疲劳裂纹扩展与寿命计算
- 格式:ppt
- 大小:4.40 MB
- 文档页数:54
总分: 100分考试时间:分钟判断题1. 断裂力学的研究对象是含裂纹体。
(6分)正确错误参考答案:正确解题思路:2. 脆性材料不发生或很小塑性变形,没有屈服极限,在经历很小的变形情况下就会发生断裂。
(6分)正确错误参考答案:正确解题思路:3. 第二强度理论代表最大切应力理论。
(6分)正确错误参考答案:错误解题思路:4. 穿晶断裂是韧性的,而不可以是脆性的。
(6分)正确错误参考答案:错误解题思路:5. 约束力是一种主动力。
(6分)正确错误参考答案:错误解题思路:6. 低应力脆断多与结构件中存在宏观缺陷(主要是裂纹)有关,且与材料的韧性有关。
(6分)正确错误参考答案:正确解题思路:7. 材料的理论断裂强度与实际断裂强度相差很大。
(6分)正确错误参考答案:正确解题思路:8. 使构件发生变形的外部物体作用统称为外力,它只表示构件承受的载荷。
(6分)正确错误参考答案:错误解题思路:9. 根据材料断裂的载荷性质,断裂力学分为静态断裂力学和动态断裂力学,断裂动力学是断裂静力学的基础。
(6分)正确错误参考答案:错误解题思路:10. 材料的断裂是一个很复杂的过程,是材料性质、载荷类型、复役环境、构件尺寸等多种因素共同作用的结果,并且可能造成灾难性事故,因此断裂控制是无规律可循的。
(6分)正确错误参考答案:错误解题思路:填空题11. 载荷按性质分类有拉伸载荷、压缩载荷和___(1)___ 载荷。
(5分)(1).参考答案:剪切12. 由于作用循环载荷而性能变劣造成的断裂称为___(2)___ 。
(5分)(1).参考答案:疲劳断裂13. 材料(或构件)断裂前有明显的塑性变形,即断裂应变较大的断裂方式为___(3)___ 。
(5分) (1).参考答案:韧性断裂单选题14. 断裂化学则是研究各种对材料断裂过程的作用及影响的一门学科。
由此可见,断裂学是一门综合性的边缘学科,本书将以断裂力学为主,而为了更好理解断裂机理和裂纹扩展,断裂物理的知识也有所涉及。
基于结构应力法的车体结构疲劳裂纹扩展与剩余寿命评估杨海宾;朱涛;肖守讷;阳光武;杨冰【摘要】为了弥补名义应力法不能针对具有初始裂纹的焊接结构进行评估的不足,采用结构应力法,在断裂力学的基础上推导了考虑裂纹扩展增量的焊缝裂纹扩展计算方法.以复铰式100%0低地板有轨电车为研究对象,采用名义应力法确定了典型工况下车体疲劳强度薄弱焊缝的位置,并基于结构应力法提取了该位置的膜应力和弯曲应力,并应用焊缝裂纹扩展计算方法对车体薄弱位置的焊缝进行了剩余寿命评估.研究结果表明:初始裂纹的存在导致车体寿命远低于设计寿命(1E7),但仍然具有一定的服役空间,可以利用焊缝裂纹扩展计算方法对含有缺陷的结构进行剩余寿命评估,并根据计算结果制定相应的维修策略.【期刊名称】《铁道机车车辆》【年(卷),期】2019(039)001【总页数】7页(P15-20,77)【关键词】名义应力;结构应力;裂纹扩展计算;车体结构;剩余寿命【作者】杨海宾;朱涛;肖守讷;阳光武;杨冰【作者单位】西南交通大学牵引动力国家重点实验室,成都610031;西南交通大学牵引动力国家重点实验室,成都610031;西南交通大学牵引动力国家重点实验室,成都610031;西南交通大学牵引动力国家重点实验室,成都610031;西南交通大学牵引动力国家重点实验室,成都610031【正文语种】中文【中图分类】U270.1+2目前,针对轨道交通车辆车体焊接结构疲劳评估,普遍采用基于疲劳强度值和P-S-N曲线的名义应力法,这种方法往往依赖于接头类型和载荷形式,当面对复杂结构时,精确度便会降低[1]。
