、去括号、移项、合并同类项、系数化1。
1、系数化整:分子分母带有小数或分数的系数化成整数,方法是分子分母同时乘一个数使得系数变成整数;2、去分母:将包含的分母去掉,方法是等式两边同时乘所有分母的最小公倍数;3、去括号:根据去括号法则将括号去掉;4、移项:过等号要变号,将含未知数的放等号左边,常数放等号右边;5、合并同类项:根据合并同类项法则将同类项合并:6、系数化1:将未知数的系数化成1,方法是等式两边同时除以未知数的系数。
注:不一定严格按照步骤,例如移项的同时可以合并同类项,a(A)=b(a、b是已知数,A是含未知数的一次二项式)型方程可以先将括号前的系数化成1,第5步系数为1时省略1且第6步不需要写。
二、二元一次方程(组)一个二元一次方程有无数个解,它表示平面内一条直线,直线上每个点的坐标都是方程的解。
由两个二元一次方程联立成的二元一次方程组代表空间内两条直线,其公共点坐标就是方程组的解。
当然,若两直线平行则方程组无解,若两直线重合则方程组有无数个解。
当方程组形式复杂时先根据一元一次方程的解法化简成一般形式,然后求解。
1、代入消元法:⑴将任意一个方程变形成“y=带x的式子”或者“x=带y的式子”的形式,代入另一个方程,变成一个一元一次方程;⑵解一元一次方程;⑶将解代入任意一个原方程解出另一个未知数的值,并写出解。
2、加减消元法:⑴方程两边同时乘一个合适的数使得有同一个未知数的系数的绝对值相等(若已有系数的绝对值相等则这一步跳过);⑵两个方程左右加或减变成一元一次方程(系数相等用减,系数互为相反数用加);⑶解一元一次方程;⑷将解代入任意一个方程解出另一个未知数的值,并写出解。
3、图像解法:根据图像与方程的关系,在同一个平面直角坐标系中画出两个方程代表的直线,找出公共点的横坐标与纵坐标(不推荐此方法,因为当解为分数时看不出,这只能表示一种关系)。
第二单元 方程(组)与不等式(组) 第六讲 一元一次方程与二元一次方程组一、目标要求:1.了解等式、方程、一元一次方程和二元一次方程(组)的概念,掌握等式的基本性质. 2.掌握一元一次方程的标准形式,熟练掌握一元一次方程和二元一次方程组的解法. 3.会列方程(组)解决实际问题.二、课前热身1.方程2x-5=3的解是( )A .x=4B .x=-4C .x=1D .x=-12.某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6•1儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x 支,则依题意可列得的一元一次方程为( ) A.1.2×0.8x+2×0.9(60+x )=87 B.1.2×0.8x+2×0.9(60﹣x )=87 C.2×0.9x+1.2×0.8(60+x )=87 D.2×0.9x+1.2×0.8(60﹣x )=873.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x 人,到瑞金的人数为y 人.下面所列的方程组正确的是( )A .3412x y x y +=⎧⎨+=⎩B .3421x y x y +=⎧⎨=+⎩C .3421x y x y +=⎧⎨=+⎩D .23421x y x y +=⎧⎨=+⎩4.方程组525x y x y =+⎧⎨-=⎩的解满足方程x +y -a=0,那么a 的值是( )A .5B .-5C .3D .-35.方程组x y 60x 2y 30+=⎧⎨-=⎩的解是( )A .x 70y 10=⎧⎨=-⎩B .x 90y 30=⎧⎨=-⎩C .x 50y 10=⎧⎨=⎩D .x 30y 30=⎧⎨=⎩三、【基础知识重温】1.等式及其性质 ⑴ 等式:用等号“=”来表示 关系的式子叫等式.⑵ 性质:① 如果b a =,那么=±c a ;② 如果b a =,那么=ac ;如果b a =()0≠c ,那么=ca. 2. 方程、一元一次方程的概念⑴ 方程:含有未知数的 叫做方程;使方程左右两边值相等的 ,叫做方程的解;求方程解的 叫做解方程. 方程的解与解方程不同.⑵ 一元一次方程:在整式方程中,只含有 个未知数,并且未知数的次数是 ,系数不等于0的方程叫做一元一次方程;它的一般形式为()0≠a .3. 解一元一次方程的步骤:①去 ;②去 ;③移 ;④合并 ;⑤系数化为1.4.