练习11_尺规作图- (华东师大版)(解析版)
- 格式:doc
- 大小:1.40 MB
- 文档页数:11
典型例题解析:尺规作图《尺规作图》典型例题一例已知线段a、b,画一条线段,使其等于b+.a2分析所要画的线段等于ba++.+,实质上就是bba2画法:1.画线段aAB=.2.在AB的延长线上截取b=.BC2线段AC就是所画的线段.说明1.尺规作图要保留画图痕迹,画图时画出的所有点和线不可随意擦去.2.其它作图都可以通过画基本作图来完成,写画法时,只需用一句话来概括叙述基本作图.《尺规作图》典型例题二例如下图,已知线段a和b,求作一条线段AD使它的长度等于2a-b.错解如图(1),(1)作射线AM;(2)在射线AM上截取AB=BC=a,CD=b,则线段AD即为所求.错解分析主要是作图语言不严密,当在射线上两次截取时,要写清是否顺次,而在求线段差时,要交待截取的方向.图(1)图(2)正解如图(2),(1)作射线AM;(2)在射线AM上,顺次截取AB=BC=a;(3)在线段CA上截取CD=b,则线段AD就是所求作的线段.《尺规作图》典型例题三例求作一个角等于已知角∠MON(如图1).图(1) 图(2)错解 如图(2),(1)作射线11M O ;(2)在图(1),以O 为圆心作弧,交OM 于点A ,交ON 于点B ;(3)以1O 为圆心作弧,交11M O 于C ;(4)以C 为圆心作弧,交于点D ;(5)作射线D O 1.则∠D CO 1即为所求的角.错解分析 作图过程中出现了不准确的作图语言,在作出一条弧时,应表达为:以某点为圆心,以其长为半径作弧.正解 如图(2),(1)作射线11M O ;(2)在图(1)上,以O 为圆心,任意长为半径作弧,交OM 于点A ,交ON 于点B ;(3)以1O 为圆心,OA 的长为半径作弧,交11M O 于点C ;(4)以C 为圆心,以AB 的长为半径作弧,交前弧于点D ;(5)过点D 作射线D O 1.则∠D CO 1就是所要求作的角.《尺规作图》典型例题四例 如下图,已知∠α及线段a ,求作等腰三角形,使它的底角为α,底边为a .分析 先假设等腰三角形已经作好,根据等腰三角形的性质,知两底角。
第13章 全等三角形13.4 尺规作图基础过关全练知识点1 作一条线段等于已知线段1.(2023山东临清期中)如图,已知线段a,b.按如下步骤完成尺规作图,则AC的长是( )①作射线AM;②在射线AM上顺次截取AD,DB,使AD=DB=a;③在线段AB上截取BC=b.A.2a+bB.2a-bC.a+bD.b-a知识点2 作一个角等于已知角2.如图,尺规作∠HFG=∠ABC,作图痕迹中弧MN是( )A.以点F为圆心,以BE长为半径的弧B.以点F为圆心,以DE长为半径的弧C.以点G为圆心,以BE长为半径的弧D.以点G为圆心,以DE长为半径的弧3.(2023北京东城期末)已知∠AOB.下面是“作一个角等于已知角,即作∠A'O'B'=∠AOB”的尺规作图痕迹.该尺规作图的依据是( )A.S.A.S.B.S.S.S.C.A.A.S.D.A.S.A.4.【一题多解】【新独家原创】如图,D是△ABC的边BA延长线上一点,AB=BC,∠B=40°,结合作图痕迹,求证:AC平分∠BAE.知识点3 作已知角的平分线5.【尺规作图】【新考法】(2023吉林长春四十五中期末(线上))如图,已知AB=AC,BC=6,由尺规作图痕迹可得BD=( )A.2B.3C.4D.56.【易错题】(2023山东烟台期中)用尺规作图如图所示,首先以A为圆心,任意长为半径画弧,分别交AB,AC于点E,F;再分别以E,F为圆心,以EF长为半径画弧,两弧交于D点,最后作射线AD.下列结论不一大于12定正确的是( )A.AF=DFB.∠BAD=∠CADC.∠AFD=∠AEDD.DE=DF7.(2022吉林长春吉大附中期中)如图,在△ABC中,∠A=50°,∠B=80°,观察图中尺规作图的痕迹,则∠DCE的度数为 .知识点4 经过一已知点作已知直线的垂线8.(2023辽宁大连甘井子期中)已知钝角△ABC,用直尺和圆规作边BC 上的高.(不写作法,保留作图痕迹)知识点5 作已知线段的垂直平分线9.根据图中尺规作图的痕迹,可判断AD一定为三角形ABC的( )A.角平分线B.中线C.高线D.都有可能10.(2022四川三台期中)如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA长为半径画弧①;步骤2:以B为圆心,BA长为半径画弧②,交弧①于点D;步骤3:连结AD,交BC的延长线于点H.下列叙述正确的是( )A.AB=ADB.BH⊥ADC.S△ABC=BC·AHD.AC平分∠BAD11.【教材变式·P90T2】如图,在Rt△ABC中,∠C=90°,AC<BC.(1)动手操作:要求尺规作图,不写作法,但保留作图痕迹.①作出线段AB的垂直平分线MN,MN与AB交于点D,与BC交于点E;②连结AE,过点B作BF垂直于AE,垂足为F;(2)推理证明:求证:AC=BF.能力提升全练12.(2021四川广元中考,6,★☆☆)观察下列作图痕迹,线段CD为△ABC的角平分线的是( )A BC D13.(2022海南中考,10,★★☆)如图,在△ABC中,AB=AC,以点B为圆心,适当长为半径画弧,交BA于点M,交BC于点N,分别以点M、N为圆MN的长为半径画弧,两弧在∠ABC的内部相交于点P,画射心,大于12线BP,交AC于点D,若AD=BD,则∠A的度数是( )A.36°B.54°C.72°D.108°14.(2022山西平定期中,18,★☆☆)如图,已知等腰△ABC的顶角∠A=36°.(1)根据要求用尺规作图:作∠ABC的平分线交AC于点D;(不写作法,只保留作图痕迹)(2)在(1)的条件下,求证:△BDC是等腰三角形.15.【新考法】(2022广西贵港中考,20,★★☆)尺规作图(保留作图痕迹,不要求写出作法).如图,已知线段m,n.求作△ABC,使∠A=90°,AB=m,BC=n.素养探究全练16.【推理能力】数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角的平分线,作法如下(如图1):①在OA和OB上分别截取OD、OE,使OD=OE.DE的长为半径作弧,两弧在∠AOB内交②分别以D、E为圆心,大于12于点C.③作射线OC,则OC就是∠AOB的平分线.小聪只带了直角三角板,他发现利用三角板也可以作角的平分线,作法如下(如图2):①利用三角板上的刻度,在OA和OB上分别截取OM、ON,使OM=ON.②分别过M、N作OM、ON的垂线,交于点P.③作射线OP,则OP为∠AOB的平分线.小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角的平分线.图1 图2根据以上情境,解决下列问题:(1)李老师用尺规作角的平分线时,用到的三角形全等的判定方法是 ;(2)小聪的作法正确吗?请说明理由;(3)请你帮小颖设计用刻度尺作角平分线的方法.(要求:作出图形,写出作图步骤,不予证明)答案全解全析基础过关全练1.B 如图,AC=AB-BC=AD+BD-BC=2a-b.故选B.2.D 3.B 由作图得DO=D'O'=CO=C'O',CD=C'D',在△DOC和△D'O'C'中,DO=D'O', CO=C'O', CD=C'D',∴△DOC≌△D'O'C'(S.S.S.),∴∠O'=∠O.故选B.4.证明 证法一:根据作图痕迹可知∠DAE=∠B.∵∠B=40°,∴∠DAE=40°.