密西根大学的董平沙教授提出了基于结构应力的主S-N曲线法,很好的解决了这个问题[2-3]。
对于焊接结构,不可避免的会存在缺陷,这些缺陷很可能成为裂纹的源头,导致结构的使用寿命和承载能力降低,对于服役多年的结构往往也会出现许多疲劳裂纹[4]。
如果能模拟这些裂纹的扩展行为,便能对具有裂纹缺陷的焊接结构的服役能力进行计算并指导车辆的阶段性维修。
11决定金属屈服强度的因素有哪些12内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。
外在因素:温度、应变速率和应力状态。
试举出几种能显着强化金属而又不降低其塑性的方法。
固溶强化、形变硬化、细晶强化试述韧性断裂与脆性断裂的区别。
为什么脆性断裂最危险21韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。
何谓拉伸断口三要素影响宏观拉伸断口性态的因素有哪些答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。
上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化断裂强度与抗拉强度有何区别抗拉强度是试样断裂前所承受的最大工程应力,记为σb;拉伸断裂时的真应力称为断裂强度记为σf; 两者之间有经验关系:σf = σb (1+ψ);脆性材料的抗拉强度就是断裂强度;对于塑性材料,由于出现颈缩两者并不相等。
裂纹扩展受哪些因素支配答:裂纹形核前均需有塑性变形;位错运动受阻,在一定条件下便会形成裂纹。
试综合比较单向拉伸、压缩、弯曲及扭转试验的特点和应用范围。
答:单向拉伸试验的特点及应用:单向拉伸的应力状态较硬,一般用于塑性变形抗力与切断强度较低得所谓塑性材料试验。
压缩试验的特点及应用:(1)单向压缩的应力状态软性系数a=2,因此,压缩试验主要用于脆性材料,以显示其在静拉伸时缩不能反映的材料在韧性状态下的力学行为。
(2)压缩与拉伸受力方向不仅相反,且两种试验所得的载荷变形曲线、塑性及断裂形态也存在较大的差别,特别是压缩不能使塑性材料断裂,故塑性材料一般不采用压缩方法试验。
(3)多向不等压缩试验的应力软性系数a>2,故此方法适用于脆性更大的材料,它可以反映此类材料的微小塑性差异。
橡胶密封圈疲劳寿命预测研究方法综述摘要:橡胶密封圈对提高设备密封性能有重要作用,通常作为密封构件广泛应用于工业机械设备。
概述橡胶密封圈的疲劳寿命研究方法,主要分为S-N曲线法、裂纹萌生法和裂纹扩展法。
从寿命预测计算理论出发,阐述常用的计算模型,总结实现橡胶密封圈寿命预测计算的方式,对初步了解橡胶材料寿命预测方法和计算模型之间的关系具有重要意义。
关键词:橡胶密封圈 S-N曲线裂纹萌生裂纹扩展寿命预测橡胶属于高分子材料,具有弹性性质,能够为设备提供良好的密封性能,因此广泛应用于燃油、液压、润滑等密封系统。
在复杂工况下,橡胶密封圈经常出现老化、破裂、永久变形、间隙咬伤、腐蚀等失效现象。