二元一次方程:含有 未知数(元)并且未知数的次数是 的整式方程.5. 二元一次方程组:把具有相同未知数的两个 合在一起,就组成了一个二元一次方程组.6.二元一次方程的解: 适合一个二元一次方程的 未知数的值叫做这个二元一次方程的一个解,一个二元一次方程有 个解. 7.二元一次方程组的解: 二元一次方程组的两个方程的 ,叫做二元一次方程组的解. 8. 解二元一次方程的方法:消元是解二元一次方程组的基本思路,方法有 消元和 消元法两种.四、例题分析题型一 一元一次方程的解法例1. (2015·辽宁大连)方程3x+2(1-x)=4的解是( ) A.x=52 B.x=65C.x=2D.x=1 【趁热打铁】1.已知关于x 的方程3a-x=4的解为2,求代数式(-a)2-2a+1的值. 2.解方程:(1)53(2)8x x +-= (2)212143x x -+=-3.解方程:)21(25)2(34y y y --=+- 题型二 二元一次方程组的解法 例2. 如果实数x ,y 满足方程组,则x 2﹣y 2的值为 .例3. (2015•泉州)方程组的解是 .【趁热打铁】1.已知x 2y 1==⎧⎨⎩是方程组ax by 5bx ay 1+=+=⎧⎨⎩的解,则a ﹣b 的值是( )A.1-B.2C.3D.42.方程组⎩⎨⎧=-=+32y x a y x 的解为⎩⎨⎧==b y x 5,则a 、b 分别为 ( )A .a =8,b =-2B .a =8,b =2C .a =12,b =2D .a =18,b =8 3.方程组13x y x y -=⎧⎨+=⎩的解是4.解下列方程组:131,222;x y x y ⎧-=⎪⎨⎪+=⎩ 5.解方程组x 2y 4 2x y 30-=⎧⎨+-=⎩ ①②.6.解二元一次方程组:3x 2y 192x y 1+=⎧⎨-=⎩题型三 列方程(组)解决实际问题例4. (2015·辽宁朝阳)为响应国家节能减排的号召,鼓励居民节约用电,各省先后出台了居民用电“阶梯价格”制度,如表中是某省的电价标准(每月).例如:方女士家5月份用电500度,电费=180×0.6+220×二档电价+100×三档电价=352元;李先生家5月份用电460度,交费316元,请问表中二档电价、三档电价各是多少?【趁热打铁】1.某汽车专卖店销售A ,B 两种型号的新能源汽车.上周售出1辆A 型车和3辆B 型车,销售额为96万元;本周已售2辆A 型车和1辆B 型车,销售额为62万元. (1)求每辆A 型车和B 型车的售价各多少万元.(2)甲公司拟向该店购买A ,B 两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?2.某商店经营甲、乙两种商品,其进价和售价如下表: 已知该商店购进了甲、乙两种商品共160件.(1)若商店在销售完这批商品后要获利1000元,则应分别购进甲、乙两种商品各多少件?(2)若商店的投入资金少于4300元,且要在售完这批商品后获利不少于1250元,则共有几种购货的方案?其中,哪种购货方案获得的利润最大?3.我州某校计划购买甲、乙两种树苗共1000株用以绿化校园,甲种树苗每株25元,乙种树苗每株30元,通过调查了解,甲,乙两种树苗成活率分别是90%和95%. (1)若购买这种树苗共用去28000元,则甲、乙两种树苗各购买多少株? (2)要使这批树苗的总成活率不低于92%,则甲种树苗最多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用. 4.海南五月瓜果飘香,某超市出售的“无核荔枝”和“鸡蛋芒果”单价分别为每千克26元和22元.李叔叔购买这两种水果共30千克,共花了708元.请问李叔叔购买这两种水果各多少千克?五、牛刀小试1、【题源】2015·湖北荆门王大爷用280元买了甲、乙两种药材,甲种药材每千克20元,乙种药材每千克60元,且甲种药材比乙种药材多买了2千克,则甲种药材买了 千克. 2、【题源】2015·湖北黄冈已知A ,B 两件服装的成本共500元,鑫洋服装店老板分别以30%和20%的利润率定价后进行销售,该服装店共获利130 元,问A ,B 两件服装的成本各是多少元? 3、【题源】2015·湖南常德某物流公 司承接A 、B 两种货物运输业务,已知5月份A 货物运费单价为50元/吨,B 货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A 货物70元/吨,B 货物40元/吨;该物流公司6月承接的A 种货物和B 种数量与5月份相同,6月份共收取运费13000元。
