平面向量热点问题
- 格式:doc
- 大小:464.50 KB
- 文档页数:8
湖南省湘西自治州四校2021年高考数学平面向量多选题与热点解答题组合练附答案一、平面向量多选题1.已知向量(22cos m x =,()1, sin2n x =,设函数()f x m n =⋅,则下列关于函数()y f x =的性质的描述正确的是 ( )A .()f x 的最大值为3B .()f x 的周期为πC .()f x 的图象关于点5,012π⎛⎫ ⎪⎝⎭对称 D .()f x 在,03π⎛-⎫ ⎪⎝⎭上是增函数 【答案】ABD【分析】 运用数量积公式及三角恒等变换化简函数()f x ,根据性质判断.【详解】解:()22cos 2cos221f x m n x x x x =⋅==+2sin 216x π⎛⎫=++ ⎪⎝⎭, 当6x k ππ=+,()k Z ∈时,()f x 的最大值为3,选项A 描述准确;()f x 的周期22T ππ==,选项B 描述准确; 当512x π=时,2sin 2116x π⎛⎫++= ⎪⎝⎭,所以()f x 的图象关于点5,112π⎛⎫ ⎪⎝⎭对称,选项C 描述不准确; 当,03x π⎛⎫∈-⎪⎝⎭时,2,626x πππ⎛⎫+∈- ⎪⎝⎭,所以()f x 在,03π⎛-⎫ ⎪⎝⎭上是增函数,选项D 描述准确.故选:ABD.【点睛】本题考查三角恒等变换,正弦函数的图象与性质,属于中档题.2.下列命题中真命题的是( )A .向量a 与向量b 共线,则存在实数λ使a =λb (λ∈R )B .a ,b 为单位向量,其夹角为θ,若|a b -|>1,则3π<θ≤πC .A 、B 、C 、D 是空间不共面的四点,若AB •AC =0,AC •AD =0,AB •AD =0则△BCD 一定是锐角三角形D .向量AB ,AC ,BC 满足AB AC BC =+,则AC 与BC 同向【答案】BC【分析】对于A :利用共线定理判断对于B :利用平面向量的数量积判断对于C :利用数量积的应用判断对于D :利用向量的四则运算进行判断【详解】对于A :由向量共线定理可知,当0b =时,不成立.所以A 错误.对于B :若|a b -|>1,则平方得2221a a b b -⋅+>,即12a b ⋅<,又1||2a b a b cos cos θθ⋅=⋅=<,所以3π<θ≤π,即B 正确. 对于C :()()220BC BD AC AB AD AB AC AD AC AB AB AD AB AB ⋅=-⋅-=⋅-⋅-⋅+=>,0||BC BDcosB BC BD ⋅=⋅>,即B 为锐角,同理A ,C 也为锐角,故△BCD 是锐角三角形,所以C 正确.对于D :若AB AC BC =+,则AB AC BC CB -==,所以0CB =,所以则AC 与BC 共线,但不一定方向相同,所以D 错误.故选:BC.【点睛】(1)多项选择题是2020年高考新题型,需要要对选项一一验证;(2)要判断一个命题错误,只需举一个反例就可以;要证明一个命题正确,需要进行证明.3.已知向量(2,1),(3,1)a b ==-,则( )A .()a b a +⊥B .|2|5a b +=C .向量a 在向量bD .向量a 的单位向量是55⎛ ⎝⎭【答案】ABD【分析】多项选择题需要要对选项一一验证:对于A:利用向量垂直的条件判断;对于B:利用模的计算公式;对于C:利用投影的计算公式; 对于D:直接求单位向量即可.【详解】 (2,1),(3,1)a b ==-对于A: (1,2),()(1)2210,a b a b a +=-+⋅=-⨯+⨯=∴()a b a +⊥,故A 正确; 对于B: 222(2,1)2(3,1)(4,3),|2|(4)35a b a b +=+-=-∴+=-+=,故B 正确;对于C: 向量a 在向量b 上的投影是2210||(3)1a b b ⋅==--+,故C 错误; 对于D: 向量a 的单位向量是255,⎛⎫ ⎪ ⎪⎝⎭,故D 正确.故选:ABD .【点睛】多项选择题是2020年高考新题型,需要要对选项一一验证.4.已知ABC 是边长为2的等边三角形,D ,E 分别是,AC AB 上的点,且AE EB =,2AD DC =,BD 与CE 交于点O ,则( )A .0OC EO +=B .0AB CE ⋅=C .3OA OB OC OD +++=D .ED 在BC 方向上的投影为76【答案】BD【分析】可证明EO CE =,结合平面向量线性运算法则可判断A ;由AB CE ⊥结合平面向量数量积的定义可判断B ;建立直角坐标系,由平面向量线性运算及模的坐标表示可判断C ;由投影的计算公式可判断D.【详解】因为ABC 是边长为2的等边三角形,AE EB =,所以E 为AB 的中点,且CE AB ⊥,以E 为原点如图建立直角坐标系,则()0,0E ,()1,0A -,()10B ,,(C , 由2AD DC =可得2233AD AC ⎛== ⎝⎭,则13D ⎛- ⎝⎭, 取BD 的中点G ,连接GE ,易得//GE AD 且12GE AD DC ==, 所以CDO ≌EGO △,EO CO =,则0,2O ⎛⎝⎭, 对于A ,0OC EO EC +=≠,故A 错误;对于B ,由AB CE ⊥可得0AB CE ⋅=,故B 正确;对于C,1,2OA ⎛=-- ⎝⎭,1,2OB ⎛⎫=- ⎪ ⎪⎝⎭,0,2OC ⎛⎫= ⎪ ⎪⎝⎭,1,36OD ⎛=- ⎝⎭,所以1,3OA OB OC OD ⎛+++=- ⎝⎭,所以23OA OB OC OD +++=,故C 错误; 对于D,(BC =-,1,33ED ⎛⎫=- ⎪ ⎪⎝⎭, 所以ED 在BC 方向上的投影为127326BC ED BC+⋅==,故D 正确. 故选:BD.【点睛】关键点点睛:建立合理的平面直角坐标系是解题关键.5.已知ABC 是边长为2的等边三角形,D 是边AC 上的点,且2AD DC =,E 是AB 的中点,BD 与CE 交于点O ,那么( )A .0OE OC +=B .1AB CE ⋅=-C .32OA OB OC ++=D .132DE = 【答案】AC【分析】建立平面直角坐标系,结合线段位置关系以及坐标形式下模长的计算公式逐项分析.【详解】建立平面直角坐标系如下图所示:取BD 中点M ,连接ME ,因为,M E 为,BD BA 中点,所以1//,2ME AD ME AD =,又因为12CD AD =, 所以//,ME CD ME CD =,所以易知EOM COD ≅,所以O 为CE 中点, A .因为O 为CE 中点,所以0OE OC +=成立,故正确;B .因为E 为AB 中点,所以AB CE ,所以0AB CE ⋅=,故错误;C .因为()()(30,,1,0,1,0,32O A B C ⎛- ⎝⎭,所以33331,1,0,OA OB OC ⎛⎛⎛⎛++=+-+= ⎝⎭⎝⎭⎝⎭⎝⎭, 所以3OA OB OC ++= D .因为()123,0,03D E ⎛ ⎝⎭,所以123,3DE ⎛=- ⎝⎭,所以13DE =,故错误, 故选:AC.【点睛】关键点点睛:对于规则的平面图形(如正三角形、矩形、菱形等)中的平面向量的数量积和模长问题,采用坐标法计算有时会更加方便.6.下列各式结果为零向量的有( )A .AB BC AC ++ B .AB AC BD CD +++ C .OA OD AD -+ D .NQ QP MN MP ++-【答案】CD【分析】对于选项A ,2AB BC AC AC ++=,所以该选项不正确;对于选项B ,2AB AC BD CD AD +++=,所以该选项不正确;对于选项C ,0OA OD AD -+=,所以该选项正确;对于选项D ,0NQ QP MN MP ++-=,所以该选项正确.【详解】对于选项A ,2AB BC AC AC AC AC ++=+=,所以该选项不正确;对于选项B ,()()2AB AC BD CD AB BD AC CD AD AD AD +++=+++=+=,所以该选项不正确;对于选项C ,0OA OD AD DA AD -+=+=,所以该选项正确;对于选项D ,0NQ QP MN MP NP PN ++-=+=,所以该选项正确.故选:CD【点睛】本题主要考查平面向量的加法和减法法则,意在考查学生对这些知识的理解掌握水平.7.下列说法中错误的为 ()A .已知()1,2a =,()1,1b =,且a 与a λb +的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭B .向量()12,3e =-,213,24e ⎛⎫=- ⎪⎝⎭不能作为平面内所有向量的一组基底 C .若//a b ,则a 在b 方向上的正射影的数量为aD .三个不共线的向量OA ,OB ,OC ,满足AB CA BA CB OA OB AB CA BA CB ⎛⎫⎛⎫ ⎪ ⎪⋅+=⋅+ ⎪ ⎪⎝⎭⎝⎭0CA BC OC CA BC ⎛⎫ ⎪=⋅+= ⎪⎝⎭,则O 是ABC 的内心【答案】AC【分析】对于A ,由向量的交角为锐角的等价条件为数量积大于0,且两向量不共线,计算即可; 对于B ,由124e e =,可知1e ,2e 不能作为平面内所有向量的一组基底; 对于C ,利用向量投影的定义即可判断;对于D ,由0AB CA OA AB CA ⎛⎫ ⎪⋅+= ⎪⎝⎭,点O 在角A 的平分线上,同理,点O 在角B 的平分线上,点O 在角C 的平分线上,进而得出点O 是ABC 的内心.【详解】对于A ,已知()1,2a =,()1,1b =,且a 与a λb +的夹角为锐角,可得()0a a b λ+>⋅,且a 与a λb +不共线,()1,2a λb λλ+=++,即有()1220λλ++⨯+>,且()212λλ⨯+≠+,解得53λ>-且0λ≠,则实数λ的取值范围是53λ>-且0λ≠, 故A 不正确; 对于B ,向量,,213,24e ⎛⎫=- ⎪⎝⎭,124e e =,∴向量1e ,2e 不能作为平面内所有向量的一组基底,故B 正确;对于C ,若a b ,则a 在b 上的投影为a ±,故C 错误;对于D ,AB CAAB CA +表示与ABC 中角A 的外角平分线共线的向量,由0AB CA OA AB CA ⎛⎫ ⎪⋅+= ⎪⎝⎭,可知OA 垂直于角A 的外角平分线, 所以,点O 在角A 的平分线上,同理,点O 在角B 的平分线上,点O 在角C 的平分线上,故点O 是ABC 的内心,D 正确. 故选:AC.【点睛】本题考查了平面向量的运算和有关概念,具体包括向量数量积的夹角公式、向量共线的坐标表示和向量投影的定义等知识,属于中档题.8.已知,,a b c 是同一平面内的三个向量,下列命题中正确的是( )A .||||||a b a b ⋅≤B .若a b c b ⋅=⋅且0b ≠,则a c =C .两个非零向量a ,b ,若||||||a b a b -=+,则a 与b 共线且反向D .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭【答案】AC【分析】 根据平面向量数量积定义可判断A ;由向量垂直时乘积为0,可判断B ;利用向量数量积的运算律,化简可判断C ;根据向量数量积的坐标关系,可判断D.