为了有效预防泄漏事件的发生,许多国内外学者对橡胶密封圈使用寿命的预测方法展开了研究。
王昊等[1][2]综述了橡胶疲劳影响因素和裂纹萌生、裂纹扩展等橡胶疲劳寿命研究方法,阐述了通过有限元仿真技术预测橡胶材料疲劳寿命的研究进展。
杜秀华等[3]概述橡胶构件的疲劳寿命研究方法主要分为裂纹成核法、裂纹扩展法和S-N曲线法,并给出各研究方法的选择依据。
王小莉等[4][5]从橡胶材料的疲劳裂纹萌生、扩展以及疲劳损伤三个角度综述了疲劳特性研究进展。
丁智平等[6]采用连续介质损伤力学方法,结合有限元分析方法对橡胶构件进行寿命预测,预测结果比较理想。
刘兵[7]以某伺服作动器为研究对象,计算了橡胶O形圈的疲劳寿命,为橡胶材料寿命预测提供了分析方法和数值依据。
王星盼[8]对不同温度和多轴应力作用下的橡胶进行疲劳特性研究,通过有限元方法对橡胶构件进行了寿命预测。
裴硕等[9]基于断裂力学理论,对丁腈橡胶建立了疲劳寿命预测模型,通过FE-SAFE软件对橡胶材料进行了寿命预测。
综上所述,橡胶材料寿命预测最常见的方法有S-N曲线法、裂纹萌生法和裂纹扩展法。
1 S-N曲线法对橡胶密封圈施加周期性应力(应变)是影响疲劳寿命的主要原因,应力(应变)增加,疲劳寿命减少,反之增加。
常见的⾦属材料⾼温疲劳-蠕变寿命估算⽅法在⼯程上,许多结构部件长期运⾏在⾼温条件下,如⽕⼒发电设备中的汽轮机、锅炉和主蒸汽管道,⽯油化⼯系统中的⾼温⾼压反应容器和管道,它们除了受到正常的⼯作应⼒外,还需承受其它的附加应⼒以及循环应⼒和快速较⼤范围内的温度波动等作⽤,因此其寿命往往受到蠕变、疲劳和蠕变-疲劳交互作⽤等多种机制的制约。
疲劳-蠕变交互作⽤是⾼温环境下承受循环载荷的设备失效的主要机理,其寿命预测对⾼温设备的选材、设计和安全评估有⼗分重⼤的意义,⼀直是⼯程界和学术界⽐较关⼼的问题,很多学者提出了相应的寿命预测模型。
本⽂对常见的寿命估算⽅法进⾏简单的介绍。
”寿命-时间分数法对于疲劳-蠕变交互作⽤的寿命估算问题主要采⽤线性累积损伤法,⼜叫寿命-时间分数法。
寿命时间分数法认为材料疲劳蠕变交互作⽤的损伤为疲劳损伤和蠕变损伤的线性累积,如下式所⽰:其中Nf为疲劳寿命,从ni为疲劳循环周次,tr为蠕变破坏时间,t为蠕变保持时间。
该⽅法将分别计算得到的疲劳损伤量和蠕变损伤量进⾏简单的相加,得到总的损伤量,计算⼗分简单,不过需要获得相应温度环境下纯蠕变和纯疲劳的试验数据。
由于该⽅法没有考虑疲劳和蠕变的交互作⽤,其计算结果和精度较差。
为了克服不⾜,提⾼计算精度,研究⼈员提出了多种改进形式。
例如谢锡善的修正式如下:Lagneborg提出的修正式如下:上述式⼦中,n为交互蠕变损伤指数,1/n为交互疲劳损伤指数,A、B为交互作⽤系数。
两个修正表达式均增加了交互项,可以⽤来调整累积损伤法的预测结果和实验结果之间误差,极⼤地提⾼了预测结果的可靠性。
频率修正法(FM法)及频率分离法(FS法)⽬前,⼯程上⼴泛使⽤的疲劳-蠕变寿命估算⽅法⼤多数都是基于应变控制模式的估算⽅法。
频率修正法是Coffin提出来的,认为低周疲劳中主要损伤是由塑性应变所引起的,Eckel在此基础上提出以下公式:式中:tf为破坏时间,K为依赖温度的材料常数,ϑ为频率,Δεp为塑性应变范围。
疲劳分析的数值计算方法及实例第一节引 言零件或构件由于交变载荷的反复作用,在它所承受的交变应力尚未达到静强度设计的许用应力情况下就会在零件或构件的局部位置产生疲劳裂纹并扩展、最后突然断裂。