一元一次方程、二元一次方程(组)及应用知识点1:一元一次方程及应用1,系数不等于0的整式方程,叫做一元一次方程.一元一次方程的标准式是:ax +b=0(其中x 是未知数,a 、b 是已知数,并且a≠0). 一元一次方程的最简式是:ax=b(a≠0).【例1】下列方程是一元一次方程的是( )A.x2+1=5 B. 3(m -1)-1=2 ; C. x-y=6 D.都不是 【例2】选项中是方程的是( ) B. a-1>2 C. a 2+b 2-5 D. a 2+2a-3=5;解一元一次方程的一般步骤:1.去分母:在方程两边都乘以各分母的最小公倍数;2.去括号:先去小括号,再去中括号,最后去大括号;3.移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;4.合并同类项:把方程化成ax=b(a ≠0)的形式;5.系数化成1:在方程两边都除以未知数的系数a ,得到方程的解。
【例3】解方程:(1)47815=-x ; (2) 21216231--=+--x x x ;解方程的问题。
【例4】甲、乙两个水池共蓄水50t,甲池用去5t ,乙池又注入8t 后,甲池的水比乙池的水少3t ,问原来甲、乙两个水池各有多少吨水?【例5】一份试卷共25道题,每道题都给出四个答案,其中只有一个是正确的,要求学生把正确答案选出来,每题选对得4分,不选或选错扣1分,如果一个学生得90分,那么他选对几题?现有500名学生参加考试,有得83分的同学吗?为什么?知识点2:二元一次方程(组)及应用1,这样的方程,叫做二元一次方程.二元一次方程组:含有相同的两个未知数的两个一次方程所组成的方程组,叫做二元一次方程组.解:使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值,叫做二元一次方1、 代入消元法解二元一次方程组基本思路:未知数由多变少。
消元法的基本方法:将二元一次方程组转化为一元一次方程。
2、 加减消元法解二元一次方程组两个二元一次方程中同一个未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。
一元一次方程,二元一次方程组,一元二次方程教学目的1. 回顾已学过的关于方程(组)与方程的解的概念掌握方程的一些特点以及常规考点,特别是一元二次方程和二元一次方程组的解题技巧和容易犯错的地方,巩固关于一元二次方程和二元一次方程组的解的应用的问题解决方法。
重难点1. 二元一次方程组,一元二次方程的应用在做关于应用题的时候要会理清各个量之间的关系,并运用存在的关系建立方程 教学过程一.一次方程与一次方程组1.方程(组)与方程的解的概念(1)方程:含有未知数的等式叫做方程(2)方程的解:使方程左右两边的值相等的未知数的值叫做方程的解。
(3)一元一次方程:只含有一个未知数,且未知数的次数是一次的整式的方程叫做一元一次方程;它的标准形式是ax+b=0(a ≠0)。
(4)二元一次方程:含有两个未知数,并且含未知数的项的次数都是一次的整式方程叫做二元一次方程,它的基本形式是ax+by=0(a ≠0, b ≠0)。
(5)二元一次方程组:几个一次方程组成的含有两个未知数的一组方程叫做二元一次方程组。
(6)二元一次方程组的解:方程组里每个方程的公共解叫做二元一次方程组的解2.解方程的依据等式的性质:(1) 等式的两边都加上或者减去同一个整式,得到的结果仍是等式(2) 等式的两边都乘或除以同一个不为零的数或整式,所得结果仍是等式2. 方程或方程组的解法与步骤(1) 解一元一次方程的一般步骤:①去分母②去括号③移项④合并同类项⑤未知数的系数化为一(2) 解二元一次方程组的基本思路:通过消元使其转化为一元一次方程来解,通常的消元法有代入法和加减法。
3. 列方程(组)解应用题的一般步骤(1) 审题,特别注意关键的字和词的意义,弄清相关数量关系,已知什么,求什么;(2) 设未知数(注意单位的同意);(3) 根据相灯关系列出方程(组);(4) 解方程(组),并检验;(5) 写出答案(包括单位名称)。
注意:列方程(组)解应用题的关键是:确定等量关系。