【详解】对于A ,由平面向量数量积定义可知cos ,a b a b a b ⋅=,则||||||a b a b ⋅≤,所以A 正确,对于B ,当a 与c 都和b 垂直时,a 与c 的方向不一定相同,大小不一定相等,所以B 错误,对于C ,两个非零向量a ,b ,若||||||a b a b -=+,可得22()(||||)a b a b -=+,即22||||a b a b -⋅=,cos 1θ=-,则两个向量的夹角为π,则a 与b 共线且反向,故C 正确;对于D ,已知(1,2)a =,(1,1)b =且a 与a b λ+的夹角为锐角,可得()0a a b λ⋅+>即2||0a a b λ+⋅>可得530λ+>,解得53λ>-, 当a 与a b λ+的夹角为0时,(1,2)a b λλλ+=++,所以2220λλλ+=+⇒= 所以a 与a b λ+的夹角为锐角时53λ>-且0λ≠,故D 错误; 故选:AC.【点睛】本题考查了平面向量数量积定义的应用,向量共线及向量数量积的坐标表示,属于中档题.9.关于平面向量有下列四个命题,其中正确的命题为( )A .若a b a c ⋅=⋅,则b c =;B .已知(,3)a k =,(2,6)b =-,若//a b ,则1k =-;C .非零向量a 和b ,满足||||||a b a b ==-,则a 与a b +的夹角为30º;D .0||||||||a b a b a b a b ⎛⎫⎛⎫+⋅-= ⎪ ⎪⎝⎭⎝⎭【答案】BCD【分析】 通过举反例知A 不成立,由平行向量的坐标对应成比例知B 正确,由向量加减法的意义知,C 正确,通过化简计算得D 正确.【详解】对A ,当0a = 时,可得到A 不成立;对B ,//a b 时,有326k =-,1k ∴=-,故B 正确. 对C ,当||||||a b a b ==-时,a 、b 、a b -这三个向量平移后构成一个等边三角形, a b + 是这个等边三角形一条角平分线,故C 正确.对D ,22()()()()110||||||||||||a b a b a b a a a b b b +⋅-=-=-=,故D 正确. 故选:BCD .【点睛】本题考查两个向量的数量积公式,两个向量加减法的几何意义,以及共线向量的坐标特点.属于基础题.10.已知ABC ∆是边长为()20a a >的等边三角形,P 为ABC ∆所在平面内一点,则()PA PB PC ⋅+的值可能是( )A .22a -B .232a -C .243a -D .2a -【答案】BCD【分析】通过建系,用坐标来表示向量,根据向量的乘法运算法则以及不等式,可得结果.【详解】建立如图所示的平面直角坐标系.设(),P x y ,又()3A a ,(),0B a -, (),0C a ,则()3PA x a y =--, (),PB a x y =---,(),PC a x y =--.则()(),,a x y a P PC x y B -+--+-=-即()2,2PB x y PC --+=所以 ()()()32,2x a PA PB P y x y C =--⋅--⋅+ 则()PA PB PC ⋅+22223x y ay =+- 即()PA PB PC ⋅+222332222x y a a ⎛⎫=+-- ⎪ ⎪⎝⎭. 所以()PA PB PC ⋅+232a ≥-故选:BCD.【点睛】本题主要通过建系的方法求解几何中向量的问题,属中档题.。
《平面向量》热点题型探究题型一 向量的概念及线性运算 1.向量的有关概念(1)向量:既有大小又有方向的量.两个向量不能比较大小,但它的模可以比较大小. (2)零向量:模为0的向量,记作0,其方向为任意的,所以0与任意向量平行,其性质有0·a =0,0+a =a .(3)单位向量:模为1个长度单位的向量,与a 方向相同的单位向量为a|a |.2.共线向量(1)概念:若两个非零向量a ,b 的方向相同或相反,则称a 与b 共线,也叫a 与b 平行,规定零向量与任意向量共线.两个向量共线,其所在的直线可能重合也可能平行.(2)共线向量定理:a ∥b (b ≠0)⇔存在唯一实数λ,使得a =λb . (3)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0. (4)若A ,B ,C 三点共线且OA →=λOB →+μOC →,则λ+μ=1. 3.平面向量线性运算的两种技巧(1)对于平面向量的线性运算问题,要尽可能转化到三角形或平行四边形中,灵活运用三角形法则、平行四边形法则,紧密结合图形的几何性质进行运算.(2)在证明两向量平行时,若已知两向量的坐标形式,常利用坐标运算来判断;若两向量不是以坐标形式呈现的,常利用共线向量定理来判断.1.有下列命题: ①若|a|=|b|,则a =b ;②若|AB →|=|DC →|,则四边形ABCD 是平行四边形; ③若m =n ,n =k ,则m =k ; ④若a ∥b ,b ∥c ,则a ∥c . 其中假命题的个数是( ) A .1 B .2 C .3D .4C 解析 对于①,|a|=|b|,a ,b 的方向不确定,则a ,b 不一定相等,所以①错误;对于②,若|AB →|=|DC →|,则AB →,DC →的方向不一定相同,所以四边形ABCD 不一定是平行四边形,所以②错误;对于③,若m =n ,n =k ,则m =k ,③正确;对于④,若a ∥b ,b ∥c ,则b =0时,a ∥c 不一定成立,所以④错误.综上,假命题是①②④,共3个.故选C 项.2.如图所示,在正方形ABCD 中,E 为AB 的中点,F 为CE 的中点,则AF →=( )A .34AB →+14AD →B .14AB →+34AD →C .12AB →+AD →D .34AB →+12AD →D 解析 根据题意得AF →=12(AC →+AE →),又AC →=AB →+AD →,AE →=12AB →,所以AF →=12⎝⎛⎭⎫AB→+AD →+12AB →=34AB →+12AD →.故选D 项.3.设e 1与e 2是两个不共线向量,AB →=3e 1+2e 2,CB →=k e 1+e 2,CD →=3e 1-2k e 2,若A ,B ,D 三点共线,则k 的值为________.解析 由题意,A ,B ,D 三点共线,故必存在一个实数λ,使得AB →=λBD →.又AB →=3e 1+2e 2,CB →=k e 1+e 2,CD →=3e 1-2k e 2,所以BD →=CD →-CB →=3e 1-2k e 2-(k e 1+e 2)=(3-k )e 1-(2k+1)e 2,所以3e 1+2e 2=λ(3-k )e 1-λ(2k +1)e 2,又e 1与e 2不共线,所以⎩⎪⎨⎪⎧3=λ(3-k ),2=-λ(2k +1),解得k =-94.答案 -944.已知点P 在△ABC 所在的平面内,若2P A →+3PB →+4PC →=3AB →,则△P AB 与△PBC 的面积的比值为________.解析 由2P A →+3PB →+4PC →=3AB →,得2P A →+4PC →=3AB →+3BP →,所以2P A →+4PC →=3AP →,即4PC →=5AP →.所以A ,C ,P 三点共线,且|AP →||PC →|=45,所以S △P AB S △PBC =|AP →||PC →|=45.答案 45题型二 平面向量基本定理平面向量基本定理:若a ,b 是平面内不共线的向量,向量c 是平面内任意一个向量,则存在唯一实数对x ,y ,使c =x a +y b .平面向量基本定理是定义向量坐标的基础,是将平面内任意向量用不共线的平面向量即基底表示出来的基础.5.已知平面直角坐标系内的两个向量a =(m,3m -4),b =(1,2),且平面内的任意向量c 都可以唯一地表示成c =λa +μb (λ,μ为实数),则m 的取值范围是( )A .(-∞,4)B .(4,+∞)C .(-∞,4)∪(4,+∞)D .(-∞,+∞)C 解析 平面内的任意向量c 都可以唯一地表示成c =λa +μb ,由平面向量基本定理可知,向量a ,b 可作为该平面所有向量的一组基底,即向量a ,b 是不共线向量.又因为a =(m,3m -4),b =(1,2),则m ×2-(3m -4)×1≠0,即m ≠4,所以m 的取值范围为(-∞,4)∪(4,+∞).故选C 项.6.如图所示,|OA →|=|OB →|=1,|OC →|=3,∠AOB =60°,OB ⊥OC ,设OC →=xOA →+yOB →,则( )A .x =-2,y =-1B .x =-2,y =1C .x =2,y =-1D .x =2,y =1B 解析 过点C 作CD ∥OB 交AO 的延长线于点D ,连接BC ,如图所示.由|OB →|=1,|OC →|=3,∠AOB =60°,OB ⊥OC ,知∠COD =30°.在Rt △OCD 中,可得OD =2CD =2,则OC →=OD →+DC →=OD →+OB →=-2OA →+OB →.故x =-2,y =1.故选B 项.7.在△ABC 中,点P 是AB 上一点,且CP →=23CA →+13CB →,点Q 是BC 的中点,AQ 与CP 的交点为M ,又CM →=tCP →,则实数t 的值为________.解析 因为CP →=23CA →+13CB →,所以3CP →=2CA →+CB →,即2CP →-2CA →=CB →-CP →,所以2AP→=PB →,即点P 为AB 的一个三等分点(靠近点A ).又由题意可知A ,M ,Q 三点共线,则可设AM →=λAQ →,所以CM →=AM →-AC →=λAQ →-AC →=λ⎝⎛⎭⎫12AB →+12AC →-AC →=λ2AB →+λ-22AC →,又CM →=tCP →=t (AP →-AC →)=t ⎝⎛⎭⎫13AB →-AC →=t 3AB →-tAC →,故⎩⎪⎨⎪⎧ λ2=t 3,λ-22=-t ,解得⎩⎨⎧t =34,λ=12.故t 的值是34.答案 34【变式】如图,平行四边形ABCD 的两条对角线相交于点O ,7AE →=5AB →,AD →=4AF →,EF 交AC 于点K ,AK →=λOA →,则实数λ的值为____________.解析 因为AK →=λOA →=-λAO →=-λ2(AB →+AD →),所以AK →=-λ2⎝⎛⎭⎫75AE →+4AF →.又E ,F ,K 三点共线,所以-λ2×⎝⎛⎭⎫75+4=1,解得λ=-1027. 答案 -1027题型三 向量的数量积及应用)1.向量的数量积是一个实数,求向量数量积的三种方法:一是利用向量数量积的定义,a·b =|a||b|cos θ;二是根据向量数量积的几何意义,a·b 等于a 的模与b 在向量a 方向上的投影的乘积;三是建立坐标系,写出向量坐标a =(x 1,y 1),b =(x 2,y 2),a·b =x 1x 2+y 1y 2.在解决与平面几何有关的数量积问题时,充分利用向量的线性运算,将所求向量用共同的基底表示出来,再利用平面向量的数量积运算法则求解.2.向量的投影:|b |cos θ叫向量b 在向量a 方向上的投影,|b |cos θ=a·b|a|.3.若向量a 与b 的夹角为θ,则θ的范围为[0,π],cos θ=a·b|a||b|;若已知向量a =(x 1,y 1),b =(x 2,y 2),向量a 与b 的夹角为θ,则cos θ=x 1x 2+y 1y 2x 21+y 21x 22+y 22.4.已知非零向量a ,b ,则a ⊥b ⇔a·b =0;已知非零向量a ,b ,若a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0.5.向量的模是非负数,|a|2=a 2=a·a ;若向量a =(x 1,y 1),则|a |=x 21+y 21.8.