这种现象称为疲劳破坏。
疲劳裂纹的形成和扩展具有很大的隐蔽性而在疲劳断裂时又具有瞬发性,因此疲劳破坏往往会造成极大的经济损失和灾难性后果。
金属的疲劳破坏形式和机理不同与静载破坏,所以零件疲劳强度的设计计算不能为经典的静强度设计计算所替代,属于动强度设计。
随着机车车辆向高速、大功率和轻量化方向的迅速发展,其疲劳强度及其可靠性的要求也越来越高。
近几年随着我国铁路的不断提速,机车、车辆和道轨等铁路设施的疲劳断裂事故不断发生,越来越引起人们的重视。
疲劳强度设计及其研究正在成为我国高速机车车辆设计制造中的一项不可缺少的和重要的工作。
金属疲劳的研究已有近150年的历史,有相当多的学者和工程技术人员进行了大量的研究,得到了许多关于金属疲劳损伤和断裂的理论及有关经验技术。
但是由于疲劳破坏的影响因素多而复杂并且这些因素互相影响又与构件的实际情况密切相关,使得其应用性成果尚远远不能满足工程设计和生产应用的需要。
据统计,至今有约90%的机械零部件的断裂破坏仍然是由直接于疲劳或者间接疲劳而引起的。
因此,在21世纪的今天,尤其是在高速和大功率化的新产品的开发制造中,其疲劳强度或疲劳寿命的设计十分重要,并且往往需要同时进行相应的试验研究和试验验证。
疲劳断裂是因为在零件或构件表层上的高应力或强度比较低弱的部位区域产生疲劳裂纹,并进一步扩展而造成的。
这些危险部位小到几个毫米甚至几十个微米的范围,零件或构件的几何缺口根部、表面缺陷、切削刀痕、碰磕伤痕及材料的内部缺陷等往往是这种危险部位。
因此,提高构件疲劳强度的基本途径主要有两种。
一种是机械设计的方法,主要有优化或改善缺口形状,改进加工工艺工程和质量等手段将危险点的峰值应力降下来;另一种是材料冶金的方法,即用热处理手段将危险点局部区域的疲劳强度提高,或者是提高冶金质量来减少金属基体中的非金属夹杂等材料缺陷等局部薄弱区域。
压力容器裂纹疲劳寿命预测的Pairs公式材料常数的相关性分析黎佳*龙伟戴钰冰(四川大学)摘要介绍了计算疲劳裂纹亚临界扩展速率中常用的P airs公式、最小二乘法的一般原理和相关系数r的概念。
以07M nCr M oVR钢为例运用最小二乘法得出了l g C和m的线性关系,并利用相关系数r判断其相关程度,得出了两者具有极强相关性的结论。
基于P airs公式中材料常数m服从正态分布这一知识,利用lg C和m的线性关系以及正态分布的相关知识,参考压力容器安全评估的方法,探讨了对疲劳裂纹的亚临界扩展速率和疲劳寿命近似预测的方法。
关键词压力容器裂纹扩展速率Pa irs公式相关性中图分类号TQ05113文献标识码A文章编号0254-6094(2010)03-0316-04疲劳断裂是压力容器的主要失效形式之一。
在压力容器破坏性事故中,有40%~50%的事故是由疲劳裂纹引起的。
因此,研究压力容器的疲劳裂纹扩展速率,是掌握在役压力容器剩余使用寿命的关键,这对确保压力容器的安全运行十分重要。
笔者主要研究压力容器缺陷的疲劳裂纹扩展速率的计算公式,并通过此公式来探讨亚临界扩展速率和疲劳寿命的预测方法。
1疲劳裂纹的亚临界扩展速率疲劳裂纹的扩展过程可分为3个阶段:疲劳裂纹的萌生阶段、稳定扩展阶段(亚临界扩展阶段)和快速扩展阶段(失稳扩展阶段)。
由于压力容器的疲劳问题常常是裂纹的亚临界扩展问题,因此对亚临界扩展阶段的研究很有意义。
