电磁兼容原理-课程设计
- 格式:doc
- 大小:385.52 KB
- 文档页数:10
《电磁兼容原理与设计》课程设计报告I 、目标设计一个LC 带通滤波器,其通带位于[2.0,3.0]GHz ,通带内的回波损耗为-20dB ,在4.0GHz 处的带外抑制至少为20dB 。
源电阻及负载皆为50欧姆。
II 、设计原理1.将滤波器带通指标还原为低通原型,确定滤波器阶数设1ω和2ω分别表示通带边界,则带通响应下的频率与低通原型归一化频率之间的转化关系如下:⎪⎪⎭⎫ ⎝⎛-∆=⎪⎪⎭⎫ ⎝⎛--←ωωωωωωωωωωωω0000120'1 式中,12ωωω-=∆:通带的相对宽度 0ω:通带中心频率ω:带通情况下的频率'ω:低通原型下对应的频率因为在4.0GHz 处的带外抑制至少为20dB ,所以将先将4.0GHz 频率转化为低通原型对应频率。
4.0GHz 对应的两频率点分别为由频率转换公式可得低通原型下对应的归一化频率为'ω=2.4375查表在此情况下采用3阶巴特沃斯滤波器可以满足设计要求。
又 ()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛>'1-/10L lg 2/lg 10AS s n ωε (参照微波网络P160)其中AS L 表示的是带外的最小衰减,将其AS L =20dB(4GHZ 下的衰减带入)110/10LAR -=ε其中AR L 为通带最大衰减,我们已知回波损耗是20dB 故Γ=0.1。
故衰减是指AR L =20*log (输出/输入)=0.9dB 。
将'ω代入求得n=3 。
同样采用3阶巴特沃斯滤波器可以满足设计要求。
2.确定低通滤波器原型和各个元件参数低通滤波器原型电路如下:图中各元件参数为:Rs=Rl=1Ω,C1=1.000F ,L2=2.000H ,C3=1.000F 。
3.将低通滤波器原型变换为带通滤波器带通滤波器元件是由频率变换中的串联电抗和并联电纳确定的。
所以,''00001kk k k kk C j L j L j L j L j jX ωωωωωωωωωω-=∆-∆=⎪⎪⎭⎫ ⎝⎛-∆= 该式表明串联电感k L 转换为串联LC 电路,其元件值为'ω∆=kk L L kk L C 0'ω∆=同样,''00001kk k k k k L j C j C j C j C j jB ωωωωωωωωωω-=∆-∆=⎪⎪⎭⎫ ⎝⎛-∆=该式表明并联电容k C 转换为并联LC 电路,其元件值为:kk C L 0'ω∆='ω∆=kk C C 所以低通滤波器在串联臂上的元件变换成串联谐振电路(谐振时低阻抗),而在并联臂上的元件变换成并联谐振电路(谐振时高阻抗)。
电磁兼容与可编程控制器课程设计报告1. 引言本课程设计报告旨在探讨电磁兼容性在可编程控制器应用中的重要性,分析电磁干扰对PLC系统的影响,并提出相应的电磁兼容设计措施。
2. 电磁兼容性基本概念2.1 电磁干扰(EMI)电磁干扰是指电子设备在运行过程中,通过空间辐射或导线传输产生的电磁波,对其他电子设备正常工作产生影响的现象。
2.2 电磁兼容性(EMC)电磁兼容性是指在共同的电磁环境中,电子设备能够正常工作并不对其他设备产生不可接受的电磁干扰的能力。
2.3 电磁兼容设计原则电磁兼容设计原则主要包括:抑制干扰源、切断干扰途径、提高接收器的抗干扰能力。
3. 电磁干扰对PLC系统的影响3.1 电磁干扰的来源电磁干扰的来源主要包括:电子设备的电源线和信号线产生的电磁辐射,外部电磁场的干扰,设备内部元器件的工作产生的电磁干扰。
3.2 电磁干扰对PLC系统的影响电磁干扰可能导致PLC系统出现误动作、数据误写、程序损坏等问题,影响系统的稳定性和可靠性。
4. 电磁兼容设计措施为了保证PLC系统在电磁环境中的稳定性和可靠性,需要采取以下电磁兼容设计措施:4.1 抑制干扰源1. 选用低干扰的电子元器件;2. 合理布局电路,尽量减小信号走线长度;3. 采用屏蔽、滤波等手段抑制干扰源。