已知非零向量a ,b 满足|a|=2|b|,且(a -b )⊥b ,则a 与b 的夹角为( ) A .π6B .π3C .2π3D .5π6B 解析 因为(a -b )⊥b ,所以(a -b )·b =a·b -b 2=0,所以a·b =b 2,所以cos θ=a·b|a|·|b|=|b|22|b|2=12,所以a 与b 的夹角为π3.故选B 项. 9.已知AB →=(2,3),AC →=(3,t ),|BC →|=1,则AB →·BC →=( ) A .-3 B .-2 C .2D .3C 解析 因为BC →=AC →-AB →=(1,t -3),所以|BC →|=12+(t -3)2=1,所以t =3,所以AB →·BC →=(2,3)·(1,0)=2.故选C 项.10.已知向量a =(-4,3),b =(6,m ),且a ⊥b ,则m =________.解析 依题意向量a =(-4,3),b =(6,m ),a ⊥b ,则a·b =0,即-4×6+3m =0,即m =8.答案 811.在四边形ABCD 中,AD ∥BC ,AB =23,AD =5,∠A =30°,点E 在线段CB 的延长线上,且AE =BE ,则BD →·AE →=________.解析 如图,因为E 在线段CB 的延长线上,所以EB ∥AD .因为∠DAB =30°,所以∠ABE =30°.因为AE =BE ,所以∠EAB =30°.又因为AB =23,所以BE =2.因为AD =5,所以EB →=25AD →.所以AE →=AB →+BE →=AB →-25AD →.又因为BD →=AD →-AB →,所以BD →·AE →=(AD →-AB →)·⎝⎛⎭⎫AB →-25AD →=AD →·AB →-25AD →2-AB →2+25AD →·AB →=75|AD →|·|AB →|·cos 30°-25×52-(23)2=75×5×23×32-10-12=21-22=-1.答案 -1 【规范演练】1.下列各组向量中,可以作为基底的是( )A .e 1=(0,0),e 2=(1,2)B .e 1=(-1,2),e 2=(5,7)C .e 1=(3,5),e 2=(6,10)D .e 1=(2,-3),e 2=⎝⎛⎭⎫12,-34 B 解析 A 项中,零向量与任意向量都共线,故其不可以作为基底;B 项中,不存在实数λ,使得e 1=λe 2,故两向量不共线,故其可以作为基底;C 项中,e 2=2e 1,两向量共线,故其不可以作为基底;D 项中,e 1=4e 2,两向量共线,故其不可以作为基底.故选B 项.2.设a ,b 均为单位向量,则“a 与b 夹角为2π3”是“|a +b |=3”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件D 解析 因为a ,b 均为单位向量,若a 与b 夹角为2π3,则|a +b |=|a |2+|b |2+2a·b =1+1+2×1×1×cos 2π3=1,所以由“a 与b 夹角为2π3”不能推出“|a +b |=3”;若|a +b |=3,则|a +b |=|a|2+|b|2+2a·b =1+1+2×1×1×cos 〈a ,b 〉=3,解得cos 〈a ,b 〉=12,即a 与b 夹角为π3,所以由“|a +b |=3”不能推出“a 与b 夹角为2π3”.因此“a 与b 夹角为2π3”是“|a +b |=3”的既不充分也不必要条件.故选D 项.3.已知向量a =(1,2),b =(-2,3),c =(4,5),若(a +λb )⊥c ,则实数λ=( ) A .-12B .12C .-2D .2C 解析 因为a =(1,2),b =(-2,3),所以a +λb =(1-2λ,2+3λ),又(a +λb )⊥c ,所以(a +λb )·c =0,即4(1-2λ)+5(2+3λ)=0,解得λ=-2.故选C 项.4.在△ABC 中,点D 在线段BC 的延长线上,且BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合),若AO →=xAB →+(1-x )AC →,则x 的取值范围是( )A .⎝⎛⎭⎫0,13 B .⎝⎛⎭⎫0,12C .⎝⎛⎭⎫-13,0 D .⎝⎛⎭⎫-12,0 C 解析 由题意得AO →=AC →+CO →,O 在线段CD 上且不与端点重合,所以存在k (0<k <1),使CO →=kCD →,又BC →=3CD →,所以CD →=13BC →=13(AC →-AB →),所以AO →=AC →+k 3(AC →-AB →)=-k 3AB→+⎝⎛⎭⎫1+k 3AC →,又AO →=xAB →+(1-x )AC →,所以x =-k 3,所以-13<x <0.故选C 项. 5.在矩形ABCD 中,|AB →|=4,|AD →|=2.若点M ,N 分别是CD ,BC 的中点,则AM →·MN →=( )A .4B .3C .2D .1C 解析 由题意作出图形,如图所示.由图及题意,可得AM →=AD →+DM →=AD →+12AB →,MN →=CN →-CM →=12CB →-12CD →=-12BC →+12DC →=-12AD →+12AB →.所以AM →·MN →=⎝⎛⎭⎫AD →+12AB →·⎝⎛⎭⎫-12AD →+12AB →=-12·|AD →|2+14·|AB →|2=-12×4+14×16=2.故选C 项. 【跟踪检测】 基础热身1.已知向量BA →=⎝⎛⎭⎫12,32,BC →=⎝⎛⎭⎫32,12,则∠ABC =( )A .30°B .45°C .60°D .120°A 解析 |BA →|=1,|BC →|=1,cos ∠ABC =BA →·BC →|BA →|·|BC →|=32.因为0°≤∠ABC ≤180°,所以∠ABC=30°.故选A 项.2.向量a ,b ,c 在正方形网格中的位置如图所示.若向量c =λa +b ,则实数λ=( )A .-2B .-1C .1D .2D 解析 由题中所给图象可得2a +b =c ,又c =λa +b ,所以λ=2.故选D 项. 3.已知平面向量a =(-1,2),b =(2,y ),且a ∥b ,则3a +2b =( ) A .(-1,7) B .(-1,2) C .(1,2)D .(1,-2)D 解析 因为a =(-1,2),b =(2,y ),且a ∥b ,所以-1×y -2×2=0,解得y =-4,故可得3a +2b =3(-1,2)+2(2,-4)=(1,-2).故选D 项.4.设向量a ,b 满足|a +b|=10,|a -b|=6,则a·b =( ) A .1 B .2 C .3D .5A 解析 由|a +b |=10得|a +b |2=10, 即a 2+2a·b +b 2=10,①又|a -b |=6,所以a 2-2a·b +b 2=6,② 由①-②得4a·b =4,则a·b =1.故选A 项.5.已知向量a =(2,-4),b =(-3,x ),c =(1,-1),若(2a +b )⊥c ,则|b|=( ) A .9 B .3 C .109D .310 D 解析 向量a =(2,-4),b =(-3,x ),c =(1,-1),所以2a +b =(1,x -8),由(2a +b )⊥c ,可得1+8-x =0,解得x =9,则|b |=(-3)2+92=310.故选D 项.6.(2019·广东东莞统考)如图所示,△ABC 中,BD →=2DC →,点E 是线段AD 的中点,则AC →=( )A .34AD →+12BE →B .34AB →+BE →C .54AD →+12BE →D .54AD →+BE →C 解析 由题意和图可知,AC →=AD →+DC →,DC →=12BD →,BD →=BE →+ED →,ED →=12AD →,所以AC →=54AD →+12BE →.故选C 项.7.如图,已知|OA →|=|OB →|=1,|OC →|=2,tan ∠AOB =-43,∠BOC =45°,OC →=mOA →+nOB →,则m n=( )A .57B .75C .37D .73A 解析 以OA 所在的直线为x 轴,过O 作与OA 垂直的直线为y 轴,建立平面直角坐标系如图所示.因为|OA →|=|OB →|=1,且tan ∠AOB =-43,所以cos ∠AOB =-35,sin ∠AOB =45,所以A (1,0),B ⎝⎛⎭⎫-35,45,又令∠AOC =θ,则θ=∠AOB -∠BOC ,所以tan θ=tan(∠AOB -∠BOC )=-43-11-43=7,又因为点C 在∠AOB 内,所以cos θ=210,sin θ=7210,又|OC →|=2,所以C ⎝⎛⎭⎫15,75,因为OC →=mOA →+nOB →(m ,n ∈R ),所以⎝⎛⎭⎫15,75=(m,0)+⎝⎛⎭⎫-35n ,45n =⎝⎛⎭⎫m -35n ,45n ,即⎩⎨⎧15=m -35n ,75=45n ,解得⎩⎨⎧n =74,m =54,所以m n =57.故选A 项.8.已知e 1,e 2是互相垂直的单位向量,若3e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是________.解析 cos 60°=(3e 1-e 2)·(e 1+λe 2)|3e 1-e 2||e 1+λe 2|=3-λ3+11+λ2=12,解得λ=33. 答案339.已知向量a ,b 的夹角为120°,且|a|=2,|b|=4,则b 在a 方向上的投影等于________.解析 因为a·b =2×4cos 120°=-4,所以b 在a 方向上的投影为a·b |a|=-42=-2.答案 -210.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m 使得AB →+AC →=mAM →成立,则m =________.解析 由条件知M 是△ABC 的重心,设D 是BC 边的中点,则AB →+AC →=2AD →,而AM →=23AD →,所以2AD →=m ·23AD →,所以m =3.答案 311.在△ABC 中,∠ACB 为钝角,AC =BC =1,CO →=xCA →+yCB →,且x +y =1,函数f (m )=|CA →-mCB →|的最小值为32,则|CO →|的最小值为________.解析 如图,△ABC 中,∠ACB 为钝角,AC =BC =1,记NA →=CA →-mCB →,则当N 在D 处,即AD ⊥BC 时,f (m )取得最小值32,因此|AD →|=32,容易得到∠ACB =120°.因为CO →=xCA →+yCB →,且x +y =1,所以O 在边AB 上,所以当CO ⊥AB 时,|CO →|最小,|CO →|min =12.答案 1212.平行四边形ABCD 中,AB =4,AD =2,AB →·AD →=4,点P 在边CD 上,则P A →·PC →的取值范围是________.解析 设|PD →|=x ,x ∈[0,4],则P A →·PC →=(PD →+DA →)·PC →=⎝⎛⎭⎫-x 4AB →-AD →·4-x 4AB →=-x 4×4-x 4AB →2-4-x 4AD →·AB →=-x 4×4-x 4×16-4-x 4×4=x 2-3x -4=⎝⎛⎭⎫x -322-254,所以当x =32时,取最小值-254,当x =4时,取最大值0,即P A →·PC →的取值范围是⎣⎡⎦⎤-254,0. 