原函数与不定积分
- 格式:pptx
- 大小:300.84 KB
- 文档页数:10
第一节 不定积分的概念及其性质教学目的:使学生掌握原函数与不定积分的概念及性质;基本积分公式.教学重点:基本积分公式的推导及应用. 教学过程:一、原函数与不定积分的概念定义1 如果在区间I 上 可导函数F (x )的导函数为f (x ) 即对任一x ∈I 都有F '(x )=f (x )或dF (x )=f (x )dx那么函数F (x )就称为f (x )(或f (x )dx )在区间I 上的原函数例如 因为(sin x )'=cos x 所以sin x 是cos x 的原函数又如当x ∈(1 +∞)时因为xx 21)(=' 所以x 是x21的原函数提问:cos x 和x21还有其它原函数吗?原函数存在定理 如果函数f (x )在区间I 上连续 那么在区间I 上存在可导函数F (x ) 使对任一x ∈I 都有F '(x )=f (x )简单地说就是 连续函数一定有原函数两点说明 第一 如果函数f (x )在区间I 上有原函数F (x ) 那么f (x )就有无限多个原函数F (x )+C 都是f (x )的原函数 其中C 是任意常数第二 f (x )的任意两个原函数之间只差一个常数 即如果Φ(x )和F (x )都是f (x )的原函数 则Φ(x )-F (x )=C (C 为某个常数) 定义2 在区间I 上 函数f (x )的带有任意常数项的原函数称为f (x )(或f (x )dx )在区间I 上的不定积分 记作⎰dx x f )(其中记号⎰称为积分号 f (x )称为被积函数 f (x )dx 称为被积表达式 x 称为积分变量 根据定义 如果F (x )是f (x )在区间I 上的一个原函数 那么F (x )+C 就是f (x )的不定积分 即⎰+=C x F dx x f )()(因而不定积分dx x f )(⎰可以表示f (x )的任意一个原函数例1因为sin x 是cos x 的原函数所以C x x d x +=⎰s i n c o s因为x 是x21的原函数所以C x dx x +=⎰21例2. 求函数xx f 1)(=的不定积分 解:当x >0时(ln x )'x1=C x dx x+=⎰ln 1(x >0)当x <0时[ln(x )]'xx1)1(1=-⋅-=C x dx x+-=⎰)ln( 1(x <0)合并上面两式得到C x dx x+=⎰||ln 1(x ≠0)例3 设曲线通过点(1 2) 且其上任一点处的切线斜率等于这点横坐标的两倍 求此曲线的方程解 设所求的曲线方程为y =f (x ) 按题设 曲线上任一点(x y )处的切线斜率为y '=f '(x )=2x ,,即f (x )是2x 的一个原函数 因为 ⎰+=C x x d x22故必有某个常数C 使f (x )=x 2+C 即曲线方程为y =x 2+C因所求曲线通过点(1 2) 故2=1+C C =1于是所求曲线方程为y =x 2+1积分曲线 函数f (x )的原函数的图形称为f (x )的积分曲线从不定积分的定义 即可知下述关系 ⎰=)(])([x f dx x f dxd或 ⎰=dx x f dx x f d )(])([ 又由于F (x )是F '(x )的原函数 所以⎰+='C x F dx x F )()(或记作 ⎰+=C x F x dF )()(由此可见 微分运算(以记号d 表示)与求不定积分的运算(简称积分运算以记号⎰表示)是互逆的 当记号⎰与d 连在一起时 或者抵消 或者抵消后差一个常数二、基本积分表(1)C kx kdx +=⎰(k 是常数) (2)C x dx x ++=+⎰111μμμ(3)C x dx x+=⎰||ln 1 (4)C e dx e x x +=⎰(5)C aa dx a xx+=⎰ln (6)C x xdx +=⎰sin cos(7)C x xdx +-=⎰cos sin (8)C x xdx dx x+==⎰⎰tan sec cos 122(9)C x xdx dx x +-==⎰⎰cot csc sin 122 (10)C x dx x+=+⎰arctan 112 (11)C x dx x +=-⎰arcsin 112(12)C x xdx x +=⎰sec