∵AB=BC,∴∠BAC=∠C,∴∠BAC=180°-∠B2=180°-40°2=70°,∴∠CAE=180°-∠BAC-∠DAE=180°-70°-40°=70°,∴∠BAC=∠CAE,∴AC平分∠BAE.证法二:根据作图痕迹可知∠DAE=∠B,∴AE∥BC,∴∠EAC=∠C,∵AB=BC,∴∠BAC=∠C,∴∠BAC=∠CAE,∴AC平分∠BAE.5.B 本题将尺规作图与等腰三角形的三线合一的性质结合起来考查.由尺规作图痕迹可知AD平分∠BAC,∵AB=AC,BC=6,∴BD=CD=3,故选B.6.A 解答此题时易因不理解基本的尺规作图步骤导致判断错误.由作图可得AF=AE,FD=DE,在△AFD 和△AED 中,AF =AE ,AD =AD ,FD =DE ,∴△AFD ≌△AED(S.S.S.),∴∠BAD=∠CAD,∠AFD=∠AED,故选项B,C,D 中的结论正确,不合题意;无法得出AF=DF,故选项A 中的结论不一定正确,符合题意.故选A.7.答案 65°解析 ∵∠A=50°,∠B=80°,且∠ACD 是△ABC 的外角,∴∠ACD=∠A+∠B=50°+80°=130°,观察题图中尺规作图的痕迹,可得CE 平分∠ACD,∴∠DCE=12∠ACD=12×130°=65°.8.解析 如图,AD 即为所作.9.B 由作图可知,D 是线段BC 的中点,故AD 是△ABC 的中线,故选B.10.B 由作图可知,直线BC 是线段AD 的垂直平分线,所以BH ⊥AD,故选B.11.解析 (1)①②如图所示:(2)证明:∵直线MN 是线段AB 的垂直平分线,∴AD=BD,∠ADE=∠BDE=90°,在△ADE 和△BDE 中,AD =BD ,∠ADE =∠BDE ,ED =ED ,∴△ADE ≌△BDE(S.A.S.),∴EA=EB,∵BF ⊥AE,∴∠BFE=90°=∠C,在△ACE 和△BFE 中,∠C =∠BFE ,∠AEC =∠BEF ,AE =BE ,∴△ACE ≌△BFE(A.A.S.),∴AC=BF.能力提升全练12.C A 、D 选项中的线段CD 为△ABC 的高,B 选项中的线段CD 为△ABC 的中线,C 选项中的线段CD 为△ABC 的角平分线.故选C.13.A 由题意可得射线BP 为∠ABC 的平分线,∴∠ABD=∠CBD,∵AD=BD,∴∠A=∠ABD,∴∠A=∠ABD=∠CBD,∴∠ABC=2∠A,∵AB=AC,∴∠ABC=∠C=2∠A,∴∠A+∠ABC+∠C=∠A+2∠A+2∠A=180°,解得∠A=36°.故选A.14.解析 (1)如图所示,BD即为所求.(2)证明:∵∠A=36°,AB=AC,∴∠ABC=∠C=(180°-36°)÷2=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=72°÷2=36°,∴∠CDB=180°-36°-72°=72°,∴∠C=∠CDB,∴BD=BC,∴△BDC是等腰三角形.15.解析 如图所示,△ABC即为所求.注: (1)作直线l及l上一点A;(2)过点A作l的垂线AD;(3)在l上截取AB=m;(4)作BC=n交l的垂线于C.△ABC即为所作.素养探究全练16.解析 (1)S.S.S..(2)小聪的作法正确.理由如下:∵PM⊥OM,PN⊥ON,∴∠OMP=∠ONP=90°,在Rt△OMP和Rt△ONP中,OP=OP, OM=ON,∴Rt△OMP≌Rt△ONP,∴∠MOP=∠NOP,∴OP平分∠AOB.(3)步骤:①利用刻度尺在OA、OB上分别截取OG、OH,使OG=OH.②连结GH,利用刻度尺作出GH的中点Q.③作射线OQ,则OQ就是∠AOB的平分线.如图所示.。
尺规作图教学目标1、学习用尺规作线段与角;2、对直线与角做简单复习。
学习内容知识梳理一.尺规作图、基本作图:在几何里,把限定用直尺和圆规来画图,称为尺规作图.最基本、最常用的尺规作图,通常称基本作图.二.作一个角等于已知角:已知:∠AOB(如图).求作:∠A'O'B',使∠A'O'B'=∠AOB.作法:1.作射线O'A'.2.以点O为圆心,以任意长为半径作弧,交OA于C,交OB于D.3.以点O'为圆心,以OC长为半径作弧,交O'A'于C'.4.以点C'为圆心,以CD长为半径作弧,交前弧于D'.5.经过点D'作射线O'B'.∠A'D'B'就是所求的角.证明:连结CD、C'D'.由作法可知:△C'O'D'≌△COD(SSS),∴∠C'O'D'=∠COD(全等三角形的对应角相等),即∠A'O'B'=∠AOB.Ⅲ.经过一点作已知直线的垂线.三.平分已知角:已知:∠AOB(如图).求作:射线OC,使∠AOC=∠BOC.作法:1.在OA和OB上,分别截取OD、OE,使OD=OE.2.分别以D 、E 为圆心,大于DE 21的长为半径作弧,在∠AOB 内,两弧交于点C . 3.作射线OC .OC 就是所求的射线.证明:连结CD 、CE ,由作法可知:△ODC ≌△OEC (SSS ),∴∠COD=∠COE (全等三角形的对应角相等),即 ∠AOC =∠BOC . 四.经过一点作已知直线的垂线:(1)经过已知直线上的一点作这条直线的垂线. 已知:直线AB 和AB 上一点C (图3-44). 求作:AB 的垂线,使它经过点C .作法:作平角ACB 的平分线CF .直线CF 就是所求的垂线.图3-44 图3-45证明:由作法可知, ∠ACF=∠BCF=ACB 21. ∵∠ACB=180°(平角的定义) ∴∠ACF=90°,即 CF 是AB 的垂线.(2)经过已知直线外一点作这条直线的垂线. 已知:直线AB 和AB 外一点C (图3-45). 求作:AB 的垂线,使它经过点C .作法:1.任意取一点K ,使K 和C 在AB 的两旁.2.以C 为圆心,CK 长为半径作弧,交AB 于点D 和E .3.分别以D 和E 为圆心,大于DE 21的长为半径作弧,两弧交于点F . 4.作直线CF .直线CF 就是所求的垂线. 五.作线段的垂直平分线:垂直于一条线段并且平分这条线段的直线,叫做这条线段的垂直平分线,或中垂线. 已知:线段AB (如图). 求作:线段AB 的垂直平分线. 作法:1.分别以点A 和B 为圆心,大于21AB 的长为半径作弧,两弧相交于点C 和D . 2.作直线CD .直线CD 就是线段AB 的垂直平分线.例1.如图,在△ABC 中,△C=90°,△B=30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中不正确的是( )A .AD 是△BAC 的平分线B .△ADC=60°C .点D 在AB 的中垂线上 D .S △DAC :S △ABD =1:3 【答案】D【解析】解:根据作图方法可得AD 是△BAC 的平分线,故△正确;△△C=90°,△B=30°,△△CAB=60°,△AD 是△BAC 的平分线,△△DAC=△DAB=30°,△△ADC=60°,故△正确;△△B=30°,△DAB=30°,△AD=DB ,△点D 在AB 的中垂线上,故△正确; △△CAD=30°,△CD=21AD ,△AD=DB ,△CD=21DB ,△CD=31CB ,S △ACD =21CD•AC ,S △ACB =21CB•AC ,△S △ACD :S △ACB =1:3,△S △DAC :S △ABD ≠1:3,故△错误, 例2.尺规作图的工具是( )A .刻度尺、量角器B .三角板、量角器C .直尺、量角器D .没有刻度的直尺、圆规 【答案】D例3.