答案 ⎣⎡⎦⎤-254,0 能力提升13.设平面向量a =(-2,1),b =(1,λ),若a 与b 的夹角为钝角,则λ的取值范围是____________.解析 因为a 与b 的夹角为钝角,所以a ·b <0,且a 与b 不平行,所以有⎩⎪⎨⎪⎧-2+λ<0,-2λ≠1,即λ<2且λ≠-12,所以λ的取值范围为⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫-12,2. 答案 ⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫-12,2 14.已知A B →与A C →的夹角为90°,|A B →|=2,|A C →|=1,AM →=λA B →+μA C →(λ,μ∈R ),且AM →·B C →=0,则λμ的值为________.解析 根据题意,建立如图所示的平面直角坐标系,则A (0,0),B (0,2),C (1,0),所以AB→=(0,2),AC →=(1,0),BC →=(1,-2).设M (x ,y ),则AM →=(x ,y ),所以AM →·BC →=(x ,y )·(1,-2)=x -2y =0,所以x =2y ,又AM →=λAB →+μAC →,即(x ,y )=λ(0,2)+μ(1,0)=(μ,2λ),所以x =μ,y =2λ,所以λμ=12y x =14. 答案 1415.如图,△ABC 是边长为23的正三角形,P 是以C 为圆心,1为半径的圆上任意一点,则AP →·BP →的取值范围是________.解析 取AB 的中点D ,连接CD ,CP ,则CA →+CB →=2CD →,所以AP →·BP →=(CP →-CA →)·(CP →-CB →)=CP →2-CP →·(CA →+CB →)+CA →·CB →=CP →2-2CD →·CP →+CA →·CB →=1-2×3×1×cos CD →,CP→+(23)2cos π3=7-6cos CD →,CP →,所以当cos CD →,CP →=1时,AP →·BP →取得最小值为1;当cos CD →,CP →=-1时,AP →·BP →取得最大值为13.因此AP →·BP →的取值范围是[1,13].答案 [1,13]16.已知向量a =(cos α,sin α),b =(cos β,sin β),0<β<α<π.(1)若|a -b |=2,求向量a 在b 上的投影;(2)设c =(0,1),若a +b =c ,求α,β的值.解析 (1)a -b =(cos α-cos β,sin α-sin β),则|a -b |=2-2cos (α-β)=2,所以cos(α-β)=0,而0<β<α<π,所以0<α-β<π,所以α-β=π2.所以向量a 在b 上的投影为|a |cos a ,b =a ·b |b |=cos(α-β)=0. (2)由a +b =c 得⎩⎪⎨⎪⎧ cos α+cos β=0, ①sin α+sin β=1, ②①2+②2得cos(α-β)=-12,而0<α-β<π,故α-β=2π3,而由①得α+β=π,解得α=5π6,β=π6.。
微重点 平面向量的最值与范围问题平面向量中的最值与范围问题,是高考的热点与难点问题,主要考查求向量的模、数量积、夹角及向量的系数等的最值、范围.解决这类问题的一般思路是建立求解目标的函数关系,通过函数的值域解决问题,同时,平面向量兼具“数”与“形”的双重身份,数形结合也是解决平面向量中的最值与范围问题的重要方法.考点一 求参数的最值(范围)例1 (1)(2022·沈阳质检)在正六边形ABCDEF 中,点G 为线段DF (含端点)上的动点,若CG →=λCB →+μCD →(λ,μ∈R ),则λ+μ的取值范围是________. 答案 [1,4]解析 根据题意,不妨设正六边形ABCDEF 的边长为23,以O 为原点建立平面直角坐标系,如图所示,则F (-23,0),D (3,3),C (23,0),B (3,-3), 设点G 的坐标为(m ,n ),则CG →=(m -23,n ), CB →=(-3,-3),CD →=(-3,3), 由CG →=λCB →+μCD →可得,m -23=-3λ-3μ,即λ+μ=-33m +2, 数形结合可知m ∈[-23,3], 则-33m +2∈[1,4],即λ+μ的取值范围为[1,4]. (2)设非零向量a ,b 的夹角为θ,若|a |=2|b |,且不等式|2a +b |≥|a +λb |对任意θ恒成立,则实数λ的取值范围为( ) A .[-1,3] B .[-1,5] C .[-7,3] D .[5,7]答案 A解析 ∵非零向量a ,b 的夹角为θ,若|a |=2|b |, a ·b =|a ||b |cos θ=2|b |2cos θ,不等式|2a +b |≥|a +λb |对任意θ恒成立, ∴(2a +b )2≥(a +λb )2,∴4a 2+4a ·b +b 2≥a 2+2λa ·b +λ2b 2, 整理可得(13-λ2)+(8-4λ)cos θ≥0恒成立, ∵cos θ∈[-1,1],∴⎩⎪⎨⎪⎧13-λ2+8-4λ≥0,13-λ2-8+4λ≥0, ∴⎩⎪⎨⎪⎧-7≤λ≤3,-1≤λ≤5,∴-1≤λ≤3. 规律方法 利用共线向量定理及推论 (1)a ∥b ⇔a =λb (b ≠0).(2)OA →=λOB →+μOC →(λ,μ为实数),则A ,B ,C 三点共线⇔λ+μ=1.跟踪演练1 (2022·滨州模拟)在△ABC 中,M 为BC 边上任意一点,N 为线段AM 上任意一点,若AN →=λAB →+μAC →(λ,μ∈R ),则λ+μ的取值范围是( ) A.⎣⎡⎦⎤0,13 B.⎣⎡⎦⎤13,12 C .[0,1] D .[1,2]答案 C解析 由题意,设AN →=tAM →(0≤t ≤1),如图.当t =0时,AN →=0, 所以λAB →+μAC →=0,所以λ=μ=0,从而有λ+μ=0;当0<t ≤1时,因为AN →=λAB →+μAC →(λ,μ∈R ), 所以tAM →=λAB →+μAC →, 即AM →=λt AB →+μt AC →,因为M ,B ,C 三点共线,所以λt +μt =1,即λ+μ=t ∈(0,1].综上,λ+μ的取值范围是[0,1].考点二 求向量模、夹角的最值(范围)例2 (1)已知e 为单位向量,向量a 满足:(a -e )·(a -5e )=0,则|a +e |的最大值为( ) A .4 B .5 C .6 D .7 答案 C解析 可设e =(1,0),a =(x ,y ), 则(a -e )·(a -5e )=(x -1,y )·(x -5,y ) =x 2-6x +5+y 2=0, 即(x -3)2+y 2=4, 则1≤x ≤5,-2≤y ≤2, |a +e |=(x +1)2+y 2=8x -4, 当x =5时,8x -4取得最大值为6, 即|a +e |的最大值为6.(2)在平行四边形ABCD 中,AB →|AB →|+2AD →|AD →|=λAC→|AC →|,λ∈[2,2],则cos ∠BAD 的取值范围是________. 答案 ⎣⎡⎦⎤-34,-14 解析 因为AB →|AB →|+2AD →|AD →|=λAC→|AC →|,且AB →+AD →=AC →,所以|AB →|∶|AD →|∶|AC →|=1∶2∶λ, 不妨设|AB →|=1,则|AD →|=2,|AC →|=λ, 在等式AB →|AB →|+2AD →|AD →|=λAC→|AC →|两边同时平方可得5+4cos ∠BAD =λ2,则cos ∠BAD =λ2-54,因为λ∈[2,2],所以cos ∠BAD =λ2-54∈⎣⎡⎦⎤-34,-14.易错提醒 找两向量的夹角时,要注意“共起点”以及向量夹角的取值范围是[0,π]; 若向量a ,b 的夹角为锐角,包括a ·b >0和a ,b 不共线,同理若向量a ,b 的夹角为钝角,包括a ·b <0和a ,b 不共线.跟踪演练2 (2022·马鞍山模拟)已知向量a ,b 满足|a -3b |=|a +3b |,|a +b |=4,若向量c =λa +μb (λ+μ=1,λ,μ∈R ),且a ·c =b ·c ,则|c |的最大值为( ) A .1 B .2 C .3 D .4 答案 B解析 由|a -3b |=|a +3b |得a ·b =0, 所以a ⊥b .如图,设OA →=a ,OB →=b ,|OA →|=m ,|OB →|=n , 由a ⊥b 可知OA ⊥OB , 所以|AB →|=|b -a |=|a +b |=4,即m 2+n 2=16,所以2mn ≤16,则mn ≤8,当且仅当m =n 时取得等号.设OC →=c , 由c =λa +μb (λ+μ=1), 可知A ,B ,C 三点共线,由a ·c =b ·c 可知(a -b )·c =0,所以OC ⊥AB , 由等面积法可得, 12|OA →|·|OB →|=12|AB →|·|OC →|, 得|OC →|=|OA →|·|OB →||AB →|=mn 4≤2,所以|c |的最大值为2.考点三 求数量积的最值(范围)例3 (1)(2022·福州质检)已知平面向量a ,b ,c 均为单位向量,且|a -b |=1,则(a -b )·(b -c )的最大值为( ) A.14 B.12 C .1 D.32答案 B解析 ∵|a -b |2=a 2-2a ·b +b 2 =2-2a ·b =1, ∴a ·b =12,∴(a -b )·(b -c )=a ·b -a ·c -b 2+b ·c =12-1-(a -b )·c =-12-|a -b |·|c |cos 〈a -b ,c 〉=-12-cos 〈a -b ,c 〉,∵cos 〈a -b ,c 〉∈[-1,1], ∴(a -b )·(b -c )∈⎣⎡⎦⎤-32,12, 即(a -b )·(b -c )的最大值为12.(2)(2022·广州模拟)已知菱形ABCD 的边长为2,∠ABC =60°,点P 在BC 边上(包括端点),则AD →·AP →的取值范围是________. 答案 [-2,2]解析 如图所示,以C 为原点,BC →为x 轴正方向,过点C 垂直向上的方向为y 轴,建立平面直角坐标系.因为菱形ABCD 的边长为2,∠ABC =60°, 则B (-2,0),C (0,0),D (1,3),A (-1,3). 因为点P 在BC 边上(包括端点), 所以设P (t ,0),其中t ∈[-2,0]. 所以AD →=(2,0),AP →=(t +1,-3), 所以AD →·AP →=2t +2∈[-2,2].规律方法 向量数量积最值(范围)问题的解题策略(1)形化:利用平面向量的几何意义将问题转化为平面几何中的最值或范围问题,然后根据平面图形的特征直接进行判断.(2)数化:利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域、不等式的解集、方程有解等问题,然后利用函数、不等式、方程的有关知识来解决.跟踪演练3 已知AB 是半圆O 的直径,AB =2,等腰△OCD 的顶点C ,D 在半圆弧AB ︵上运动,且∠COD =120°,点P 是半圆弧AB ︵上的动点,则PC →·PD →的取值范围为( ) A.⎣⎡⎦⎤-34,34 B.⎣⎡⎦⎤-34,1 C.⎣⎡⎦⎤-12,1 D.