4.2 切断干扰途径1. 采用差分信号传输,提高信号的抗干扰能力;2. 信号线和电源线采用屏蔽电缆,减小外部电磁干扰的影响;3. 提高PLC系统的接地性能,减小地环路干扰。
4.3 提高接收器的抗干扰能力1. 选用高抗干扰能力的PLC设备;2. 采用光耦合器等隔离手段,减小电磁干扰对信号的影响;3. 增加滤波、稳压等电路,提高系统的抗干扰能力。
5. 结论电磁兼容性在可编程控制器应用中具有重要意义。
通过分析电磁干扰对PLC系统的影响,并提出相应的电磁兼容设计措施,可以有效提高PLC系统在电磁环境中的稳定性和可靠性。
本课程设计报告为电磁兼容性与可编程控制器领域的进一步研究提供了理论支持和实践指导。
电磁兼容原理与技术实验课程名称:电磁兼容原理与技术/ Electromagnetic Compatibility Principles and Technology学分:2.5课程总学时:32+12 实验学时:12(其中,上机学时:)课程性质:□☑必修√□☑选修是否独立设课:√□是□否课程类别:□基础实验√□专业基础实验□专业领域实验含有综合性、设计性实验:√□是□否面向专业:电子信息工程专业方向电子科学与技术专业方向先修课程:电子技术工程素质实践基础课、数字电子技术实验、模拟电子技术实验、数字信号处理实验、电磁兼容原理与设计大纲编制人:课程负责人(常天海)实验室负责人(秦慧萍)说明:1.《实验教学大纲》中的课程名称、课程总学时、实验学时、上机学时、学分、课程类别等信息必须与《本科综合培养计划》一致;2. 为保障基础,同时适应实验室开放和学生自选实验,将实验项目分必做和选做两类,便于教学过程中因材施教;3. “是否独立设课”:分为独立设课和非独立设课两种,独立设课课程总学时与实验总学时完全一致;4. 含有综合性、设计性实验:按教育部本科教学水平评估要求,设有综合性、设计性实验的课程占有实验的课程总数的比例应大于等于80%(注意评估指标并非指一门课程中的综合性、设计性实验项目所占比例应不小于80%)。
这里只需选择该门课程是否设有综合性、设计性实验;5. “面向专业”:按教务处本科教学综合培养计划中规定的专业名称(或方向)全称填写。
学院内开设的同一课程适应不同专业又有不同教学要求的,请分开不同专业(或方向)分别编制实验大纲;6. 课程设计、金工实习、电子工艺实习等集中实践教学环节不列入实验大纲编写范围;7. “大纲编制人”:实践教学与理论教学互相支撑、密不可分。
本次大纲的修订应由承担课程教学任务的教学团队和实验技术团队共同完成。
理论课程负责人、实验课负责人(实验人员)须共同署名。
一、教学信息教学的目标与任务:该课程是“电磁兼容原理与设计”这门学科基础课的配套实验,其目的是使学生通过实验加深对电磁干扰源及其危害、传导和辐射这两类干扰的产生机理、三种主要(接地、屏蔽和滤波)电磁兼容技术、电磁干扰的发射和敏感性测量技术、静电基本参量的测试方法、人体静电参数的测试方法及基于MATLAB软件对静电放电模型的仿真等基本理论与技术的理解,通过实验培养学生了解并掌握“移动用户终端的电磁干扰”、“微电子器件和设备的静电放电敏感度测试”或“微电子器件及集成电路的电磁敏感性测量及评估”或“静电放电脉冲对集成电路损伤效应的评估”、“静电基本参量及人体静电参数的测量”、“固体各类动态作业过程的静电动态多因素联合效应模拟实验”及“静电放电模型的MATLAB软件仿真实验”等方法或技能,从而培养学生在电子系统的电磁兼容设计及静电防护工程等领域的分析问题、解决问题及实践动手能力。
电磁兼容原理实验教案一、实验目的1. 理解电磁兼容的基本概念。
2. 掌握电磁兼容的基本设计原则。
3. 学习电磁兼容的实验方法和技巧。
4. 培养实验操作能力和团队协作能力。