如图,已知E 是平行四边形ABCD 对角线AC 上的点,连接DE .例题讲解(1)过点B在平行四边形内部作射线BF交AC于点F,且使△CBF=△ADE(要求:用尺规作图,保留作图痕迹,不写作法与证明)(2)连接BE,DF,判断四边形BFDE的形状并证明.【解析】解:(1)如图所示:作△CBM=△ADE,其中BM交CD于F即可;(2)四边形BFDE的形状是平行四边形,理由如下:△在平行四边形ABCD中,△△DAC=△ACB,AD=BC,在△ADE和△CBF中,△△ADE△△CBF(ASA),△DE=BF,△AED=△BFC,△△DEF=180°﹣△AED,△BFE=180°﹣△BFC,△△DEF=△BFE,△DE△BF,△四边形DEBF是平行四边形.例4.如图,在△ABC中,AB=AC,D是BA延长线上的一点,点E是AC的中点.(1)实践与操作:利用尺规按下列要求作图,并在图中标明相应字母(保留作图痕迹,不写作法).△作△DAC的平分线AM.△连接BE并延长交AM于点F.(2)猜想与证明:试猜想AF与BC有怎样的位置关系和数量关系,并说明理由.【解析】解:(1)如下图所示;(2)AF△BC ,且AF=BC.理由如下:△AB=AC , △△ABC=△ACB , △△DAC=△ABC+△ACB=2△ACB , 由作图可得△DAC=2△FAC , △△ACB=△FAC △AF△BC , △E 为AC 中点, △AE=EC , 在△AEF 和△CEB 中,,△△AEF△△CEB (ASA ). △AF=BC .例5.已知△ABC,求作△DEF ,使△DEF△△ABC(尺规作图,保留作图痕迹)。
华师大新版八年级上学期《13.4 尺规作图》同步练习卷一.选择题(共41小题)1.下面是作角等于已知角的尺规作图过程,要说明∠A′O′B′=∠AOB,需要证明△D′O′C′≌△DOC,则这两个三角形全等的依据是()A.边边边B.边角边C.角边角D.角角边2.课本中用尺规作图作已知∠AOB的平分线OC,其根据是构造两个三角形全等,它所用到的判别方法是()A.SAS B.ASA C.SSS D.AAS3.如图,依据尺规作图的痕迹,计算∠α=()A.56°B.68°C.28°D.34°4.作∠AOB的平分线OC,按以下作图方法错误的是()A.B.C.D.5.如图,在△ABC中,∠C=90°,∠B=26°.洋洋按下列步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F 为圆心,大于EF长的一半为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D,则∠ADC的度数为()A.50°B.52°C.58°D.64°6.如图,用直尺和圆规作一个角∠A′O′B′,等于已知角∠AOB,能得出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS7.用尺规作图,已知三边作三角形,用到的基本作图是()A.作一个角等于已知角B.作一条线段等于已知线段C.作已知直线的垂线D.作角的平分线8.如图,AB∥CD,以点A为圆心,小于AC的长为半径作圆弧,分别交AB,AC 于E,F两点,再分别以E,F为圆心,以大于EF长为半径作圆弧,两条弧交于点G,作射线AG交CD于点H,若∠C=120°,则∠AHD=()A.120°B.30°C.150°D.60°9.已知△ABC,利用尺规作图,作BC边上的高AD,正确的是()A.B.C.D.10.已知,在△ABC中,BC>AB>AC,根据图中的作图痕迹及作法,下列结论一定成立的是()A.AP⊥BC B.∠APC=2∠ABC C.AP=CP D.BP=CP11.如图,点A在点O的北偏西30°的方向上,AB⊥OA.根据已知条件和图上尺规作图的痕迹判断,下列说法正确的是()A.点O在点A的南偏东60°方向上B.点B在点A北偏东30°方向上C.点B在点O北偏东60°方向上D.点B在点O北偏东30°方向上12.如图,在△ABC中,AB=AC,以点B为圆心,BC长为半径作弧,交AC于不同于点C的另一点D,连接BD;再分别以点C、D为圆心,大于CD的长为半径作弧,两弧相交于点E,作射线BE交AC于点F.若∠A=40°,则∠DBF的度数为()A.20°B.30°C.40°D.50°13.作等腰△ABC底边BC上的高线AD,按以下作图方法正确的个数有()个.A.1B.2C.3D.414.作∠AOB的角平分线的作图过程如下,用下面的三角形全等判定法则解释其作图原理,最为恰当的是()A.SAS B.ASA C.AAS D.SSS15.在以下三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是()A.图2B.图1与图2C.图1与图3D.图2与图3 16.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ17.如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC 于点E、F,再分别以E、F为圆心,大于EF的同样长为半径作圆弧,两弧交于点P,作射线AP,交CD于点M,若∠ACD=110°,则∠CMA的度数为()A.30°B.35°C.70°D.45°18.尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是()A.B.C.D.19.如图所示,利用尺规作“与已知角相等的角”的过程中,用到的数学原理是A.SAS B.AAS C.SSS D.HL20.如图,在Rt△ABC中,∠C=90°,以原点A为圆心,适当的长为半径画弧,分别交AC,AB于点M,N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点E,作射线AE交BC于点D,若BD=5,AB=15,△ABD 的面积30,则AC+CD的值是()A.16B.14C.12D.5+4 21.如图,在余料ABCD中,AD∥BC,现进行如下操作:以点B为圆心,适当长为半径画弧,分别交BA,BC于点G,H;再分别以点G,H为圆心,大于GH 长为半径画弧,两弧在∠ABC内部相交于点O,画射线BO,交AD于点E.若∠A=96°,则∠EBC的度数为()A.45°B.42°C.36°D.30°22.“经过已知角一边上的一点,作一个角等于已知角“的尺规作图过程如下:已知:如图1,∠AOB和OA上一点C.求作:一个角等于∠AOB,使它的顶点为C,一边为CA.作法:如图2,(1)在OA上取一点D(OD<OC),以点O为圆心,OD长为半径画弧,交OB(2)以点C为圆心,OD长为半径画弧,交CA于点F,以点F为圆心,DE长为半径画弧,两弧交于点G;(3)作射线CG.则∠GCA就是所求作的角.此作图的依据中不含有()A.三边分别相等的两个三角形全等B.全等三角形的对应角相等C.两直线平行同位角相等D.两点确定一条直线23.利用尺规作图,作△ABC边上的高AD,正确的是()A.B.C.D.24.如图所示,小李用直尺和圆规作∠CAB的平分线AD,则得出∠CAD=∠DAB 的依据是()A.ASA B.AAS C.SSS D.SAS25.如图,已知∠AOB,以O为圆心,以任意长为半径画弧,分别交OA、OB于D,E两点,再分别以D,E为圆心,大于DE长为半径画弧,两条弧交于点C,作射线OC,则△OEC≌△ODC的依据是()A.SAS B.ASA C.AAS D.SSS26.