⎣⎡⎦⎤-12,12 答案 C解析 以点O 为原点,AB 为x 轴,垂直于AB 的直线为y 轴,建立平面直角坐标系,如图所示,不妨取C (1,0),则D ⎝⎛⎭⎫-12,32,设P (cos α,sin α)(α∈[0,π]), PC →·PD →=(1-cos α,-sin α)·⎝⎛⎭⎫-12-cos α,32-sin α =12-32sin α-12cos α=12-sin ⎝⎛⎭⎫α+π6. 因为α∈[0,π],所以α+π6∈⎣⎡⎦⎤π6,7π6, 所以sin ⎝⎛⎭⎫α+π6∈⎣⎡⎦⎤-12,1, 所以12-sin ⎝⎛⎭⎫α+π6∈⎣⎡⎦⎤-12,1,即PC →·PD →的取值范围为⎣⎡⎦⎤-12,1. 专题强化练1.(2022·山东省实验中学诊断)设向量OA →=(1,-2),OB →=(a ,-1),OC →=(-b ,0),其中O 为坐标原点,a >0,b >0,若A ,B ,C 三点共线,则1a +2b 的最小值为( )A .4B .6C .8D .9 答案 C解析 由题意得,AB →=OB →-OA →=(a -1,1), AC →=OC →-OA →=(-b -1,2),∵A ,B ,C 三点共线,∴AB →=λAC →且λ∈R ,则⎩⎪⎨⎪⎧a -1=-λ(b +1),2λ=1,可得2a +b =1, ∴1a +2b =⎝⎛⎭⎫1a +2b (2a +b )=4+b a +4ab ≥4+2b a ·4ab=8, 当且仅当b =2a =12时,等号成立.∴1a +2b的最小值为8. 2.设A ,B ,C 是半径为1的圆O 上的三点,且OA →⊥OB →,则(OC →-OA →)·(OC →-OB →)的最大值为( ) A .1+ 2 B .1- 2 C.2-1 D .1答案 A解析 如图,作出OD →,使OA →+OB →=OD →, 则(OC →-OA →)·(OC →-OB →)=OC →2-OA →·OC →-OB →·OC →+OA →·OB → =1-(OA →+OB →)·OC →=1-OD →·OC → =1-2cos 〈OD →,OC →〉,当cos 〈OD →,OC →〉=-1时,(OC →-OA →)·(OC →-OB →)取得最大值为1+ 2.3.(2022·杭州模拟)平面向量a ,b 满足|a |=1,⎪⎪⎪⎪b -32a =1,记〈a ,b 〉=θ,则sin θ的最大值为( )A.23B.53C.12D.32 答案 A解析 因为|a |=1,⎪⎪⎪⎪b -32a =1, 所以⎪⎪⎪⎪b -32a 2=|b |2-3a ·b +94|a |2=1, |b |2-3|a |·|b |cos θ+94-1=0,即|b |2-3|b |cos θ+54=0,所以cos θ=|b |2+543|b |=|b |3+512|b |≥2536=53, 当且仅当|b |=52时,等号成立, 因为〈a ,b 〉=θ,θ∈[0,π], 所以sin θ=1-cos 2θ≤1-59=23, 即sin θ的最大值为23.4.如图,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =1,BC =2,P 是线段AB 上的动点,则|PC →+4PD →|的最小值为( )A .35B .6C .25D .4答案 B解析 如图,以点B 为坐标原点,BC ,BA 所在直线为x 轴、y 轴,建立平面直角坐标系,设AB =a ,BP =x (0≤x ≤a ),因为AD =1,BC =2,所以P (0,x ),C (2,0),D (1,a ), 所以PC →=(2,-x ),PD →=(1,a -x ), 4PD →=(4,4a -4x ),所以PC →+4PD →=(6,4a -5x ),所以|PC →+4PD →|=36+(4a -5x )2≥6,所以当4a -5x =0,即x =45a 时,|PC →+4PD →|的最小值为6.5.(多选)已知向量a ,b ,单位向量e ,若a ·e =1,b ·e =2,a ·b =3,则|a +b |的可能取值为( ) A .3 B.10 C.13 D .6答案 CD解析 设e =(1,0),a =(x 1,y 1),b =(x 2,y 2), 由a ·e =1得x 1=1, 由b ·e =2得x 2=2,由a ·b =x 1x 2+y 1y 2=3,可得y 1y 2=1, 则|a +b |=(a +b )2=(x 1+x 2)2+(y 1+y 2)2=11+y 21+y 22≥11+2y 1y 2=13,当且仅当y 1=y 2=1时取等号.6.(多选)(2022·武汉模拟)正方形ABCD 的边长为2,E 是BC 的中点,如图,点P 是以AB 为直径的半圆上任意一点,AP →=λAD →+μAE →(λ,μ∈R ),则( )A .λ的最大值为12B .μ的最大值为1 C.AP →·AD →的最大值为2 D.AP →·AE →的最大值为5+2 答案 BCD解析 如图,以AB 的中点O 为原点建立平面直角坐标系,则A (-1,0),D (-1,2),E (1,1), 连接OP ,设∠BOP =α(α∈[0,π]), 则P (cos α,sin α), AP →=(cos α+1,sin α), AD →=(0,2),AE →=(2,1), 由AP →=λAD →+μAE →,得2μ=cos α+1且2λ+μ=sin α,α∈[0,π], 所以λ=14(2sin α-cos α-1)=54sin(α-θ)-14≤5-14,故A 错误; 当α=0时,μmax =1,故B 正确; AP →·AD →=2sin α≤2,故C 正确; AP →·AE →=sin α+2cos α+2=5sin(α+φ)+2≤5+2,故D 正确.7.(2022·广东六校联考)已知菱形ABCD 的边长为2,∠BAD =60°,E 是边CD 的中点,连接AE 并延长至点F ,使得AE =2EF ,若H 为线段BC 上的动点,则FH →·AH →的取值范围为______________. 答案 ⎣⎡⎦⎤-17764,-32 解析 方法一 连接AC ,BD 交于点O ,以点O 为坐标原点,以BD 所在直线为x 轴,AC 所在直线为y 轴,建立如图所示的平面直角坐标系,则A (0,3),B (-1,0),C (0,-3),D (1,0),E ⎝⎛⎭⎫12,-32. 设F (x 0,y 0),因为AE →=2EF →,所以⎝⎛⎭⎫12,-332=2⎝⎛⎭⎫x 0-12,y 0+32 =()2x 0-1,2y 0+3, 所以2x 0-1=12,2y 0+3=-332, 所以x 0=34,y 0=-534, 所以F ⎝⎛⎭⎫34,-534. 易知直线BC 的方程为y =-3x -3,设H (x ,-3x -3)(-1≤x ≤0),则AH →=(x ,-3x -23),FH →=⎝⎛⎭⎫x -34,-3x +34, 所以FH →·AH →=⎝⎛⎭⎫x -34x +⎝⎛⎭⎫3x -34(3x +23)=4x 2+92x -32, 因为-1≤x ≤0,所以FH →·AH →∈⎣⎡⎦⎤-17764,-32.方法二 设BH →=tBC →(0≤t ≤1),则AH →=AB →+BH →=AB →+tBC →=AB →+tAD →. 连接AC (图略),因为E 为CD 的中点, 所以AE →=12(AC →+AD →)=12(AB →+2AD →), AF →=AE →+EF →=32AE →=34(AB →+2AD →), 所以FH →·AH →=(AH →-AF →)·AH →=AH →2-AF →·AH →=(AB →+tAD →)2-34(AB →+2AD →)·(AB →+tAD →)=4+4t 2+4t -34(4+2t +4+8t ) =4+4t 2+4t -6-15t 2=4t 2-72t -2. 设y =4t 2-72t -2,0≤t ≤1,根据二次函数的图象与性质可知,函数y =4t 2-72t -2,0≤t ≤1的最小值在t =716处取得,为-17764,最大值在t =1处取得,为-32, 所以FH →·AH →的取值范围是⎣⎡⎦⎤-17764,-32. 8.已知向量a ,b 满足|a |=1,|b |=3,则|2a +b |+|2a -b |的最小值是________,最大值是________.答案 6 213解析 ∵|2a +b |+|2a -b |≥|2a +b +2a -b |=4|a |=4,且|2a +b |+|2a -b |≥|2a +b -2a +b |=2|b |=6,∴|2a +b |+|2a -b |≥6,当且仅当2a +b 与2a -b 反向时取等号.此时|2a +b |+|2a -b |的最小值为6.∵|2a +b |+|2a -b |2≤|2a +b |2+|2a -b |22 =|2a |2+|b |2=13, ∴|2a +b |+|2a -b |≤213,当且仅当|2a +b |=|2a -b |时取等号, ∴|2a +b |+|2a -b |的最大值为213.。
突破6.4 平面向量的应用一、学情分析高考对本部分的考查主要涉及平面向量的数量积和向量的线性运算,以运算求解和数形结合为主,重点掌握数量积的坐标表达式,会进行平面向量数量积的运算,能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系,掌握向量加法、减法、数乘的运算及其几何意义等,注重转化与化归思想的应用.1.平面向量的数量积一直是高考的一个热点,尤其是平面向量的数量积,主要考查平面向量的数量积的 运算、向量的几何意义、模与夹角、两向量的垂直等问题.题型一般以选择题、填空题为主.2.平面向量的基本定理及坐标表示是高考中的一个热点内容,尤其是用坐标表示的向量共线的条件是高 考考查的重点内容,一般是通过向量的坐标表示,将几何问题转化为代数问题来解决,多以选择题或填空题的形式呈现,有时也作为解答题中的条件,应用向量的平行或垂直关系进行转换.二、学法指导与考点梳理考点一 向量在平面几何中的应用 (1)用向量解决常见平面几何问题的技巧: 问题类型 所用知识 公式表示线平行、点共线等问题共线向量定理a ∥b ⇔a =λb ⇔x 1y 2-x 2y 1=0, 其中a =(x 1,y 1),b =(x 2,y 2),b ≠0 垂直问题数量积的运算性质a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0,其中a =(x 1,y 1),b =(x 2,y 2),且a ,b 为非零向量夹角问题数量积的定义cos θ=a ·b|a ||b |(θ为向量a ,b 的夹角),其中a ,b 为非零向量长度问题数量积的定义|a |=a 2=x 2+y 2,其中a =(x ,y ),a 为非零向量平面几何问题――→设向量向量问题――→运算解决向量问题――→还原解决几何问题。
