光通信原理与技术第6章1剖析
- 格式:ppt
- 大小:2.84 MB
- 文档页数:139
《光纤通信原理与技术》课程教学大纲英文名称:Fiber Communication Principle and its Application学时:51 学分:3开课学期:第7学期一、课程性质与任务通过讲授光纤通信技术的基础知识,使学生了解掌握光纤通信的基本特点,学习光纤通信系统的三个重要组成部分:光源(光发射机)、光纤(光缆)和光检测器(光接收机)。
通过本课程的学习,学生将掌握光纤通信的基本原理、光纤通信系统的组成和系统设计的基本方法,了解光纤通信的未来与发展,为今后的工程应用和研究生阶段的学习打下基础。
二、课程教学的基本要求要求通过课堂认真听讲和实验课,以及课下自学,基本掌握光纤通信的基础理论知识和应用概况,熟悉光纤通信在电信、通信中的应用,为今后的工作打下坚实的理论基础。
三、课程内容第一章光通信发展史及其优点(1学时)第二章光纤的传输特性(2学时)第三章影响光纤传输特性的一些物理因素(5学时)第四章光纤通信系统和网络中的光无源器件(9学时)第五章光纤通信技术中的光有源器件(3学时)第六章光纤通信技术中使用的光放大器(4学时)第七章光纤传输系统(4学时)第八章光纤网络介绍(6学时)第九章光纤通信原理与技术实验(17课时)四、教学重点、难点本课程的教学重点是光电信息技术物理基础、电光信息转换、光电信息转换,光电信息技术应用,光电新产品开发举例。
本课程的教学难点是光电信息技术物理基础。
五、教学时数分配教学时数51学时,其中理论讲授34学时,实践教学17学时。
(教学时数具体见附表1和实践教学具体安排见附表2)六、教学方式理论授课以多媒体和模型教学为主,必要时开展演示性实验。
七、本课程与其它课程的关系1。
本课程必要的先修课程《光学》、《电动力学》、《量子力学》等课程2。
本课程的后续课程《激光技术》和《光纤通信原理实验》以及就业实习。
八、考核方式考核方式:考查具体有三种。
根据大多数学生学习情况和学生兴趣而定其中一种.第一种是采用期末考试与平时成绩相结合的方式进行综合评定.对于理论和常识部分采用闭卷考试,期末考试成绩占总成绩的55%,实验成绩占总成绩的30%,作业成绩及平时考勤占总成绩的15%;第二种是采用课程设计(含市场调查报告)和平时成绩相结合的方式,课程设计占总成绩的55%,实验成绩占总成绩的30%,作业成绩及平时考勤占总成绩的15%。
第6章复习思考题参考答案6-1 EDFA的工作原理是什么?有哪些应用方式答:现在我们具体说明泵浦光是如何将能量转移给信号的。
若掺铒离子的能级图用三能级表示,如图6.3.2(a)所示,其中能级E1代表基态,能量最低,能级E2代表中间能级,能级E3代表激发态,能量最高。
若泵浦光的光子能量等于能级E3与E1之差,掺杂离子吸收泵浦光后,从基态E1升至激活态E3。
但是激活态是不稳定的,激发到激活态能级E3的铒离子很快返回到能级E2。
若信号光的光子能量等于能级E2和E1之差,则当处于能级E2的铒离子返回基态E1时就产生信号光子,这就是受激发射,使信号光放大获得增益。
图6.3.2(b)表示EDFA的吸收和增益光谱。
为了提高放大器的增益,应尽可能使基态铒离子激发到能级E3。
从以上分析可知,能级E2和E1之差必须是相当于需要放大信号光的光子能量,而泵浦光的光子能量也必须保证使铒离子从基态E1跃迁到激活态E3。