如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC 于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M.若∠ACD=110°,则∠MAB的度数为()A.70°B.35°C.30°D.不能确定27.在△ABC中,作BC边上的高,以下作图正确的是()A.B.C.D.28.如图,用直尺和圆规作∠A′O′B′=∠AOB,能够说明作图过程中△C′O′D′≌△COD的依据是()A.角角边B.角边角C.边角边D.边边边29.下列画图的语句中,正确的为()A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到C,使BA=BCD.画线段CD=2cm30.如图,点C在∠AOB的OB边上,用尺规作出了∠AOB=∠NCB,作图痕迹中,弧FG是()A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧31.用尺规作图法作已知角∠AOB的平分线的步骤如下:①以点O为圆心,任意长为半径作弧,交OB于点D,交OA于点E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB的内部相交于点C;③作射线OC.则射线OC为∠AOB的平分线.由上述作法可得△OCD≌△OCE的依据是()A.SAS B.ASA C.AAS D.SSS32.用直尺和圆规作Rt△ABC斜边AB上的高线CD,以下四个作图中,作法错误的是()A.B.C.D.33.下面是利用尺规作∠AOB的角平分线OC的作法:①以点O为圆心,适当长为半径画弧,交OA、OB于点D,E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB内部交于点C;③画射线OC,射线OC就是∠AOB的平分线.如图,在用尺规作角平分线过程中,用到的三角形全等的判定方法是()A.ASA B.SAS C.SSS D.AAS34.如图,用直尺和圆规作一个角的平分线,是运用了“全等三角形的对应角相等”这一性质,由作图所得条件,判定三角形全等运用的方法是()A.SSS B.ASA C.AAS D.SAS35.如图,在△ABC中,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF长为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D.则∠ADC的度数为()A.40°B.55°C.65°D.75°36.如图所示的作图痕迹作的是()A.线段的垂直平分线B.过一点作已知直线的垂线C.一个角的平分线D.作一个角等于已知角37.如图,点C在∠AOB的边OB上,用尺规作出了∠BCN=∠AOC,作图痕迹中,弧FG是()A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧38.如图,已知∠AOB,按照以下步骤画图:(1)以O为圆心,适当长为半径画弧,交OA于点M,交OB于点N.(2)分别以点M、N为圆心,大于MN的长半径画弧,两弧在∠AOB内部相交于点C.(3)作射线OC.则判断△OMC≌△ONC的依据是()A.SAS B.SSS C.ASA D.AAS39.用尺规作已知角的平分线的理论依据是()A.SAS B.AAS C.SSS D.ASA40.四位同学做“读语句画图”练习.甲同学读语句“直线经过A,B,C三点,且点C在点A与点B之间”,画出图形(1);乙同学读语句“两条线段AB,CD 相交于点P”画出图形(2);丙同学读语句“点P在直线l上,点Q在直线l外”画出图形(3);丁同学读语句“点M在线段AB的延长线上,点N在线段AB 的反向延长线上”画出图形(4).其中画的不正确的是()A.甲同学B.乙同学C.丙同学D.丁同学41.已知∠AOB,求作射线OC,使OC平分∠AOB作法的合理顺序是()①作射线OC;②在OA和OB上分别截取OD,OE,使OD=OE;③分别以D,E为圆心,大于DE的长为半径作弧,在∠AOB内,两弧交于C.A.①②③B.②①③C.②③①D.③②①二.填空题(共8小题)42.如图,在△ABC中,∠C=90°.按以下步骤作图:①以点A为圆心,小于AC的长为半径作圆弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF的长为半径作圆弧,两弧相交于点G;③作射线AG交BC边于点D.若∠CAB=50°,则∠ADC的大小为度.43.如图,∠C=90°,根据作图痕迹可知∠ADC=°.44.“直角”在初中几何学习中无处不在.课堂上李老师提出一个问题:如图1,已知∠AOB.判断∠AOB是否为直角(仅限用直尺和圆规).小丽的方法如图2,在OA、OB上分别取点C,D,以点C为圆心,CD长为半径画弧,交OB的反向延长线于点E.若OE=OD,则∠AOB=90°.李老师说小丽的作法正确,请你写出她作图的依据:.45.在数学课上,老师提出如下问题:尺规作图:过直线外一点作已知直线的垂线.已知:如图1,直线l及其外一点A.求作:l的垂线,使它经过点A.小云的作法如下:(1)在直线l上任取一点B,连接AB;(2)以A为圆心,AB长为半径作弧,交直线l于点D;(3)分别以B、D为圆心,AB长为半径作弧,两弧相交于点C;(4)作直线AC.直线AC即为所求(如图2).小云作图的依据是.46.已知:∠AOB,求作:∠AOB的平分线.作法:①以点O为圆心,适当长为半径画弧,分别交OA,OB于点M,N;②分别以点M,N为圆心,大于MN 的长为半径画弧,两弧在∠AOB内部交于点C;③画射线OC.射线OC即为所求.上述作图用到了全等三角形的判定方法,这个方法是.47.如图,以A点为圆心,以相同的长为半径作弧,分别与射线AM,AN交于B,C两点,连接BC,再分别以B,C为圆心,以相同长(大于BC)为半径作弧,两弧相交于点D,连接AD,BD,CD.若∠MBD=40°,则∠NCD的度数为.48.下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:已知:直线a和直线外一点P.求作:直线a的垂线,使它经过P.作法:如图,(1)在直线a上取一点A,连接PA;(2)分别以点A和点P为圆心,大于AP的长为半径作弧,两弧相交于B,C两点,连接BC交PA于点D;(3)以点D为圆心,DP为半径作圆,交直线a于点E,作直线PE.所以直线PE就是所求作的垂线.请回答:该尺规作图的依据是.49.用直尺和圆规作一个角等于已知角的示意图如下,则要说明∠A′O′B′=∠AOB,需要证明△C′O′D′≌△COD,则这两个三角形全等的依据是(写出全等的字母简写)华师大新版八年级上学期《13.4 尺规作图》同步练习卷参考答案与试题解析一.选择题(共41小题)1.下面是作角等于已知角的尺规作图过程,要说明∠A′O′B′=∠AOB,需要证明△D′O′C′≌△DOC,则这两个三角形全等的依据是()A.边边边B.边角边C.角边角D.角角边【分析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,利用SSS得到三角形全等,由全等三角形的对应角相等.【解答】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,在△ODC和△O′D′C′中,,∴△COD≌△C'O'D'(SSS),∴∠D′O′C′=∠DOC(全等三角形的对应角相等).