考点二 正弦定理和余弦定理1.在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 定理 正弦定理余弦定理公式a sin A =b sin B =c sin C=2R a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C常见 变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ;(2)sin A =a 2R ,sin B =b 2R ,sin C =c2R ;(3)a ∶b ∶c =sin A ∶sin B ∶sin C ;(4)a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin Acos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r .3.在△ABC 中,已知a ,b 和A 时,解的情况如下:A 为锐角A 为钝角或直角图形关系式 a =b sin A b sin A <a <b a ≥b a >b a ≤b 解的个数一解两解一解一解无解重难点题型突破1 平面向量在平面几何中的应用(奔驰定理)例1、(1).(2022·四川西昌·高二期末(理))在平面上有ABC 及内一点O 满足关系式:0OBC OAC OAB S OA S OB S OC ⋅+⋅+⋅=△△△即称为经典的“奔驰定理”,若ABC 的三边为a ,b ,c ,现有0a OA b OB c OC ⋅+⋅+⋅=则O 为ABC 的( )A .外心B .内心C .重心D .垂心【答案】B 【解析】 【分析】利用三角形面积公式,推出点O 到三边距离相等。
【高考地位】平面向量中的最值和范围问题,是一个热点问题,也是难点问题,这类试题的基本类型是根据给出的条件求某个量的最值、范围,如:向量的模、数量积、夹角及向量的系数.解决这类问题的一般思路是建立求解目标的函数关系,通过函数的值域解决问题,同时,平面向量兼具“数”与“形”的双重身份,解决平面向量最值、范围问题的另一个基本思想是数形结合.在高考各种题型均有出现如选择题、填空题和解答题,其试题难度属中高档题. 【方法点评】方法一 利用基本不等式求平面向量的最值使用情景:一般平面向量求最值问题解题模板:第一步 利用向量的概念及其基本运算将所求问题转化为相应的等式关系;第二步 运用基本不等式求其最值问题; 第三步 得出结论。
例1.已知点A 在线段BC 上(不含端点),O 是直线BC 外一点,且20OA aOB bOC --=,则221a ba b b+++的最小值是___________ 【答案】222例2 如右图所示,已知点G 是ABC ∆的重心,过点G 作直线与,AB AC 两边分别交于,N M 两点,且,AM x AB AN y AC ==,则2x y +的最小值为( )A .2B .13C .3223+ D .34【答案】C【变式演练1】如图所示,已知点G 是ABC ∆的重心,过点G 作直线与,AB AC 两边分别交于,M N 两点,且,AM x AB AN y AC ==,则x y +的最小值为( )A .2B .13C .43D .34【答案】CMNA BGQ考点:向量共线,基本不等式求最值【变式演练2】已知点A(1, 1),B(4,0),C(2,2).平面区域D由所有满足AP AB ACλμ=+(1≤≤a,1≤≤b)的点P(x,y)组成的区域.若区域D的面积为8,则a+b的最小值为.【答案】4考点:1、平面向量的线性运算;2、基本不等式. 【变式演练3】平行四边形ABCD 中,60,1,2,BAD AB AD P ∠===为平行四边形内一点,且22AP =,若),(R AD AB AP ∈+=μλμλ,则2u λ+的最大值为 . 6【解析】试题分析:对),(R AD AB AP ∈+=μλμλ两边平方可得()()22AP AB AD λμ=+可化为222222APAB AB AD ADλλμμ=+⋅⋅+,据已知条件可得22122λμ=+≥,即λμ≤,又()22212223λλμ=++=+≤,则λ+≤. 考点:向量的数量积运算;基本不等式方法二 利用向量的数量积m n m n ⋅≤求最值或取值范围使用情景:涉及数量积求平面向量最值问题解题模板:第一步 运用向量的加减法用已知向量表示未知向量;第二步 运用向量的数量积的性质求解; 第三步 得出结论。
第八讲 平面向量1.(向量平行的坐标表示)(2013·陕西高考)已知向量a =(1,m ),b =(m,2),若a ∥b ,则实数m 等于( )A .-2 B. 2 C .-2或 2D .0【解析】 由a ∥b ⇒m 2=1×2⇒m =2或m =- 2. 【答案】 C2.(向量的线性运算)(2013·四川高考)在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB →+AD →=λAO →,则λ=________.【解析】 由向量加法的平行四边形法则,得AB →+AD →=AC →. 又O 是AC 的中点,∴AC =2AO ,∴AC →=2AO →, ∴AB →+AD →=2AO →. 又AB →+AD →=λAO →,∴λ=2. 【答案】 23.(向量的数量积)(2013·山东高考)在平面直角坐标系xOy 中,已知OA →=(-1,t ),OB →=(2,2).若∠ABO =90°,则实数t 的值为________.【解析】 ∵∠ABO =90°,∴AB →⊥OB →,∴OB →·AB →=0. 又AB →=OB →-OA →=(2,2)-(-1,t )=(3,2-t ), ∴(2,2)·(3,2-t )=6+2(2-t )=0. ∴t =5.【答案】 54.(平面向量的基本定理)向量a ,b ,c 在正方形网格中的位置如图2-3-1所示,若c =λa +μb (λ,μ∈R ),则λμ=________.图2-3-1【解析】 以向量a 的终点为原点,过该点的水平和竖直的网格线所在直线为x 轴、y 轴建立平面直角坐标系,设一个小正方形网格的边长为1,则a =(-1,1),b =(6,2),c =(-1,-3).由c =λa + μb ,即(-1,-3)=λ(-1,1)+μ(6,2),得-λ+6μ=-1,λ+2μ=-3,故λ=-2,μ=-12,则λμ=4.【答案】 45.(向量数量积的性质)(2013·安徽高考)若非零向量a ,b 满足|a |=3|b |=|a +2b |,则a 与b 夹角的余弦值为________.【解析】 由|a |=|a +2b |,两边平方,得|a |2=(a +2b )2=|a |2+4|b |2+4a ·b ,所以a ·b =-|b |2.又|a |=3|b |,所以cos 〈a ,b 〉=a ·b |a ||b |=-|b |23|b |2=-13. 【答案】 -13(1)已知向量a =(3,1),b =(0,-1),c =(k ,3),若a -2b 与c 共线,则k =________.(2)(2013·山东高考)已知向量AB →与AC →的夹角为120°,且|AB →|=3,|AC →|=2.若AP →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为________.【思路点拨】 (1)求向量a -2b 的坐标,再依据向量共线的条件求k .(2)以AB →,AC →为基底,利用向量垂直的充要条件,表示出关于λ的方程,进而确定参数的值.【自主解答】 (1)a =(3,1),b =(0,-1), ∴a -2b =(3,3).又(a -2b )∥c ,且c =(k ,3). 从而3×3-3k =0,∴k =1. (2)∵BC →=AC →-AB →,AP →=λAB →+AC →, 又AP →⊥BC →, ∴AP →·BC →=0.则(λAB →+AC →)·(AC →-AB →) =(λ-1)AB →·AC →-λAB →2+AC →2=(λ-1)×3×2×⎝⎛⎭⎫-12-λ×9+4=0,∴λ=712. 【答案】 (1)1 (2)7121.第(1)题主要利用向量共线的坐标表示.第(2)题运用平面向量垂直的条件是解题的关键,本题易出现“BC →=OB →-OC →”这种错误,解题时要特别注意.2.运用向量加减法解决几何问题时,需要发现或构造三角形或平行四边形.使用三角形加法法则要特别注意“首尾相接”;使用减法法则时,向量一定“共起点”.变式训练1 (1)(2013·湖北高考改编)已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量AB →在CD →方向上的投影为________.(2)△ABC 中,AB 边的高为CD ,若CB →=a ,CA →=b ,a ·b =0,|a |=1,|b |=2,则AD →=( ) A.13a -13b B.23a -23b C.35a -35bD.45a -45b 【解析】 (1)AB →=(2,1),CD →=(5,5),∴AB →在CD →方向上的投影是AB →·CD →|CD →|=2×5+1×552+52=322.(2) 如图,∵a ·b =0,∴a ⊥b , ∴∠ACB =90°, ∴AB =AC 2+BC 2= 5. 又CD ⊥AB ,∴AC 2=AD ·AB ,∴AD =455.∴AD →=45AB →=45(a -b )=45a -45b .【答案】 (1)322(2)D(1)(2013·湖南高考)已知a ,b 是单位向量,a ·b =0.若向量c 满足|c -a -b |=1,则|c |的最大值为( )A.2-1B. 2C.2+1D.2+2(2)在平面直角坐标系中,点O (0,0),P (6,8),将向量OP →绕点O 按逆时针方向旋转3π4后得向量OQ →,则点Q 的坐标是________.【思路点拨】 (1)由a·b =0,求出|a +b |的值,利用向量模的性质求|c |的最大值.(2)依据向量的夹角与模的计算公式求解.【自主解答】 (1)∵|a +b |2=a 2+2a ·b +b 2=2, ∴|a +b |=2, 又|c -a -b |=1,∴|c |-|a +b |≤|c -a -b |=1. 从而|c |≤|a +b |+1=2+1.(2)设点Q (x ,y ),由|OP →|=|OQ →|,得 x 2+y 2=100.①∵向量OQ →与OP →的夹角为3π4,且点Q 在第三象限,∴cos 3π4=OP →·OQ →|OP →|·|OQ →|=(x ,y )·(6,8)10×10=6x +8y 100=-22.∴6x +8y =-50 2.②由①②得⎩⎨⎧ x =2,y =-72或⎩⎨⎧x =-72,y =- 2.又∵点Q 在第三象限,∴点Q 的坐标为(-72,-2). 【答案】 (1)C (2)(-72,-2)1.第(1)题求解的关键是利用数量积的性质,求出|a +b |=2,第(2)题主要利用向量模与夹角的性质,转化为代数运算,该题常见的错误是忽视隐含条件(点Q 在第三象限)导致增解.2.向量的坐标表示,可使向量运算代数化;从而用代数方法研究几何问题,有关向量的长度、夹角与垂直问题常运用平面向量的数量积的性质解决.变式训练2 (2013·天津高考)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,则AB 的长为________.【解析】 设AB 的长为a (a >0),因为AC →=AB →+AD →,BE →=BC →+CE →=AD →-12AB →,于是AC →·BE →=(AB →+AD →)·⎝ ⎛⎭⎪⎫AD →-12AB →=12AB →·AD →-12AB →2+AD →2=-12a 2+14a +1,由已知可得-12a 2+14a +1=1.又a >0,∴a =12,即AB 的长为12.【答案】 12(2013·连云港质检)已知向量m =(sin x,1),n =(3A cos x ,A2cos 2x )(A >0),函数f (x )=m·n 的最大值为6.(1)求A ;(2)将函数y =f (x )的图象向左平移π12个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )在[0,5π24]上的值域. 