二、实验原理1. 电磁兼容的基本概念:电磁兼容是指电子设备或系统在同一电磁环境中能正常工作,并不干扰其他设备正常工作的能力。
2. 电磁兼容的基本设计原则:a) 屏蔽:采用金属屏蔽或导电涂层等方法减少电磁干扰。
b) 滤波:利用滤波器去除电源线和信号线上的干扰信号。
c) 接地:合理设置接地,降低设备之间的干扰。
d) 布线:按照电磁兼容原则进行合理布线,减少信号间的相互干扰。
三、实验器材与设备1. 实验桌椅2. 计算机3. 示波器4. 信号发生器5. 功率放大器6. 接收器7. 屏蔽盒8. 滤波器9. 接地线10. 导线四、实验内容与步骤1. 实验一:电磁干扰的产生与检测a) 连接信号发生器、功率放大器和接收器。
b) 设置信号发生器产生一定频率的信号。
c) 通过功率放大器放大信号,观察接收器接收到的干扰信号。
d) 分析干扰产生的原因和特点。
2. 实验二:屏蔽对电磁干扰的影响a) 在实验一的基础上,加入屏蔽盒。
b) 将信号发生器、功率放大器和接收器放入屏蔽盒内。
c) 重复实验一的操作,观察屏蔽对电磁干扰的影响。
d) 分析屏蔽的作用和效果。
3. 实验三:滤波对电磁干扰的影响a) 在实验一的基础上,加入滤波器。
b) 将滤波器串联在信号发生器和功率放大器之间。
c) 重复实验一的操作,观察滤波对电磁干扰的影响。
d) 分析滤波的作用和效果。
4. 实验四:接地对电磁干扰的影响a) 在实验一的基础上,合理设置接地。
b) 将信号发生器、功率放大器和接收器分别接地。
c) 重复实验一的操作,观察接地对电磁干扰的影响。
d) 分析接地的作用和效果。
5. 实验五:布线对电磁干扰的影响a) 在实验一的基础上,按照电磁兼容原则进行布线。
b) 重复实验一的操作,观察布线对电磁干扰的影响。
电磁兼容原理小综述(五篇范例)第一篇:电磁兼容原理小综述电磁兼容技术的发展电磁兼容(Electromagnetic Compatibility,简称EMC)一般指电气及电子设备在共同的电磁环境中能执行各自功能的共存状态,即要求在同一电磁环境中的上述各种设备都能正常工作,又互不干扰,达到兼容状态。
这个概念有两层含义,第一是电气及电子设备要具有抵抗外界电磁干扰的能力;第二是电气及电子设备对外发射的电磁干扰不能超过一定的限值,要尽可能少。
电磁兼容技术是一门迅速发展的交叉学科,其理论基础涉及数学、电磁场理论、电路基础、信号分析等学科与技术,其应用范围几乎涉及到所有用电领域。
在当今信息社会中,随着电子技术、计算机技术的发展,一个系统中采用的电气及电子设备数量大幅度增加,而且电子设备的频带日益加宽,功率逐渐增大,信息传输速率提高,灵敏度提高,连接各种设备的网络也越来越复杂,因此,电磁兼容问题日渐重要。
我国每年都招收大量的电气工程类本科生和研究。
其中本科生通过专业基础课程的学习,他们会具有一定的电路理论和电磁场理论知识,在他们中开展电磁兼容性人才的培养,无疑是获得大量从事电磁兼容性研究人员,普及电磁兼容性知识和技术的一个有效的途径。
但是,电磁兼容性这个新兴学科,具有很强的学科综合性,涉及的知识面广,特别是大量引用和借鉴无线电技术的概念和术语,这使得电气工程类学生成为电磁兼容性研究人才具有一定的难度。
这在电磁兼容学科的人才培养上必须给与足够的重视,给出有效的方法和对策。
1.从电气工程类学生中培养电磁兼容性人才电磁兼容学科的基础是电路理论及电磁场和电磁波理论。
而电路原理、电磁场理论与电磁波等课程是电气工程类学生必修的课程,加上其他数理课程的学习,他们有学好电磁兼容学科知识的基础。
但是,由于电磁兼容学科是从无线电干扰及抗干扰基础上发展起来的,借用了大量无线电学科中的概念、术语,仅有电路理论和电磁场和电磁波知识,只能说具备了进行电磁兼容性研究的先决条件。
电磁兼容基础教学设计1. 前言电磁兼容(EMC)是指电子设备在各种电磁环境下,正常工作而不干扰周围其他电子设备、系统及其它设备在同一电磁环境下正常工作的能力。
