疲劳裂纹扩展速率
- 格式:ppt
- 大小:897.50 KB
- 文档页数:111
第五章疲劳裂纹扩展§5.1 概述前面介绍的内容为静载荷作用下的断裂准则。
构件在交变应力作用下产生的破坏为疲劳破坏,疲劳破坏的应力远比静载应力低。
一、疲劳破坏的过程1)裂纹成核阶段交变应力→滑移→金属的挤出和挤入→形成微裂纹的核(一般出现于零件表面)。
2)微观裂纹扩展阶段微裂纹沿滑移面扩展,这个面是与正应力轴成45°的剪应力作用面,是许沿滑移带的裂纹,此阶段裂纹的扩展速率是缓慢的,一般为10-5mm每循环,裂纹尺寸<0.05mm。
3)宏观裂纹扩展阶段裂纹扩展方向与拉应力垂直,为单一裂纹扩展,裂纹尺寸从0.05mm扩展至临a,扩展速率为10-3mm每循环。
界尺寸c4)断裂阶段a时,产生失稳而很快断裂。
当裂纹扩展至临界尺寸c工程上一般规定:①0.1mm~0.2mm裂纹为宏观裂纹;②0.2mm~0.5mm,深0.15mm表面裂纹为宏观裂纹。
N)宏观裂纹扩展阶段对应的循环因数——裂纹扩展寿命。
(pN)以前阶段对应的循环因数——裂纹形成寿命。
(i二、高周疲劳和低周疲劳高周疲劳:当构件所受的应力较低,疲劳裂纹在弹性区内扩展,裂纹的疲劳寿命较长。
(应力疲劳)低周疲劳:当构件所受的局部应力已超过屈服极限,形成较大的塑性区,裂纹在塑性区中扩展,裂纹的疲劳寿命较小。
(应变疲劳)工程中一般规定N≤105为低周疲劳。
f三、构件的疲劳设计1、总寿命法测定S-N曲线(S为交变应力,N为应力循环周次)。
经典的疲劳设计方法是循环应力范围(S-N)曲线法或塑性总应变法来描述导致疲劳破坏的总寿命。
在这些方法中通过控制应力幅或应变幅来获得初始无裂纹的实验室试样产生疲劳破坏所需的应力循环数和应变循环数。
N=Ni +Np(Ni萌生寿命,Np扩展寿命)2、损伤容限法(疲劳设计的断裂力学方法)容许构件在使用期内出现裂纹,但必须具有足够的裂纹亚临界扩展寿命,以保证在使用期内裂纹不会失稳扩展而导致构件破坏。
疲劳寿命定义为从某一裂纹尺寸扩展至临界尺寸的裂纹循环数。
ASTM E647-08 疲劳裂纹扩展速率试验作业指导书1.概述本测试方法为测定从接近门槛值到最大Kmax期间内非稳定控的疲劳裂纹扩展速率。
结果用裂纹顶端应力强度因子范围(ΔK)来表示。
能够按本方法进行试验的材料不受厚度或强度的限制,只要试验过程中试样厚度足够厚,以防止翘曲及其平面尺寸足以保持弹性变性占优势即可。
本测试方法需对带有预裂纹缺口试样施以循环加荷。
经视觉测量,或是其他等效的方法测量试样的裂纹尺寸,对疲劳循环函数进行数值分析,以建立裂纹扩展速率。
2.仪器2.1夹具和装卡装置--试样对夹具和装卡装置的要求在标准中已概述。
2.2 夹具的同心度-力的传递过程中,保持所有夹具有较高的同心度非常重要。
不对中能导致非对称开裂,特别是靠近门槛值测试,这可能导致无效的数据。
7. 试样形状、尺寸、制备7.1 试样标准---本方法使用的试样形状细节于本方法附录中给出。
从实际材料中取样,应力释放完全是不切实际的。
小心选择试样形状和尺寸,残余应力对于裂纹扩展特性的影响可以最小化。
选择样小比例品尺寸B/W, 可以减少分布于整个试样厚度上,垂直于裂纹扩展方向残余应力的作用。
这种形状的选择,可最大限度的减小由于裂纹弯曲度和裂纹前缘不规则引起的计算da/dN 和∆K的误差。
此外,作用于平行裂纹扩展方向的残余应力可能产生使裂纹尖端闭合或张开的力矩,这也可以混淆的测试结果。
在大多数情况下,残余应力引发了对裂纹扩展特性测量结果影响,可以通过选择一种对称样品形状使其最小化,即M(T)试样。
7.3 切口的制备—对标准试样加工缺口可用电火花、铣削、锯加工。
以下建议的缺口制备过程有利于不同材料疲劳裂纹的扩展。
7.3.1电火花加工---ρ< 0.25 mm(0.0010in) (ρ=缺口根部半径),高强钢(σys≥1175MPa/170ksi)、钛和铝合金。
7.3.2磨和铣----ρ≤0.075mm(0.003in) ,低中强度钢σys≤1175MPa/170ksi ,铝合金。