故选:A.【点评】本题考查了全等三角形的判定与性质;由全等得到角相等是用的全等三角形的性质,熟练掌握三角形全等的性质是正确解答本题的关键.2.课本中用尺规作图作已知∠AOB的平分线OC,其根据是构造两个三角形全等,它所用到的判别方法是()A.SAS B.ASA C.SSS D.AAS【分析】根据作图得出符合全等三角形的判定定理SSS,即可得出答案.【解答】解:连接CE、CD,在△OEC和△ODC中,∵,∴△OEC≌△ODC(SSS),故选:C.【点评】本题考查的是作图﹣基本作图及全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.3.如图,依据尺规作图的痕迹,计算∠α=()A.56°B.68°C.28°D.34°【分析】先根据矩形的性质得出AD∥BC,故可得出∠DAC的度数,由角平分线的定义求出∠EAF的度数,再由EF是线段AC的垂直平分线得出∠AEF的度数,根据三角形内角和定理得出∠AFE的度数,进而可得出结论.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠DAC=∠ACB=68°.∵由作法可知,AF是∠DAC的平分线,∴∠EAF=∠DAC=34°.∵由作法可知,EF是线段AC的垂直平分线,∴∠AEF=90°,∴∠AFE=90°﹣34°=56°,∴∠α=56°.故选:A.【点评】本题考查的是作图﹣基本作图,熟知角平分线及线段垂直平分线的作法是解答此题的关键.4.作∠AOB的平分线OC,按以下作图方法错误的是()A.B.C.D.【分析】根据全等三角形的判定和性质一一判断即可;【解答】解:A、由作图可知:OA=OB,AC=BC,可得△AOC≌△BOC,可得结论;本选项正确,不符合题意;B、由作图可知:OA=OB,AD=BC,可以证明△AOC≌△BOC,可得结论;本选项正确,不符合题意;C、由作图可知:OA=OB,AC=BC,可得△AOC≌△BOC,可得结论;本选项正确,不符合题意;D、无法判断OC平分∠AOB,本选项符合题意,故选:D.【点评】本题考查作图﹣基本作图,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.5.如图,在△ABC中,∠C=90°,∠B=26°.洋洋按下列步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF长的一半为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D,则∠ADC的度数为()A.50°B.52°C.58°D.64°【分析】由作图可知,AD平分∠BAC,由∠ADC=90°﹣∠DAC计算机可解决问题;【解答】解:由作图可知,AD平分∠BAC,∵∠C=90°,∠B=26°,∴∠BAC=64°,∴∠DAC=∠BAC=32°,∴∠ADC=90°﹣32°=58°,故选:C.【点评】本题考查作图﹣基本作图、直角三角形的性质等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.6.如图,用直尺和圆规作一个角∠A′O′B′,等于已知角∠AOB,能得出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS【分析】我们可以通过其作图的步骤来进行分析,作图时满足了三条边对应相等,于是我们可以判定是运用SSS,答案可得.【解答】解:作图的步骤:①以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;②任意作一点O′,作射线O′A′,以O′为圆心,OC长为半径画弧,交O′A′于点C′;③以C′为圆心,CD长为半径画弧,交前弧于点D′;④过点D′作射线O′B′.所以∠A′O′B′就是与∠AOB相等的角;在△OCD与△O′C′D′,O′C′=OC,O′D′=OD,C′D′=CD,∴△OCD≌△O′C′D′(SSS),∴∠A′O′B′=∠AOB,显然运用的判定方法是SSS.故选:D.【点评】本题考查了全等三角形的判定与性质;由全等得到角相等是用的全等三角形的性质,熟练掌握三角形全等的性质是正确解答本题的关键.7.用尺规作图,已知三边作三角形,用到的基本作图是()A.作一个角等于已知角B.作一条线段等于已知线段C.作已知直线的垂线D.作角的平分线【分析】根据作一条线段等于已知线段即可解决问题;【解答】解:已知三边作三角形,用到的基本作图是作一条线段等于已知线段,故选:B.【点评】本题考查基本作图,解题的关键是熟练掌握五种基本作图,属于中考基础题.8.如图,AB∥CD,以点A为圆心,小于AC的长为半径作圆弧,分别交AB,AC 于E,F两点,再分别以E,F为圆心,以大于EF长为半径作圆弧,两条弧交于点G,作射线AG交CD于点H,若∠C=120°,则∠AHD=()A.120°B.30°C.150°D.60°【分析】利用基本作图得AH平分∠BAC,再利用平行线的性质得∠BAC=180°﹣∠C=60°,所以∠CAH=∠BAC=30°,然后根据三角形外角性质可计算出∠AHD的度数.【解答】解:由作法得AH平分∠BAC,则∠CAH=∠BAH,∵AB∥CD,∴∠BAC=180°﹣∠C=180°﹣120°=60°,∴∠CAH=∠BAC=30°,∴∠AHD=∠CAH+∠C=30°+120°=150°.故选:C.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了平行线的性质.9.已知△ABC,利用尺规作图,作BC边上的高AD,正确的是()A.B.C.D.【分析】利用高的定义和基本作图对各选项进行判断.【解答】解:作BC边上的高AD,即过点A作BC的垂线,垂足为D.故选:B.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了三角形高的定义.10.已知,在△ABC中,BC>AB>AC,根据图中的作图痕迹及作法,下列结论一定成立的是()A.AP⊥BC B.∠APC=2∠ABC C.AP=CP D.BP=CP【分析】直接利用线段垂直平分线的性质得出AP=BP,进而利用三角形外角的性质得出答案.【解答】解:如图所示:MN是AB的垂直平分线,则AP=BP,故∠PBA=∠BAP,∵∠APC=∠B+∠BAP,∴∠APC=2∠ABC.故选:B.【点评】此题主要考查了基本作图,正确得出AP=BP是解题关键.11.如图,点A在点O的北偏西30°的方向上,AB⊥OA.根据已知条件和图上尺规作图的痕迹判断,下列说法正确的是()A.点O在点A的南偏东60°方向上B.点B在点A北偏东30°方向上C.点B在点O北偏东60°方向上D.点B在点O北偏东30°方向上【分析】如图想办法求出∠DOB的度数即可解决问题;【解答】解:如图由题意:∠AOD=30°,∠COD=90°,∴∠AOC=120°,由作图可知,OB平分∠AOC,∴∠AOB=∠AOC=60°,∴∠DOB=30°,∴点B在点O北偏东30°方向上,故选:D.【点评】本题考查作图﹣基本作图、方向角、角平分线的作法等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.12.如图,在△ABC中,AB=AC,以点B为圆心,BC长为半径作弧,交AC于不同于点C的另一点D,连接BD;再分别以点C、D为圆心,大于CD的长为半径作弧,两弧相交于点E,作射线BE交AC于点F.