tan sec(13)C x dx x +-=⎰csc cot csc例4 ⎰⎰-=dx x dx x 331C x C x +-=++-=+-21321131例5 ⎰⎰=dxx dx x x 252C x ++=+1251251C x +=2772C x x +=372例6 ⎰⎰-=dxx xx dx 343Cx ++-=+-134134Cx +-=-313C x+-=33三、不定积分的性质性质1 函数的和的不定积分等各个函数的不定积分的和 即⎰⎰⎰+=+dx x g dx x f dx x g x f )()()]()([这是因为, ])([])([])()(['+'='+⎰⎰⎰⎰dx x g dx x f dx x g dx x f =f (x )+g (x ).性质2 求不定积分时 被积函数中不为零的常数因子可以提到积分号外面来即⎰⎰=dx x f k dx x kf )()((k 是常数 k ≠0)例7. ⎰⎰-=-dx x x dx x x )5()5(21252 ⎰⎰-=dxx dx x 21255⎰⎰-=dxx dx x 21255C x x +⋅-=232732572例8 dx xx x dx xx x x dx x x )133(133)1(222323-+-=-+-=-⎰⎰⎰ C x x x x dx x dx x dx dx x +++-=-+-=⎰⎰⎰⎰1||ln 3321113322例9 ⎰⎰⎰-=-xdx dx e dx x e x x cos 3)cos 3(C x e x +-=sin 3例10 C e C e e dx e dx e x x xxxx ++=+==⎰⎰2ln 12)2ln()2()2(2例11 dx xx dx x x x x dx x x x x )111()1()1()1(122222++=+++=+++⎰⎰⎰ C x x dx x dx x++=++=⎰⎰||ln arctan 1112. 例12 dx x x x dx x x dx x x ⎰⎰⎰++-+=++-=+222242411)1)(1(1111⎰⎰⎰⎰++-=++-=dx x dx dx x dx x x 222211)111(C x x x ++-=a r c t a n 313例13 ⎰⎰⎰⎰-=-=dx xdx dx x dx x 222sec )1(sec tan = tan x - x + C例14 ⎰⎰⎰-=-=dx x dx x dx x )cos 1(212cos 1 2sin 2 C x x +-=)s i n (21例15 C x dx x dx xx +-==⎰⎰cot 4sin 142cos 2sin 1222.。
高数4.1 原函数(不定积分)我们接下来来看积分的部分。
首先是原函数的定义。
所谓的原函数,就是如果一个函数F(x)的导数F’(x)=f(x),我们就把F(x)称为f(x)的原函数(antiderivative)。
我们把原来的常见初等函数的导数反写,就能得到对应的原函数,主要有以下这些:首先是幂函数和指数函数:然后是三角函数:对于对数函数和反三角函数,我们一般不去找他们的原函数。
这里面有几点值得说的•我们看到所有的原函数都带一个+c,这里的c是一个常数。
这是因为,F(x)和F(x)+c的导数是一样的,因为(F(x)+c)’= F’(x)+c’= F’(x)。
所以如果F(x)是f(x)的原函数,那么F(x)+c也是f(x)的原函数,所以每个函数的原函数都不是有一个,而是有无数个,他们互相之间相差一个常数。
••1/x的原函数相对有点儿奇怪,我们知道lnx’=1/x,但这只是在x>0的情况下。
而在x<0的情况下得到的是ln(-x)’=-1/(-x),也是1/x。
因此准确的说,应该是(ln|x|)’=1/x,所以1/x的原函数应该是ln|x|+c•求原函数是整个微积分里面最难的点之一,理论上可以无限难。
而且有很多函数根本就没有原函数,比如你找不到一个函数,它的导数是lnx。
求原函数的主要方法主要有换元、分步积分等。
这里并不是我们的重点(虽然考试的时候还蛮重要的),我们只是建立一个直观上的概念。
换元法,是将某一个部分替换为一个整体,例如:分步积分法利用的是函数乘积导数的结论两端积分求原函数,有:举个例子:。