疲劳裂纹扩展速率模型简介疲劳裂纹扩展速率是材料力学领域一个重要的研究课题。
疲劳裂纹扩展是指在材料受到疲劳载荷作用下,裂纹会以一定速率扩展,最终导致材料的疲劳失效。
了解疲劳裂纹扩展速率模型,对材料的疲劳寿命预测和结构设计具有重要意义。
本文将深入探讨疲劳裂纹扩展速率模型及其应用。
疲劳裂纹扩展速率模型的基本原理疲劳裂纹扩展速率模型是基于疲劳裂纹扩展的基本机理和实验数据建立的。
疲劳裂纹扩展通常表现为裂纹的逐渐扩展和材料的逐渐疲劳破坏。
疲劳裂纹扩展速率模型的基本原理可以归纳如下:1.裂纹尖端应力分布:裂纹尖端是裂纹扩展的起点,其应力集中在该处。
裂纹尖端的应力分布对裂纹扩展速率有重要影响。
2.应力强度因子:应力强度因子是表征裂纹尖端应力分布的一个重要参数。
它可以通过应力分析或实验测量得到。
3.断裂力学:根据线弹性断裂力学理论,裂纹尖端的应力强度因子与裂纹扩展速率之间存在一定的关系。
4.实验数据拟合:通过对大量实验数据进行分析和处理,建立裂纹扩展速率模型。
常用的实验数据包括裂纹扩展速率与应力强度因子、载荷频率、温度等因素的关系。
疲劳裂纹扩展速率模型的应用疲劳裂纹扩展速率模型在工程实践中具有广泛应用,主要包括以下几个方面:1. 疲劳寿命预测疲劳寿命是指材料在特定工况下能够承受多少次疲劳载荷循环而不发生裂纹扩展和失效。
基于疲劳裂纹扩展速率模型,可以通过计算裂纹扩展速率和已有裂纹长度,预测材料的疲劳寿命。
2. 结构设计在工程结构设计中,了解材料的疲劳裂纹扩展速率模型对于提高结构的耐久性和安全性非常重要。
根据疲劳裂纹扩展速率模型,可以针对不同材料和结构形式,选择合适的材料和结构设计方案,以延长结构的使用寿命。
3. 材料评估和筛选通过疲劳裂纹扩展速率模型,可以评估和筛选材料的疲劳性能。
根据不同材料的裂纹扩展速率特性,可以选择适用于不同工况和要求的材料。
4. 裂纹控制和修复了解疲劳裂纹扩展速率模型,可以对已发生裂纹的结构进行控制和修复。
实验报告七姓名班级学号成绩实验名称疲劳裂纹扩展速率实验实验目的了解疲劳裂纹扩展速率测定的一般方法和数据处理过程,增加对断裂力学用于研究疲劳裂纹扩展过程的主要作用和认识。
实验设备高频疲劳试验机一台、工具读数显微镜一台、千分尺一把、三点弯曲试样一件试样示意图三点弯曲试样示意图实验原始数据记录1.实验原始记录表一疲劳裂纹扩展速率数据记录应力比R=0.1,P max=5000Na(mm) N/*105a(mm) N/*105a(mm) N/*1053.16 0 7.49 8.461 11.67 11.433.61 1.477 7.89 8.875 12.09 11.604.02 2.328 8.29 9.240 12.52 11.764.47 3.598 8.71 9.580 13.00 11.944.86 4.393 9.15 9.896 13.46 12.075.30 5.356 9.56 10.25 13.96 12.205.726.168 9.96 10.50 14.41 12.306.17 6.813 10.41 10.79 14.95 12.396.617.584 10.81 10.98 15.37 12.477.08 8.072 11.21 11.19根据表一数据,通过软件可画出a(mm)—N/*105曲线,曲线如下:a(mm)—N/周次关系曲线从上图数据可利用割线法得到曲线的斜率da/dN,通常是链接相邻两个数据点的直线斜率:(da/dN)i =(ai+1-ai)/(Ni+1-Ni)由于计算的da/dN是增量(ai+1-ai)的平均速率,故平均裂纹长度(ai+1-ai)/2可用来计算ΔK值。
对三点弯曲试样(跨距S取4W):△K=[][1.99-式中α=a/W。