在亚临界扩展阶段中,裂纹扩展速率d a/d N 与裂纹尖端的应力强度因子变化范围$K有如下关系,也就是Pairs公式[1]:d ad N=C($K)m(1)式中C,m)))与材料相关的常数;a)))裂纹尺寸;N)))疲劳应力循环周次;$K)))疲劳应力引起的应力强度因子变化范围。
2Paris公式中材料常数C和m相关性分析可将式(1)改写为d a/d N=C i($K/K i)m的形式,则有C=C i K i–m,取对数后,可以得到:lg C=lg C i-m lg K i(2)式(2)说明lg C和m具有相关性。
等效疲劳寿命计算公式1、 [公式] (Stre-Life) 疲劳寿命预测方法[公式]寿命估计本质就是反映了应力幅值与疲劳寿命之间的关系,科学家们发现[公式]与[公式]呈幂指数关系:[公式](1)[公式](2)综合(1)(2)可以估计不同平均应力和不同应力幅下的材料寿命。
除了上述影响因素,微结构、尺寸效应、表面处理以及载荷频率等因素对寿命都有影响,因此,如何建立完备的寿命模型一直是一大难题。
2、 [公式] (Strain-Life) 疲劳寿命预测方法2、1、应变控制下材料的行为低周疲劳测试时,局部的应力将超过屈服应力,从而产生塑性区。
对于大多数金属材料,其单调应力应变 [公式] 关系满足Ramberg-Ogood表达式:[公式](3)其中[公式]分别为弹性、塑性应变,[公式]均为材料常数。
由该表达式可见,当材料屈服后,应力与应变呈指数关系,应变微小的变化对应着应力极大的变化,因此多采用应变控制,这也是[公式]方法诞生的主要原因。
[公式](4)其中,[公式]为循环材料常数。
由于是增量表达式,因此需要确定其中一参考点的坐标,才能确定曲线上各点的值。
值得注意的是,由于上述表达式刻画的是整个曲线,即加载和卸载满足相同的表达式。
在稳定迟滞环的基础上,开展应变控制下疲劳寿命的预测。
2、2、疲劳寿命预测模型应变控制下的疲劳寿命预测模型与应力控制相似,只是需要分弹性与塑性两部分,其表达式为:[公式](5)该表达式也被成为Manon-Coffin模型,式中 [公式] 都是与疲劳相关的材料常数。
!注意在应变控制的寿命预测公式中,括号内不再写成[公式] 而是以 [公式] 代替,这是因为如果幅值不是恒定的,常常没有正弦波形如 [公式] 的循环(cycle),因此以转折(reveral)来代替,两个reveral表示一个循环,在式中写作 [公式]。
平均应变同样会对寿命预测产生影响,Morrow做出了如下的修正:[公式](6)总体来说应变控制的疲劳模型与应力控制思路相似,也是以幅值作为主要的控制量,再根据实际情况加以修正。
疲劳寿命预测方法10船王茹娇************疲劳裂纹形成寿命的概念发生疲劳破坏时的载荷循环次数,或从开始受载到发生断裂所经过的时间称为该材料或构件的疲劳寿命。
疲劳寿命的种类很多。
从疲劳损伤的发展看,疲劳寿命可分为裂纹形成和裂纹扩展两个阶段:结构或材料从受载开始到裂纹达到某一给定的裂纹长度a0为止的循环次数称为裂纹形成寿命。
此后扩展到临界裂纹长度acr为止的循环次数称为裂纹扩展寿命,从疲劳寿命预测的角度看,这一给定的裂纹长度与预测所采用的寿命性能曲线有关。
此外还有三阶段和多阶段,疲劳寿命模型等。
疲劳损伤累积理论疲劳破坏是一个累积损伤的过程。