【思路点拨】 (1)利用数量积的意义,求f (x )并化简,由f (x )的最大值求A .(2)依据图象变换求g (x )的解析式,进而确定函数g (x )的值域.【自主解答】 (1)f (x )=m ·n =3A sin x cos x +A2cos 2x=A (32sin 2x +12cos 2x )=A sin(2x +π6). 因为A >0,由题意知A =6. (2)由(1)得f (x )=6sin(2x +π6).将函数y =f (x )的图象向左平移π12个单位后得到y =6sin[2(x +π12)+π6]=6sin(2x +π3)的图象;再将得到的图象上各点横坐标缩短为原来的12,纵坐标不变,得到y =6sin(4x +π3)的图象.因此g (x )=6sin(4x +π3).由x ∈[0,5π24],知π3≤4x +π3≤76π,∴-12≤sin(4x +π3)≤1,故函数g (x ),x ∈[0,5π24]上的值域为[-3,6].1.本题以向量的数量积为载体考查三角恒等变换,三角函数的图象与性质,常见的错误主要是第(2)问中混淆平移变换的意义,错求g (x )=6sin(4x +π4).2.平面向量与三角函数结合的题目的解题思路通常是将向量的数量积与模经过坐标运算后转化为三角问题,然后利用三角函数基本公式求解,常用到向量的数量积、向量的代数运算,以及数形结合思想.变式训练3 (2013·辽宁高考)设向量a =(3sin x ,sin x ),b =(cos x ,sin x ),x ∈⎣⎡⎦⎤0,π2. (1)若|a|=|b|,求x 的值;(2)设函数f (x )=a ·b ,求f (x )的最大值.【解】 (1)由|a |2=(3sin x )2+(sin x )2=4sin 2x ,|b |2=(cos x )2+(sin x )2=1, 及|a |=|b |,得4sin 2x =1.又x ∈⎣⎡⎦⎤0,π2,从而sin x =12,所以x =π6. (2)f (x )=a·b =3sin x ·cos x +sin 2x =32sin 2x -12cos 2x +12=sin ⎝⎛⎭⎫2x -π6+12, 当x =π3∈⎣⎡⎦⎤0,π2时,sin ⎝⎛⎭⎫2x -π6取最大值1. 所以f (x )的最大值为32.向量的数量积运算、向量的垂直是高考考查的热点,属中低档题目.平面向量数量积的计算,向量垂直条件与数量积的性质常以客观题形式命题,重点考查运算能力与数形结合思想.数形结合求解向量数量积问题(2013·郑州模拟)设向量a ,b ,c 满足|a |=|b |=1,a·b =-12,<a -c ,b-c >=60°,则|c |的最大值等于( )A .2 B.3 C.2 D .1【解析】 ∵a·b =-12,且|a |=|b |=1,∴cos<a ,b >=a·b|a ||b |=-12.∴<a ,b >=120°.如图所示,将a ,b ,c 的起点平移至同一点O ,则a -c =CA →,b -c =CB →,∠ACB =60°,于是四点A ,O ,B ,C 共圆.即点C 在△AOB 的外接圆上,故当OC 为直径时,|c |取最大值. 由余弦定理,得AB =OA 2+OB 2-2·OA ·OB ·cos<a ,b >=3, 由正弦定理,得2R =AB sin 120°=2,即|c |的最大值为2.【答案】 A 【阅卷心语】易错提示 (1)数形结合意识不强,难以入手,不懂运用几何性质,盲目求解,无果而终.(2)在△AOB 的边角计算中,运算能力差,导致计算错误.防范措施 (1)树立数形结合意识,向量是数形结合的载体,解答本题的关键在于将向量a ,b ,c 的起点平移至同一点O ,根据题设条件,得到A ,O ,B ,C 四点共圆.(2)重视平面向量的工具性作用,加强向量与几何、三角交汇问题的训练.1.在四边形ABCD 中,AC →=(1,2),BD →=(-4,2),则该四边形的面积为( ) A.5 B .25 C .5 D .10【解析】 ∵AC →·BD →=(1,2)·(-4,2)=-4+4=0,∴AC →⊥BD →,∴S 四边形ABCD =12|AC →|·|BD →|=12×5×25=5. 【答案】 C2.已知△ABC 为等边三角形,AB =2.设点P ,Q 满足AP →=λAB →,AQ →=(1-λ)AC →,λ∈R .若BQ →·CP →=-32,则λ=________.【解析】 在等边△ABC 中,|AB →|=|AC →|=2, ∴AB →·AC →=|AC →|·|AB →|cos 60°=2.又BQ →=BA →+AQ →=(1-λ)AC →-AB →, CP →=CA →+AP →=λAB →-AC →,∴BQ →·CP →=[(1-λ)AC →-AB →]·(λAB →-AC →)=-32,即λ(1-λ)AC →·AB →-λAB →2-(1-λ)AC →2+AB →·AC →=-32.化简得4λ2-4λ+1=0,所以λ=12.【答案】 12。
平面向量中的最值与范围问题高中数学 会利用向量的定义及运算求解最值与范围问题.导语 平面向量中的范围、最值问题是热点问题,也是难点问题,此类问题综合性强,体现了知识的交汇组合,其基本题型是根据已知条件求某个变量的范围、最值,比如向量的模、数量积、向量的夹角、系数的范围等等,解题思路是建立目标函数的函数解析式,转化为求函数的最值,同时向量兼顾“数”与“形”的双重身份,所以解决平面向量的范围、最值问题的另外一种思路是数形结合.一、向量线性运算中的最值与范围问题例1 如图,在直角梯形ABCD 中,AB ∥CD ,∠DAB =90°,AD =AB =4,CD =1,动点P 在边BC 上,且满足=m +n (m ,n 均为正实数),求+的最小值.AP → AB → AD→ 1m 1n解 因为在直角梯形ABCD 中,AB ∥CD ,∠DAB =90°,AD =AB =4,CD =1,所以=+=-,AD → AC → CD → AC → 14AB → 所以=m +n AP → AB → AD → =m +n AB→ (AC → -14AB →)=+n ,(m -14n )AB → AC → 由P ,B ,C 三点共线得,m -n +n =m +n =1(m ,n >0),1434所以+=1m 1n (1m +1n )(m +34n )=++≥+2743n4m mn 743n 4m ·mn=+=(当且仅当3n 2=4m 2时取等号),7437+434即+的最小值为.1m 1n 7+434反思感悟 利用向量的概念及基本运算,将所求问题转化为相应的等式关系,然后用基本不等式求最值.跟踪训练1 如图所示,A ,B ,C 是圆O 上的三点,CO 的延长线与BA 的延长线交于圆O 外一点D .若=m +n ,则m +n 的取值范围是________.OC → OA → OB→答案 (-1,0)解析 由点D 是圆O 外一点,可设=λ(λ>1),BD → BA→ 则=+λ=λ+(1-λ).OD → OB → BA → OA → OB → 又因为C ,O ,D 三点共线,令=-μ(μ>1),OD → OC→ 则=--(λ>1,μ>1),所以m =-,n =-,OC → λμOA → 1-λμOB→ λμ1-λμ则m +n =--=-∈(-1,0).λμ1-λμ1μ二、向量数量积的最值与范围问题例2 在边长为1的正方形ABCD 中,M 为边BC 的中点,点E 在线段AB 上运动,则·EC→ 的取值范围是( )EM→ A. B.[12,2][0,32]C.D .[0,1][12,32]答案 C解析 将正方形放入如图所示的平面直角坐标系中,设E (x ,0),0≤x ≤1.则M,C (1,1),(1,12)所以=,=(1-x ,1),EM → (1-x ,12)EC → 所以·=·(1-x ,1)=(1-x )2+.EM → EC → (1-x ,12)12因为0≤x ≤1,所以≤(1-x )2+≤,121232即·的取值范围是.EC → EM → [12,32]反思感悟 建立适当的坐标系,将平面向量数量积的运算坐标化,然后利用二次函数,基本不等式等求最值或范围.跟踪训练2 在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°.动点E 和F 分别在线段BC 和DC 上,且=λ,=,则·的最小值为________.BE → BC → DF → 19λDC → AE→ AF → 答案 2918解析 根据题意,可知DC =1,·=(+)·(+)=(+λ)·=AE → AF → AB → BE → AD → DF → AB → BC→ (AD → +19λDC → )·+·+λ·+·=1++-≥1+2-=,当且仅当λ=时,AB → AD → 19λAB → DC → BC → AD → 19BC → DC→ 29λλ211819118291823等号成立.三、向量模的最值问题例3 向量a ,b 满足|a |=1,a 与b 的夹角为,则|a -b |的最小值为________.π3答案 32解析 |a -b|2=(a -b )2=a 2-2a·b +b 2=1-2×1×|b|cos +|b|2π3=|b|2-|b|+1=2+≥,(|b |-12)3434所以|a -b|≥,当|b|=时取得最小值.3212跟踪训练3 已知|a +b |=2,向量a ,b 的夹角为,则|a |+|b |的最大值为________.π3答案 433解析 将|a +b |=2两边平方并化简得(|a |+|b |)2-|a ||b |=4,由基本不等式得|a ||b |≤2=(|a |+|b |2),故(|a |+|b |)2≤4,即(|a |+|b |)2≤,即|a |+|b |≤,当且仅当|a |=|b |=时,(|a |+|b |)2434163433233等号成立,所以|a |+|b |的最大值为.433四、向量夹角的最值问题例4 已知|a |=1,向量b 满足2|b -a |=b ·a ,设a 与b 的夹角为θ,则cos θ的最小值为________.答案 255解析 ∵|a |=1,∴设a =(1,0),b =(x ,y ),∴b -a =(x -1,y ),由2|b -a |=b ·a 得,2=x ,则x >0,(x -1)2+y 2∴4(x -1)2+4y 2=x 2,∴y 2=-x 2+2x -1,34∴cos θ=====a ·b|a ||b |xx 2+y 2xx 2-34x 2+2x -1x14x 2+2x -11-(1x )2+2x +14=,1-(1x -1)2+54∴当=1即x =1时,cos θ取最小值.1x 255反思感悟 将向量夹角的大小问题转化为夹角余弦值的大小,利用函数求最值或范围.跟踪训练4 已知向量a ,b 满足a =(t ,2-t ),|b |=1,且(a -b )⊥b ,则a ,b 的夹角的最2小值为( )A.B.π6π4C. D.π3π2答案 C解析 因为(a -b )⊥b ,所以(a -b )·b =0,a ·b =b 2,cos 〈a ,b 〉====a ·b |a ||b ||b |2|a ||b ||b ||a |1|a |=,12t 2-42t +8又因为2t 2-4t +8=2[(t -)2+2]≥2[(-)2+2]=4,2222所以0<cos 〈a ,b 〉≤,所以a ,b 的夹角的最小值为.12π3课时对点练1.