图6.3.2 掺铒光纤放大器的工作原理EDFA可作为光发射机功率增强放大器、接收机前置放大器,或者取代光-电-光中继器作为在线光中继器使用。
在光纤系统中可延长中继距离,特别适用于长途越洋通信。
在公用电话网和CA TV分配网中,使用EDFA补偿分配损耗,可做到信号无损耗的分配。
另外,EDFA可在多信道系统中应用,因为EDFA的带宽与半导体光放大器(SOA)的一样都很宽(1~5 THz),使用光放大器可同时放大多个信道,只要多信道复合信号带宽比放大器带宽小就行。
EDFA具有相当大的带宽(∆λ = 20~40 nm,或∆f = 2.66~5.32 THz),这就意味着可用来放大短至皮秒级的光脉冲而无畸变。
从光波系统的应用观点出发,EDFA的潜在应用在于它们可放大ps级的脉冲而不发生畸变的能力。
6-2 EDFA有几种泵浦方式?哪种方式转换效率高?哪种噪声系数小答:使用0.98 μm和1.48 μm的半导体激光泵浦最有效。
光通信原理与技术分析摘要:光通信是一种高速、高带宽、低损耗的通信技术,它利用光纤作为传输介质将信号转换成光脉冲进行传输。
本文将介绍光通信的基本原理、技术特点和应用前景,同时分析了目前光通信技术面临的挑战和未来发展趋势。
关键词:光通信、光纤、光脉冲、高速传输、低损耗在信息技术高速发展的背景下,人们对通信技术的要求越来越高。
传统的通信技术已经不能满足人们对高速、高带宽、低延迟的需求。
而光通信作为一种新型的通信技术,具有高速传输、低损耗、抗干扰等优点,被广泛应用于各个领域。
本文将详细介绍光通信的基本原理、技术特点和应用前景,同时分析了光通信技术面临的挑战和未来发展趋势。
1光通信的基本原理1.1 光通信的概念和背景光通信是利用光信号进行信息传输的通信技术。
它利用光纤作为传输介质,将信息转换成光脉冲进行传输,并在接收端将光信号转换成电信号,从而实现信息的传输。
随着信息技术和通信技术的发展,光通信技术的应用越来越广泛,已成为现代通信技术的重要组成部分。
1.2 光通信的工作原理和基本组成光通信的基本工作原理是将信息通过电信号转换成光信号,利用光纤作为传输介质进行传输,最后再将光信号转换成电信号。
光通信的基本组成包括光源、调制器、光纤传输系统、光检测器和解调器等。
光源产生光信号,调制器将电信号转换成光信号,光纤传输系统将光信号进行传输,光检测器将光信号转换成电信号,解调器将电信号还原成原始信号。
这些组成部分共同构成了光通信系统。
2光通信的技术特点2.1 高速传输光通信是一种基于光传输的通信技术,具有高速传输的特点。
与传统的电信号传输技术相比,光通信利用光纤作为传输介质,能够实现Gb/s级别的数据传输速率,比传统的电信号传输速率快得多。
这使得光通信技术成为高速、高带宽通信的首选技术,被广泛应用于高速数据传输、视频传输、云计算等领域。
光通信的高速传输能力源于光纤的特性。
光纤具有非常小的传播损耗和色散,能够在长距离传输中保持信号的稳定性和可靠性。
几何相位聚焦反偏振发散概述及解释说明1. 引言1.1 概述引言部分旨在向读者引入本文的主要内容和讨论的几何相位、聚焦、反偏振和发散现象。
几何相位是一种光学中的重要概念,可以用于描述光波传播时的相位变化。
聚焦现象则涉及到光束在传播过程中被集中到一个点或区域的现象,其在光学成像和激光技术中具有广泛应用。
反偏振现象则研究了材料对于不同方向入射光的吸收、反射和透射特性随角度的变化情况,该现象在光学传输和显示等领域具有重要意义。
而发散现象指的是光束传播过程中由于光场强度分布不均匀导致的扩散效应,它对于光学传输和激光器性能都有重要影响。