对于等幅交变应力,可用材料的S—N曲线来表示在不同应力水平下达到破坏所需要的循环次数。
于是,对于给定的应力水平,就可以利用材或零部件的S—N曲线,确定该零件至破坏时的循环数N,亦即可以估算出零件的寿命,但是,在仅受一个应力循环加载的情况下,才可以直接利用S—N曲线估算零件的寿命。
如果在多个不同应力水平下循环加载就不能直接利用S—N曲线来估计寿命了。
对于实际零部件,所承受的是一系列循环载荷,因此还必须借助疲劳累积损伤理论。
损伤的概念是,在疲劳载荷谱作用下材料的改变(包括疲劳裂纹大小的变化,循环应变硬化或软化以及残余应力的变化等)或材料的损坏程度。
疲劳累积损伤理论的基本假设是:在任何循环应力幅下工作都将产生疲劳损伤,疲劳损伤的严重程度和该应力幅下工作的循环数有关,与无循环损伤的试样在该应力幅下产生失效的总循环数有关。
而且每个应力幅下产生的损伤是永存的,并且在不同应力幅下循环工作所产生的累积总损伤等于每一应力水平下损伤之和。
当累积总损伤达到临界值就会产生疲劳失效。
目前提出多种疲劳累积损伤理论,应用比较广泛的主要有以下3种:线性损伤累积理论,修正的线性损伤累积理论和经验损伤累积理论。
线性损伤累积理论在循环载荷作用下,疲劳损伤是可以线性地累加的,各个应力之间相互独立和互不相干,当累加的损伤达到某一数值时,试件或构件就发生疲劳破坏,线性损伤累积理论中典型的是Miner理论。
材料疲劳力学分析与寿命在现代工程领域中,材料的疲劳性能是一个至关重要的考量因素。
无论是航空航天中的飞机零部件,还是汽车工业中的发动机组件,又或是桥梁等大型基础设施,材料在长期反复的载荷作用下都可能发生疲劳失效。
这种失效往往是在应力水平远低于材料的静态强度极限时发生的,给工程结构的安全性和可靠性带来了巨大的潜在威胁。
因此,深入研究材料疲劳力学并准确预测其疲劳寿命,对于保障工程结构的正常运行和延长使用寿命具有极其重要的意义。
材料疲劳的本质是在循环载荷作用下,材料内部微观结构逐渐发生损伤和累积,最终导致宏观裂纹的形成和扩展。
循环载荷的特点可以是周期性的、随机的或者是两者的组合。
当材料受到循环载荷时,其内部的原子晶格会发生微小的滑移和变形。
随着载荷循环次数的增加,这些滑移和变形会逐渐集中在某些局部区域,形成所谓的“疲劳源”。
从力学角度来看,材料疲劳的分析涉及到多个方面。
首先是应力分析,包括确定应力的大小、方向和变化规律。
这需要对加载条件、结构几何形状以及材料的力学性能等因素进行综合考虑。
其次是应变分析,因为应变能够更直接地反映材料内部的微观变形情况。
此外,还需要考虑材料的多轴应力状态,因为在实际工程中,材料往往承受着复杂的多向应力。
在进行材料疲劳力学分析时,常用的方法有实验研究和理论分析。
实验研究通过对材料试样进行疲劳试验,获取疲劳寿命数据和相关的力学性能参数。
常见的疲劳试验包括旋转弯曲疲劳试验、拉压疲劳试验和疲劳裂纹扩展试验等。
这些试验可以在不同的应力水平、加载频率和环境条件下进行,以模拟实际工程中的各种工况。
理论分析则基于力学原理和数学模型来预测材料的疲劳性能。
其中,应力寿命(SN)曲线是一种常用的描述材料疲劳特性的方法。
该曲线表示在不同应力水平下,材料达到疲劳失效所需的循环次数。
通过对SN 曲线的分析,可以初步评估材料在给定应力条件下的疲劳寿命。
然而,SN 曲线方法存在一定的局限性,它无法考虑材料的局部应力集中和微观结构对疲劳寿命的影响。