若∠A=40°,则∠DBF 的度数为()A.20°B.30°C.40°D.50°【分析】只要证明BD=DC,求出∠BDC的值即可解决问题;【解答】解:∵AB=AC,∠A=40°,∴∠ACB=∠ABC=(180°﹣40°)=70°,由作图可知,BF垂直平分线段CD,∴BC=BD,∴∠BCD=∠BDC=70°,∴∠DBC=40°,∴∠DBF=∠FBC=20°,故选:A.【点评】本题考查作图﹣基本作图,等腰三角形的判定和性质等知识,解题的关键是熟练掌握基本作图,属于中考常考题型.13.作等腰△ABC底边BC上的高线AD,按以下作图方法正确的个数有()个.A.1B.2C.3D.4【分析】关键点等腰三角形的三线合一的性质以及等腰三角形的对称性即可一一判断.【解答】解:根据等腰三角形的三线合一的性质可知:图1,图3中的作法正确;根据对称性可知,图3中,线段BF和线段CE的交点在等腰三角形△ABC的对称轴上,所以线段AD是△ABC的高,如图4中,根据对称性可知:线段FM和线段EN的交点在在等腰三角形△ABC 的对称轴上,所以线段AD是△ABC的高,综上所述,四种作图方法都是正确的,故选:D.【点评】本题考查作图﹣基本作图,等腰三角形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.14.作∠AOB的角平分线的作图过程如下,用下面的三角形全等判定法则解释其作图原理,最为恰当的是()A.SAS B.ASA C.AAS D.SSS【分析】根据作图步骤知OD=OE、CD=CE、OC=OC,据此根据三角形全等的判定可得;【解答】解:用尺规作图画∠AOB的角平分线OC,作图依据是SSS,故选:D.【点评】本题主要考查作图﹣复杂作图,解题的关键是熟练掌握全等三角形的判定与性质.15.在以下三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是()A.图2B.图1与图2C.图1与图3D.图2与图3【分析】利用基本作图对三个图形的作法进行判断即可.【解答】解:根据基本作图可判断图1中AD为∠BAC的平分线,图2中AD为BC边上的中线,图3中AD为∠BAC的平分线.故选:C.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了勾股定理和等腰三角形的性质.16.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【解答】解:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ.故选:D.【点评】此题主要考查了基本作图,正确掌握基本作图方法是解题关键.17.如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC 于点E、F,再分别以E、F为圆心,大于EF的同样长为半径作圆弧,两弧交于点P,作射线AP,交CD于点M,若∠ACD=110°,则∠CMA的度数为()A.30°B.35°C.70°D.45°【分析】直接利用平行线的性质结合角平分线的作法得出∠CAM=∠BAM=35°,即可得出答案.【解答】解:∵AB∥CD,∠ACD=110°,∴∠CAB=70°,∵以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于点E、F,再分别以E、F为圆心,大于EF的同样长为半径作圆弧,两弧交于点P,作射线AP,交CD于点M,∴AP平分∠CAB,∴∠CAM=∠BAM=35°,∵AB∥CD,∴∠CMA=∠MAB=35°.故选:B.【点评】此题主要考查了基本作图以及平行线的性质,正确得出∠CAM=∠BAM 是解题关键.18.尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是()A.B.C.D.【分析】根据过直线外一点向直线作垂线即可.【解答】已知:直线AB和AB外一点C.求作:AB的垂线,使它经过点C.作法:(1)任意取一点K,使K和C在AB的两旁.(2)以C为圆心,CK的长为半径作弧,交AB于点D和E.(3)分别以D和E为圆心,大于DE的长为半径作弧,两弧交于点F,(4)作直线CF.直线CF就是所求的垂线.故选:B.【点评】此题主要考查了过一点作直线的垂线,熟练掌握基本作图方法是解决问题的关键.19.如图所示,利用尺规作“与已知角相等的角”的过程中,用到的数学原理是()A.SAS B.AAS C.SSS D.HL【分析】基本作图实际上作了两个全等的三角形,然后利用全等三角形的性质证明对应角相等.【解答】解:利用尺规作“与已知角相等的角”的过程中,用到的数学原理是“SSS”.故选:C.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).20.如图,在Rt△ABC中,∠C=90°,以原点A为圆心,适当的长为半径画弧,分别交AC,AB于点M,N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点E,作射线AE交BC于点D,若BD=5,AB=15,△ABD 的面积30,则AC+CD的值是()A.16B.14C.12D.5+4【分析】作DF⊥AB于F,如图,先利用三角形面积公式计算出DF=4,再利用勾股定理计算出BF=3,则AF=12,接着证明△ADC≌△ADF得到AC=AF=12,然后计算AC+CD的值.【解答】解:作DF⊥AB于F,如图,∵△ABD的面积30,∴•15•DF=30,解得DF=4,在Rt△BDF中,BF==3,∴AF=AB﹣BF=15﹣3=12,由题中作法得到AD平分∠BAC,而DC⊥AC,DF⊥AB,∴DC=DF=4,在Rt△ADC和Rt△ADF中,∴Rt△ADC≌Rt△ADF(HL),∴AC=AF=12,∴AC+CD=12+4=16.故选:A.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了三角形面积公式和角平分线的性质.21.如图,在余料ABCD中,AD∥BC,现进行如下操作:以点B为圆心,适当长为半径画弧,分别交BA,BC于点G,H;再分别以点G,H为圆心,大于GH 长为半径画弧,两弧在∠ABC内部相交于点O,画射线BO,交AD于点E.若∠A=96°,则∠EBC的度数为()A.45°B.42°C.36°D.30°【分析】先利用平行线的性质得∠ABC=180°﹣∠A=84°,再利用基本作图判断BE 平分∠ABC,然后利用角平分线的定义得到∠EBC的度数.【解答】解:∵AD∥BC,∴∠A+∠ABC=180°,∴∠ABC=180°﹣96°=84°,根据作图得到BE平分∠ABC,∴∠ABE=∠EBC=∠ABC=42°.故选:B.【点评】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了平行线的性质.22.“经过已知角一边上的一点,作一个角等于已知角“的尺规作图过程如下:已知:如图1,∠AOB和OA上一点C.求作:一个角等于∠AOB,使它的顶点为C,一边为CA.作法:如图2,(1)在OA上取一点D(OD<OC),以点O为圆心,OD长为半径画弧,交OB 于点E;(2)以点C为圆心,OD长为半径画弧,交CA于点F,以点F为圆心,DE长为半径画弧,两弧交于点G;(3)作射线CG.则∠GCA就是所求作的角.此作图的依据中不含有()A.三边分别相等的两个三角形全等B.