1.2 文章结构本文共分为6个主要部分进行讨论。
首先,在第2部分我们将介绍几何相位的定义和原理,并探讨它在光学中的应用以及与波前调制技术之间的关系。
紧接着,在第3部分我们将讨论光束聚焦的基本原理,以及聚焦技术在光学成像和激光器中的应用,并分析聚焦效果对于光学实验和应用的影响。
第4部分将重点介绍反偏振现象的原理、特点和研究进展,并讨论不同材料与结构对反偏振性能的影响评估以及优化方法。
接下来,在第5部分中我们将概述发散现象,并讨论光束发散机制与参数的关系研究,同时探讨发散现象对于光学传输和激光器性能的影响以及相应的应对策略。
最后,在第6部分中我们将总结各章节要点,并对几何相位、聚焦、反偏振和发散现象的整体认识进行回顾并展望未来发展前景。
1.3 目的本文旨在提供有关几何相位、聚焦、反偏振和发散现象的综合概述,包括其定义、原理、在光学中的应用以及与其他相关技术之间的关系等方面内容。
通过深入剖析这些现象,我们将探索它们在光学传输、成像和激光器性能中的重要作用,并讨论对其进行优化和提高的方法和策略。
最终,本文旨在帮助读者全面了解几何相位、聚焦、反偏振和发散现象,并为相关领域的研究和应用提供参考依据。
2. 几何相位:2.1 定义和原理:几何相位是光波传输过程中的一种相位形式,它与波的传播路径相关。
现代通信技术辅导6第六章光纤通信一、知识点∙光纤通信概述。
∙光纤与光缆。
∙光纤通信系统。
二、重点难点内容(一)光纤通信概述本节介绍光纤通信的概念、发展、实用工作窗日以及光纤通信的特点。
光纤即为光导纤维的简称。
光纤通信是以光纤为传输媒质,以光信号为信息载体的通信方式。
1. 光纤通信的发展史1966年,英籍华人高馄指出:如果能够减少玻璃中的杂质含量,就可以制造出损耗低于20dB/km 的光纤。
1970 年是使光纤通信发展出现跨越的一年,美国康宁公司研制出了损耗系数为20dB / km的光纤。
同年,美贝尔公司研制出使用寿命长达几小时的半导体激光器,光纤通信从此进入飞速发展。
通过以上的发展时期可以把光纤通信的发展归纳为三个阶段:1966~1976年:从基础研究到商业应用的开发时期;1976~1986 年:以提高传输速率和增加传输距离为目的和大力推广的发展阶段;1986~1996年:以实现超大容量超长距离为目标,全面深入开展新技术的援救阶段。
2.目前光纤通信的实用工作波长光纤通信传输的信号是光波信号,光波是人们熟悉的电磁波,其波长在微米级,频率为1014Hz ~1015Hz数量级。
根据电磁波潜可知,紫外线、可见光、红外线均属于光波的范畴,μm ~1.8μm。
可分为短波长目前光纤通信使用的波长范围是在近红外区,即波长为0.8μm,长波长波段是指波长为1.31μm和波段和长波长波段,短波长波段是指波长为0.85μm,这是目前光纤通信所采用的只个工作波长,也叫工作窗口。
1.553.光纤通信的特点目前光纤通信己经成为通信中的最主要的传输技术,以下优点。
( l ) 传输频带宽,通信容量大由信氨论知道,载波频率越高,通信容量越大。
它与其他通信传输系统相比,具有目前光纤通信使用的光载波频率在1014Hz ~1015Hz数量级,比常用的微波频率高104倍~105倍,因而,通信容量原则上比微披通信高104倍~105 倍。
( 2 ) 传输衰减小,传输距离长普通传输线的传输损耗,主要是由铜线的电阻以及导线间电容的漏电引起的,要想降低损耗,就得增大传输线的尺寸。