表二疲劳裂纹扩展数据计算值序号da/dN(m/周次)log(da/dN) △K Log(△K)1 3.05E-09 -8.5162 8.8310 0.94602 4.82E-09 -8.3171 9.3371 0.97023 3.54E-09 -8.4506 9.8329 0.99274 4.91E-09 -8.3093 10.3142 1.01345 4.57E-09 -8.3402 10.7927 1.03316 5.17E-09 -8.2863 11.2964 1.05297 6.98E-09 -8.1563 11.8188 1.07268 5.71E-09 -8.2436 12.3710 1.09249 9.63E-09 -8.0163 12.9587 1.112610 1.05E-08 -7.9772 13.5533 1.132011 9.66E-09 -8.0149 14.1270 1.150112 1.10E-08 -7.9602 14.7216 1.168013 1.24E-08 -7.9082 15.3633 1.186514 1.39E-08 -7.8562 16.0751 1.206215 1.16E-08 -7.9362 16.8222 1.225916 1.60E-08 -7.7959 17.5786 1.245017 1.55E-08 -7.8092 18.4240 1.265418 2.11E-08 -7.6767 19.3281 1.286219 1.90E-08 -7.7202 20.2383 1.306220 1.92E-08 -7.7175 21.2881 1.328121 2.47E-08 -7.6072 22.4475 1.351222 2.69E-08 -7.5707 23.6592 1.374023 2.67E-08 -7.5740 25.0691 1.399124 3.54E-08 -7.4512 26.6643 1.425925 3.85E-08 -7.4150 28.4606 1.454226 4.50E-08 -7.3468 30.4304 1.483327 6.00E-08 -7.2218 32.7203 1.514828 5.25E-08 -7.2798 35.2127 1.5467 根据上表中的log(da/dN)-log(△K)关系再作出曲线,如下:Log(△K)- log(da/dN)关系曲线根据Paris公式。
经典金属疲劳裂纹扩展至断裂机理讲解(专业级)经典金属疲劳裂纹扩展至断裂机理讲解(专业级)通常,疲劳裂纹扩展可以分为三个阶段:第I阶段(裂纹萌生,shot cracks),第II阶段(裂纹扩展,long cracks),第III阶段(瞬时断裂,final fracture)Fig. 1— Stages I and II of fatigue crack propagation.第I阶段:一旦裂纹萌生以后,就会沿着最大剪切应力平面(约45o)扩展,如图1所示。
这一阶段被认为是第I阶段或者短裂纹萌生和扩展阶段。
裂纹一直扩展直到遇到障碍物,如晶界、夹杂物或珠光体区。
它无法容纳初始裂纹的扩展方向。
因此,晶粒细化是可以提升材料疲劳强度的利用了引入大量微观障碍物的原理。
晶界,在裂纹扩展的第I阶段需要克服晶粒的阻碍并越过晶界。
表面机械处理,例如喷丸和表面滚压也会引入一些微观的障碍物,因为它们使晶界被压扁了。
Fig. 2 — Fatigue striations in (a) interstitial free steel and (b)aluminum alloy AA2024-T42. Figure (c) shows the fatigue fracture surface of a cast aluminum alloy, where a fatigue crack was nucleated from a casting defect, presenting solidification dendrites on the surface; fatigue striations are indicated by the arrow, on the top right side.第II阶段:由于裂纹扩展,实际载荷的上升,应力强度因子K不断增加,在裂纹尖端附近的不同平面上开始发生滑移,于是就进入了第II阶段。