全等三角形的对应角相等C.两直线平行同位角相等D.两点确定一条直线【分析】根据题意知,由全等三角形的判定定理SSS可以推知△EOD≌△GCF,结合该全等三角形的性质和两点确定一条直线解题.【解答】解:由题意可得:由全等三角形的判定定理SSS可以推知△EOD≌△GCF,故A正确;结合该全等三角形的性质对应角相等,故B正确;作射线CG,利用两点确定一条直线,故D正确;故选:C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.23.利用尺规作图,作△ABC边上的高AD,正确的是()A.B.C.D.【分析】过点A作BC的垂线,垂足为D,则AD即为所求.【解答】解:过点A作BC的垂线,垂足为D,故选:B.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图.24.如图所示,小李用直尺和圆规作∠CAB的平分线AD,则得出∠CAD=∠DAB 的依据是()A.ASA B.AAS C.SSS D.SAS【分析】利用三角形全等的判定证明.【解答】解:由题意AF=AE,FD=ED,AD=AD,∴△ADF≌△ADE(SSS),∴∠DAF=∠DAE,故选:C.【点评】本题考查作图﹣基本作图,全等三角形的判定等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.25.如图,已知∠AOB,以O为圆心,以任意长为半径画弧,分别交OA、OB于D,E两点,再分别以D,E为圆心,大于DE长为半径画弧,两条弧交于点C,作射线OC,则△OEC≌△ODC的依据是()A.SAS B.ASA C.AAS D.SSS【分析】由作法可知:CD=CE,OD=OE,根据全等三角形的判定定理判断即可.【解答】解:由作法可知:CD=CE,OD=OE,。
尺规作图知识讲解【学习目标】1.知道基本作图的常用工具,能正确、熟练的运用尺规作图的叙述语言,并会用尺规作常见的几种基本图形;2.根据三角形全等判定定理,掌握用尺规作三角形及作一个三角形与已知三角形全等;【要点梳理】要点一、基本作图1.尺规作图的定义利用没有刻度直尺和圆规作图,简称为尺规作图.要点诠释:尺规作图时使用的直尺是不能用来进行测量长度的操作,它一般用来将两个点连在一起.圆规可以开至无限宽,但上面也不能有刻度.它只可以拉开成之前构造过的长度或一个任意的长度.2.常见基本作图本套教科书设计的基本尺规作图包括: 1.作一条线段等于已知线段; 2.作一个角等于已知角; 3.作一个角的平分线; 4.作一条线段的垂直平分线; 5.过一点作已知直线的垂线.要点诠释:1.要熟练掌握直尺和圆规在作图中的正确应用,对于作图要用正确语言来进行表达;2.本节中继续学习用直尺、圆规做一条线段等于已知线段、一个角等于已知角、作一条线段的垂直平分线等.要点二、根据三角形全等用尺规作三角形根据三角形全等判定定理,应用基本尺规作图作三角形以及作一个三角形与已知三角形全等. 【典型例题】类型一、基本作图1、(2014秋?太谷县校级期末)如图,已知线段a、b,求作一条线段使它等于2a+b.【思路点拨】首先画一条射线,再在射线上分别截取a,b即可得出等于2a+b的线段.【答案与解析】解:如图所示:AB即为所求.此题主要考查了简单作图,关键是掌握作一条线段等于已知线段的作法.【总结升华】.举一反三:【变式】已知线段a、b、c,用直尺和圆规作出一条线段,使它等于a+c-b.【答案】解:先在射线上作线段AB=a,画出线段BC=c,再在AC上截取AC=b,所以线段CD=a+c-b.如图所示:2、作图题(尺规作图,不写作法,但保留作图痕迹)如图,已知,∠α、∠β.求作∠AOB,使∠AOB=∠α+2∠β.【思路点拨】先作∠BOC=∠β,再以OC为一边,在∠BOC的外侧作∠COD=∠β,再以OB为一边,在∠BOD的外侧作∠AOB=∠α,∠AOD即是所求.【答案与解析】解:只要方法得当,有作图痕迹就给分,无作图痕迹不给分.【总结升华】此题主要考查作一个角等于已知角的综合应用.举一反三:【变式】请把下面的直角进行三等分.(要求用尺规作图,不写作法,但要保留作图痕迹.)【答案】解:(1)以点B为一顶点作等边三角形;(2)作等边三角形点B处的角平分线.3、作图题(不写作图步骤,保留作图痕迹).已知:如图,求作点P,使点P到A、B两点的距离相等,且P到∠MON两边的距离也相等.【思路点拨】作∠MON角平分线和线段AB的垂直平分线,交点P即是所求.【解析】解:如图,【总结升华】此题主要考查角平分线和线段的垂直平分线的作法;注意角平分线到角两边的距离相等;线段垂直平分线上到线段两个端点的距离相等.举一反三:【变式】(2014?上城区校级模拟)数学来源于生活又服务于生活,利用数学中的几何知识可以帮助我们解决许多实际问题.李明准备与朋友合伙经营一个超市,经调查发现他家附近有两个大的居民区A、B,同时又有相交的两条公路,李明想把超市建在到两居民区的距离、到两公路距离分别相等的位置上,绘制了如下的居民区和公路的位置图.聪明的你一定能用所学的数学知识帮助李明在图上确定超市的位置!请用尺规作图确定超市P的位置.(作图)不写作法,但要求保留作图痕迹.【答案】解:如图,点P就是要找的点.类型二、作三角形4、已知∠α和线段a和b,作一个三角形,使其中一个角等于∠α,且这个角的两边长分别为a 和b.(要求:用尺规作图,并写出已知、求作、保留作图痕迹)已知:求作:【思路点拨】先作∠ACB=∠α,然后以点C为圆心,以a长为半径画弧,与边BC相交于点B,再以点C为圆心,以b的长为半径画弧与CA相交于点A,连接AB即可得解.【解析】解:已知:∠α,线段a,b,求作:△ABC,是∠C=∠α,BC=a,AC=b,如图所示,△ABC即为所求作的三角形.作一条线段等于已知主要利用了作一个角等于已知角,本题考查了复杂作图,】总结升华【.线段,都是基本作图,需熟练掌握.举一反三:和α,且两角的夹及线段【变式】已知∠αb,作一个三角形,使得它的两内角分别为边为b.(要求:用尺规作图,并写出已知、求作和结论,保留作图痕迹,不写作法)已知:求作:结论:【答案】解:已知:∠α,线段b;C=α,BC=b.,∠ABC求作:△,使得∠B=α结论:如图,△ABC为所求.5、(2016?门头沟区一模)阅读下面材料:数学课上,老师提出如下问题:小明解答如图所示:老师说:“小明作法正确.”请回答:(1)小明的作图依据是;(2)他所画的痕迹弧MN是以点为圆心,为半径的弧.【思路点拨】根据作一个角等于已知角的作法解答即可.【答案与解析】解:(1)小明的作图依据是SSS定理.故答案为:SSS;(2)他所画的痕迹弧MN是以点E为圆心,CD为半径的弧.故答案为:E,CD.【总结升华】本题考查的是作图﹣基本作图,熟知作一个角等于已知角的作法及依据是解答此题的关键.。
练习11 尺规作图
一、单选题
1.以下四种作△ABC边AC上的高,其中正确的作法是()
A.B.
C.D.
【解答】解:AC边上的高是经过点B垂直AC的直线.
故选:B.
【知识点】三角形的角平分线、中线和高、作图—基本作图
2.下列四种基本尺规作图分别表示,则对应选项中作法错误的是()
A.作一个角等于已知角
B.作一个角的平分线
C.作一条线段的垂直平分线
D.过直线外一点P作已知直线的垂线
【解答】解:①作一个角等于已知角的方法正确;
②作一个角的平分线的作法正确;
③作一条线段的垂直平分线缺少另一个交点,作法错误;
④过直线外一点P作已知直线的垂线的作法正确.
故选:C.