本文旨在设计一套电磁兼容基础教学,形成衔接企业需求的电磁兼容人才培养体系。
2. 基本理论首先,设计师需要掌握与电磁兼容相关的基本理论。
包括:•电磁波的概念、传播特性和特征参数。
•传导干扰、辐射干扰、电磁场的相互作用机理,以及它们在电磁兼容中的意义。
•电磁兼容的基本知识、规律及典型事例。
•电磁兼容技术与电磁兼容测试的基本思想和方法。
3. 实验和实践掌握基本理论后,学生需要进行实验和实践,加深对电磁兼容的理解和掌握基本方法。
实验和实践包括:1.基本测试方法实验学生需要了解最基本的电磁兼容测试方法,并能解释测试结果与其他因素之间的关系。
可以为学生提供以下指导:•传导干扰测试•辐射干扰测试•EMC检测及解决方案的基本理解•电磁场建模与电磁场分析的基本概念•设计中的EMC原则和必须考虑的因素2.电磁兼容问题的解决方案实验在掌握基本方法后,学生需要进行更加细致的实践,以制定适当的电磁兼容解决方案。
包括:•指导学生在设计中考虑EMC因素,提高EMC兼容性•针对学生提供典型的EMC测试器件以模仿现实场景环境下的干扰现象•帮助学生建立实验设备并执行基本实验,让学生扮演设计中的EMC策略制定者•帮助学生了解并提高识别和诊断EMC问题的能力4. 教学方法及考核在实践环节之后,我们需要进行考核,以检验学生对于电磁兼容的理解和应用能力。
教学方法和考核包括:•提供模拟测试器件,要求学生依据模拟测试数据判断干扰特性•辅导学生设计和实施实验,如传导干扰测试和辐射干扰测试•可以提供线上考核,让学生以电脑操作实验方式进行考核,前提本教程中所列实验学生已经完成5. 结语通过以上方法,在基础理论和实践操作方面的双重支撑,我们相信学生可以更好的把握电子设备的EMC问题。
协调人不断探索以市场需求为导向的电磁兼容人才培养体系,以期能为企业提供更优秀的EMC工程师。
第一章电磁兼容性原理与设计1.电磁兼容性的基本概念电磁兼容性是一个新概念,它是抗干扰概念的扩展和延伸。
从最初的设法防止射频频段内的电磁噪声、电磁干扰,发展到防止和对抗各种电磁干扰。
进一步在认识上产生了质的飞跃,把主动采取措施抑制电磁干扰贯穿于设备或系统的设计、生产和使用的整个过程中。
这样才能保证电子、电气设备和系统实现电磁兼容性。
1. 1电磁兼容性的概念A、电磁噪声与电磁干扰电磁噪声是指不带任何信息,即与任何信号都无关的一种电磁现象。
在射频频段内的电磁噪声,称为无线电噪声。
由机电或其他人为装置产生的电磁现象,称为人为噪声。
来源于自然现象的电磁噪声,称为自然噪声。
电磁干扰则是指任何能中断、阻碍,降低或限制通信电子设备有效性能的电磁能量。
由大气无线电噪声引起的,称为天线干扰。
由银河系的电磁辐射引起的,称为宇宙干扰。
由输电线、电网以及各种电子和电气设备工作时引起的,称为工业干扰。
B、电磁兼容电磁兼容性是指电子、电气设备或系统在预期的电磁环境中,按设计要求正常工作的能力。
它是电子、电气设备或系统的一种重要的技术性能。
其包括两方面的含义:①设备或系统应具有抵抗给定电磁干扰的能力,并且有一定的安全余量。
②设备或系统不产生超过规定限度的电磁干扰。
从电磁兼容性的观点出发,电子设备或系统可分为兼容、不兼容和临界状态三种状态:IM=Pi-Ps(dB)式中:IM -------电磁干扰余量Pi-------干扰电平Ps-------敏感度门限电平当Pi>Ps即干扰电平高于敏感度门限电平时,IM>0,表示有潜在干扰,设备或系统处于不兼容状态当Pi<Ps即干扰电平低于敏感度门限电平时,IM<0,表示设备或系统处于兼容状态当Pi=Ps即干扰电平等于敏感度门限电平时,IM=0,表示设备或系统处于临界状态1. 2电磁兼容性常用术语根据国家标准GJB—85《电磁干扰和电磁兼容性名词术语》选择一部分,供参考① 一般术语设备(Equipment)——作为一个独立单元进行工作,并完成单一功能的任何电气、电子或机电装置。