材料力学性能实验报告姓名:刘玲班级:材料91 学号:09021004 成绩: 实验名称疲劳裂纹扩展速率实验 实验目的了解疲劳裂纹扩展速率测定的一般方法和数据处理过程,增加对断裂力学用于研究疲劳裂纹扩展过程的主要作用和认识 实验设备 1.高频疲劳试验机一台2.工具读数显微镜一台3.千分尺一把4.三点弯曲试样一件试样示意图试验结果(见附表)结果处理0200000400000600000800000100000012000001400000246810121416a (m m )N (周次)a图1疲劳裂纹扩展试验a-N 曲线试验材料的疲劳裂纹扩展速率曲线1015202530354045500.000000.000010.000020.000030.000040.000050.00006d a /d N (m m /周次)،÷K (Mpa*m 1/2)图2K 与dN da关系曲线1015202530354045501E-71E-61E-5d a /d N (m m /周次)،÷K (Mpa*m 1/2)图3取对数后疲劳裂纹扩展速率曲线数据处理:由origin 软件分析以上图3可知该直线段斜率为1.58,截距为1.018510-⨯因为Paris 方程m K c )(dN da∆=,所以对其两边取对数可得K m c ∆+=lg lg dN dalg那么lgc=1.018510-⨯ ⇒c ≈1 m=1.58误差分析:由于实验存在仪器误差以及人为的不可避免的误差使实验结果有所出入,数据处理过程中也存在误差本实验仪器型号及特性:疲劳裂纹扩展速率测定常在高频疲劳试验机进行。
高频疲劳试验机有以下几个主要部分组成:1)加载系统。
疲劳载荷是一种交变载荷,对于一个非对称的交变载荷可以分解为平均载荷和对称载荷两个部分。
平均载荷是静载荷,对称载荷是动载荷。
高频疲劳试验机的加载系统是由静载荷加载机构和动载荷加载机构两部分组成。
疲劳裂纹扩展的基本规律及其主要的影响因素疲劳是指在交变应力作用下发生在材料或结构某点局部、永久性的损伤递增过程。
疲劳在自然界和工程上比较普遍。
在金属结构的失效形式里,疲劳断裂是一种主要形式,约占失效结构的90%,而疲劳断裂是由于金属结构在循环载荷的作用下,由于各种原因(如应力集中等),引起疲劳强度降低而产生裂纹,最终由裂纹的扩展而导致结构失效。
疲劳裂纹扩展的规律疲劳裂纹在扩展过程中一般可分为三个阶段:近门槛值阶段、高速扩展阶段(Paris区)和最终断裂阶段。
在近门槛扩展阶段,疲劳裂纹的扩展速率很小,疲劳裂纹扩展速率随着应力强度因子范围△K的降低而迅速下降,直至da/dN→0,与此对应的△K值称为疲劳裂纹扩展门槛值,记为△K;在Paris区,疲劳裂纹扩展速率可以用Paris公式来定量地进行描述。
其中,C和m是试验确定的常数。
在高速扩展区,随着△K的提高,裂纹扩展速率升高,当疲劳循环的最大应力强度因子Kmax接近材料的Kic时,裂纹扩展速率急剧增加,最终导致构件断裂。
疲劳裂纹扩展一般由疲劳裂纹扩展速率da/dN表征,即在疲劳载荷作用下,裂纹长度a随循环次数N的变化率,反映裂纹扩展的快慢。
疲劳裂纹扩展速率da/dN的控制参量是应力强度因子幅度△K,表示材料的疲劳性能。
研究疲劳裂纹的扩展规律一般通过两种途径:一是过实验室观察,根据实验结果直接总结出裂纹扩展规律的经验公式;二是结合微观实验研究提出裂纹扩展机理的假设模型,推导出裂纹扩展规律的理论公式。
疲劳裂纹扩展规律的研究,主要是寻求裂纹扩展速率da/dN与各有关参量之间的关系。
疲劳裂纹扩展影响因素1. 残余应力对疲劳裂纹扩展的影响(1) 残余应力模型认为,在加载过程中裂纹张开,裂纹尖端附近形成一个塑性区,载荷峰值越大,则塑性区尺寸就越大:卸载后,由于塑性区周围的弹性区材料要恢复原来的尺寸,为了保持变形协调,已产生了永久变形的塑性区内的材料就要受到周围弹性区的压缩而产生残余压应力。