【知识点】作图—基本作图
3.在以如图形中,根据尺规作图痕迹,能判断射线AD平分∠BAC的是()
A.图1和图2 B.图1和图3 C.图3 D.图2和图3 【解答】解:在图1中,利用基本作图可判断AD平分∠BAC;
在图2中,根据作法可知:
AE=AF,AM=AN,
在△AMF和△ANE中,
,
∴△AMF≌△ANE(SAS),
∴∠AMD=∠AND,
∵∠MDE=∠NDF,
∵AE=AF,AM=AN,
∴ME=NF,
在△MDE和△NDF中,
,
∴△MDE≌△NDF(AAS),
所以D点到AM和AN的距离相等,
∴AD平分∠BAC.
在图3中,利用基本作图得到D点为BC的中点,则AD为BC边上的中线;
故选:A.
【知识点】作图—基本作图、全等三角形的判定与性质
4.如图,用直尺和圆规作已知角的平分线的示意图,则说明三角形全等的依据是()
A.SAS B.ASA C.AAS D.SSS
【解答】解:由作图可知,AF=AE,DF=DE,
∵AD=AD,
∴△ADF≌△ADE(SSS),
故选:D.
【知识点】作图—基本作图、全等三角形的判定
5.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.
步骤1:以C为圆心,CA为半径画弧①;
步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;
步骤3:连接AD,交BC延长线于点H.
下列叙述正确的是()
A.AB=AD B.BH⊥AD
C.S△ABC=BC•AH D.AC平分∠BAD
【解答】解:由作图可知,直线BC垂直平分线段AD,故BH⊥AD,
故选:B.
【知识点】作图—基本作图
二、填空题
6.在△ABC中,用直尺和圆规在边BC上确定了一点D,并连接AD.若∠C=37°,根据作图痕迹,可求出
∠ADB的度数是度.
【解答】解:由作图可知,DE垂直平分线段AC,
∴DA=DC,
∴∠DAC=∠C=37°,
∴∠ADB=∠C+∠DAC=74°,
故答案为74.
【知识点】三角形内角和定理、作图—基本作图
7.阅读下面材料:
在数学课上,老师提出如下问题:
小丽设计的方案如下:
老师说:“小丽的画法正确”
请回答:小丽的画图依据是.
【解答】解:小丽的画图依据是两点之间线段最短;直线外一点到这条直线上所有点连结的线段中,垂线段最短.(或垂线段最短);
故答案为两点之间线段最短;直线外一点到这条直线上所有点连结的线段中,垂线段最短(或
垂线段最短);
【知识点】作图—基本作图
8.下面是“作一个角等于已知角”的尺规作图过程.
已知:∠A.
作法:如图,
(1)以点A为圆心,任意长为半径作⊙A,交∠A的两边于B,C两点;
(2)以点C为圆心,BC长为半径作弧,与⊙A交于点D,作射线AD.所以∠CAD就是所
求作的角.
请回答:该尺规作图的依据是.
【解答】解:由题意:∵=,
∴∠CAD=∠BAC(等弧所对的圆心角相等).
故答案为:等弧所对的圆心角相等
【知识点】作图—基本作图
9.尺规作图:作一个角的平分线.
小涵是这样做的:
已知:∠MAN,如图1所示.
求作:射线AD,使它平分∠MAN.
作法:(1)如图2,以A为圆心,任意长为半径作弧,交AM于点B,交AN于点C;
(2)分别以B、C为圆心,AB的长为半径作弧,两弧交于点D;
(3)作射线AD.
所以射线AD就是所求作的射线.
小涵是个喜欢动脑筋的孩子,他继续对图形进行探究:连接BD、CD和BC,发现BC与AD的位置关系是,依据是.
【解答】解:由题意可知,AB=AC=BD=CD,
∴四边形ABDC是菱形,
∴AD与BC互相垂直平分.
故答案为AD与BC互相垂直平分,菱形的对角线互相垂直平分.
【知识点】作图—基本作图
10.下面是“作已知角的角平分线”的尺规作图过程.
已知:如图1,∠MON.
求作:射线OP,使它平分∠MON.
作法:如图2,
(1)以点O为圆心,任意长为半径作弧,交OM于点A,交ON于点B;
(2)连结AB;
(3)分别以点A,B为圆心,大于AB的长为半径作弧,两弧相交于点P;
(4)作射线OP.
所以,射线OP即为所求作的射线.
请回答:该尺规作图的依据是.
【解答】解:利用作图可得到OA=OB,P A=PB,
利用等腰三角形的性质可判定OP平分∠AOB.
故答案为:等腰三角形的三线合一.
【知识点】作图—基本作图
三、解答题
11.如图,在△ABC中,画出它的三条高.
【解答】解:如图,△ABC的高AE,CD,BF即为所求.
【知识点】作图—基本作图
12.如图,已知直线l及直线l外一点P.
(1)求作:直线PQ,使得PQ⊥l.(保留作图痕迹)
(2)证明:PQ⊥l.
【解答】(1)解:如图,直线PQ即为所求.
(2)证明:由作图可知,PC=PD,CQ=QD,
∴PQ垂直平分线段CD,
∴PQ⊥直线l.
【知识点】作图—基本作图、垂线
探究题:
13.如图,已知等腰三角形ABC的顶角∠A=108°.
(1)在BC上作一点D,使AD=CD(要求:尺规作图,保留作图痕迹,不必写作法和证明).(2)求证:△ABD是等腰三角形.
【解答】解:(1)如图,点D即为所求;
(2)连接AD,
∵AB=AC,∠A=108°,
∴∠B=∠C=36°,
由(1)得:AD=CD,
∴∠DAC=∠C=36°,
∴∠ADB=∠DAC+∠C=72°,∠BAD=∠BAC﹣∠DAC=108°﹣36°=72°,
∴∠BAD=∠BDA,
∴AB=BD,
∴△ABD是等腰三角形.
【知识点】等腰三角形的判定与性质、作图—基本作图
14.如图,已知△ABC,∠BAC=90°,
(1)尺规作图:作∠ABC的平分线交AC于D点(保留作图痕迹,不写作法)
(2)若∠C=30°,求证:DC=DB.
【解答】(1)解:射线BD即为所求;
(2)∵∠A=90°,∠C=30°,
∴∠ABC=90°﹣30°=60°,
∵BD平分∠ABC,
∴∠CBD=∠ABC=30°,
∴∠C=∠CBD=30°,
∴DC=DB.
【知识点】作图—基本作图
15.如图,已知△ABC,求作:
(1)∠BAC的角平分线AP.
(2)BC边的垂直平分线MN,与BC交于D点,与射线AP交于E点.
(3)过点E画EG⊥AB于G点,过点E画EF⊥AC的延长线于点F.求证:BG=CF.
【解答】解:(1)如图,射线AP即为所求.
(2)如图,直线MN,点E即为所求.
(3)连接EB,EC.
∵EA平分∠BAC,EG⊥AB,EF⊥AC,
∴EG=EF,
∵MN垂直平分线段BC,
∴EB=EC,
在Rt△EGB和Rt△EFC中,
,
∴Rt△EGB≌Rt△EFC(HL),
∴BG=CF.
【知识点】作图—基本作图
16.如图,点C是线段AB外一点.按下列语句画图:
(1)画射线CB;
(2)反向延长线段AB;
(3)连接AC;
(4)延长AC至点D,使CD=AC.
【解答】解:如图所示.
【知识点】作图—基本作图。