已知向量m =(a -1,1),n =(2-b ,2)(a >0,b >0),若m ∥n ,则m ·n 的取值范围是( )A .[2,+∞) B .(0,+∞)C .[2,4) D .(2,4)答案 C解析 因为m ∥n ,所以2a -2=2-b ,所以2a +b =4,所以b =4-2a >0,所以0<a <2,所以m ·n =2a +b -ab =4-ab =4-a (4-2a )=2a 2-4a +4=2(a -1)2+2∈[2,4).2.如图,在△ABC 中,点D 是线段BC 上的动点,且=x+y ,则+的最小值为( )AD → AB → AC→ 1x 4y A .3 B .4 C .5 D .9答案 D解析 由图可知x ,y 均为正,且x +y =1,∴+=(x +y )=5++1x 4y (1x +4y )y x 4xy≥5+2=9,当且仅当=,y x ·4x y y x 4x y 即x =,y =时等号成立,1323则+的最小值为9.1x 4y3.在△ABC 中,AB =,BC =2,∠B =150°,点D 是AC 边上的一点(包括端点),点M 3是AC 的中点,则·的取值范围是( )BM→ BD → A. B. C. D .[0,1](0,12)[0,12][12,1]答案 B解析 因为点M 是AC 的中点,所以=+,BM → 12BA → 12BC → 因为点D 是AC 边上的一点(包括端点),所以=λ,λ∈[0,1],CD → CA→ -=λ-λ,=λ+(1-λ),BD → BC → BA → BC → BD → BA → BC → 则·=·[λ+(1-λ)]BM → BD → (12BA → +12BC →)BA → BC → =λ2+·+(1-λ)2.12BA → 12BA → BC → 12BC → 因为AB =,BC =2,∠B =150°,3所以2=3,·=-3,2=4,BA → BA → BC → BC → 所以·=-λ.BM → BD→ 1212因为0≤λ≤1,则0≤-λ≤.121212故·的取值范围是.BM → BD→ [0,12]4.设O (0,0),A (1,0),B (0,1),点P 是线段AB 上的一个动点,=λ,AP → AB→ 若·≥·,则实数λ的取值范围是( )OP→ AB → PA → PB → A.≤λ≤1 B .1-≤λ≤11222C.≤λ≤1+ D .1-≤λ≤1+12222222答案 B解析 ∵=λ,=(1-λ)+λ=(1-λ,λ),=λ=(-λ,λ),·≥·AP → AB → OP → OA → OB → AP → AB → OP→ AB → PA → ,PB →∴(1-λ,λ)·(-1,1)≥(λ,-λ)·(λ-1,1-λ),∴2λ2-4λ+1≤0,解得1-≤λ≤1+,因为点P 是线段AB 上的一个动点,所以22220≤λ≤1,即满足条件的实数λ的取值范围是1-≤λ≤1.225.如图,在平行四边形ABCD 中,∠BAD =,AB =2,AD =1,若M ,N 分别是边AD ,CD π3上的点,且满足==λ,其中λ∈[0,1],则·的取值范围是( )MDAD NCDC AN→ BM→ A .[-3,-1] B .[-3,1]C .[-1,1] D .[1,3]答案 A解析 以A 为原点,AB ,垂直于AB 所在的直线分别为x ,y 轴建立平面直角坐标系(图略),则B (2,0),A (0,0),D .(12,32)∵满足==λ,λ∈[0,1],MDAD NCDC ∴=+=+(1-λ)=+(1-λ)=+(1-λ)(2,0)=,AN → AD → DN → AD → DC → AD → AB → (12,32)(52-2λ,32)=+=-+(1-λ)=(-2,0)+(1-λ)=,BM → BA → AM → AB → AD → (12,32)(-32-12λ,32(1-λ))·=·AN → BM → (52-2λ,32)(-32-12λ,32(1-λ))=+×(1-λ)(52-2λ)(-32-12λ)3232=λ2+λ-3=2-.(λ+12)134∵λ∈[0,1],二次函数的对称轴为λ=-,12则函数在[0,1]上单调递增,故当λ∈[0,1]时,λ2+λ-3∈[-3,-1].6.设0≤θ<2π,已知两个向量=(cos θ,sin θ),=(2+sin θ,2-cos θ),则向量OP 1→ OP2→长度的最大值是( )P 1P 2——→ A. B. C .3 D .22323答案 C解析 ∵=-=(2+sin θ-cos θ,2-cos θ-sin θ),P 1P 2——→ OP2→ OP 1→ ∴||==≤3.P 1P 2——→ (2+sin θ-cos θ)2+(2-cos θ-sin θ)210-8cos θ2当cos θ=-1时,||有最大值3.P 1P 2——→ 27.已知△ABC 的三边长AC =3,BC =4,AB =5,P 为AB 边上任意一点,则·(-)CP→ BA → BC → 的最大值为________.答案 9解析 根据题意,建立直角坐标系,如图,∴A (0,3),B (4,0),C (0,0),∴=(4,-3),AB→ =+=+λ=(0,3)+(4λ,-3λ)=(4λ,3-3λ),λ∈[0,1],CP → CA → AP → CA → AB→ ∴·(-)=·=(4λ,3-3λ)·(0,3)=9-9λ∈[0,9],CP→ BA → BC → CP → CA → ∴·(-)的最大值为9.CP→ BA → BC → 8.若a =(2,2),|b |=1,则|a +b |的最大值为________.答案 2+12解析 因为|b |=1,设b =(cos θ,sin θ),则a +b =(2+cos θ,2+sin θ),则|a +b|===(2+cos θ)2+(2+sin θ)24(cos θ+sin θ)+9≤==2+1,当且仅当sin=1时取等号.42sin (θ+π4)+99+42(22+1)22(θ+π4)9.已知向量a ,b 满足|a |=1,|b |=2,a ·(a +b )=2.求|a -λb |的最小值.解 由|a |=1,a ·(a +b )=2,可知a ·b =1,根据向量求模公式得|a -λb |=,4λ2-2λ+1易知,当λ=时,|a -λb |取得最小值为.143210.△ABC 中,AB =2,AC =2,∠BAC =45°,P 为线段AC 上任意一点,求·的取2PB→ PC → 值范围.解 设=t (0≤t ≤1),PC→ AC → 则=(1-t ),AP → AC → 因为=-=-(1-t ),PB → AB → AP → AB → AC → 所以·=[-(1-t )]·t PB → PC → AB → AC → AC → =t ·-t (1-t )2AB → AC → AC → =2×2t ·cos 45°-t (1-t )×(2)222=8t 2-4t =82-.(t -14)12因为0≤t ≤1,所以-≤·≤4,12PB→ PC → 所以·的取值范围为.PB → PC→ [-12,4]11.如图,在△ABC 中,已知AB =2,AC =3,∠BAC =θ,点D 为BC 的三等分点.则·AD→ 的取值范围为( )BC→A. B.(-113,133)(13,73)C.D.(-53,73)(-53,553)答案 C解析 ∵=+=+AD → AB → BD → AB → 13BC→=+(-)=+,AB → 13AC → AB → 23AB → 13AC → ∴·=·(-)AD → BC → (23AB → +13AC →)AC → AB → =-||2+||2+·23AB → 13AC → 13AB → AC →=-×4+×9+×2×3cos θ=2cos θ+.23131313∵-1<cos θ<1,∴-<2cos θ+<.531373∴·∈.AD → BC → (-53,73)12.如图,延长线段AB 到点C ,使得=2,D 点在线段BC 上运动,点O ∉直线AB ,满AB → BC→ 足=λ+μ,则λμ的取值范围是( )OD → OA → OB→A.B.[-32,0][-2,23]C.D .[-1,1][-34,0]答案 C解析 不妨设AB =2BC =2,BD =x ,x ∈[0,1],由平面向量三点共线可知,= + ,OB → 22+x OD → x2+x OA→ ∴=-,OD → 2+x 2OB → x 2OA → ∴λ=-,μ=,x ∈[0,1],x22+x2则λμ=-=-(x 2+2x ),(2+x )x414∴λμ∈.[-34,0]13.已知平面向量a ,b ,c 满足|a |=|b |=|c |=1,若a ·b =,则(a +b )·(2b -c )的取值范围是( )12A .[1,2+]B .[1,3+]33C .[3-,2+]D .[3-,3+]3333答案 D解析 因为a ·b =,设a 与b 的夹角为θ,12则a·b =|a|·|b|cos θ=,解得θ=,而|a|=|b|=|c|=1,则可设a =(1,0),由θ=可得b =12π3π3.(12,32)由|c |=1,设c =(sin α,cos α),则(a +b )·(2b -c )=2a·b +2b 2-a·c -b·c=1+2-sin α-(12sin α+32cos α)=3-=3-sin.(32sin α+32cos α)3(α+π6)所以当α=时取得最大值为3+,当α=时取得最小值为3-,所以(a +b )·(2b -c )的4π33π33取值范围为[3-,3+].3314.已知|a |=|b |=a ·b =2,c =(2-4λ)a +λb ,则(c -a )·(c -b )的最小值为________.答案 -4952解析 ∵c -a =(1-4λ)a +λb ,c -b =(2-4λ)a +(λ-1)b ,∴(c -a )·(c -b )=[(1-4λ)a +λb ]·[(2-4λ)a +(λ-1)b ]=(16λ2-12λ+2)a 2+(-8λ2+7λ-1)a ·b +(λ2-λ)b 2,代入|a |=|b |=a ·b =2,原式=52λ2-38λ+6,∴当λ=时,原式取得最小值,为-.1952495215.已知正三角形ABC 按如图所示的方式放置,AB =4,点A ,B 分别在x 轴的正半轴和y轴的正半轴上滑动,则·的最大值是________.OA → OC →答案 12解析 设∠OAB =θ,θ∈,(0,π2)则A (4cos θ,0),C ,(4cos θ+4cos (2π3-θ),4sin (2π3-θ))所以·=4cos θ·OA → OC → [4cos θ+4cos (2π3-θ)]=4cos θ(2cos θ+2sin θ)3=4cos 2θ+4+4sin 2θ3=8sin +4,θ∈,(2θ+π6)(0,π2)故当2θ+=,即θ=时,·有最大值12.π6π2π6OA → OC → 16.已知向量a =(,-1),b =.3(12,32)(1)求与a 平行的单位向量c ;(2)设x =a +(t 3+3)b ,y =-k ·t a +b ,若存在t ∈[0,2],使得x ⊥y 成立,求k 的取值范围.解 (1)设c =(x ,y ),根据题意得Error!解得Error!或Error!∴c =或c =.(32,-12)(-32,12)(2)∵a =(,-1),b =,3(12,32)∴a·b =0.∵x ⊥y ,∴-kt |a |2+(t 2+3)|b |2=0.∵|a |=2,|b |=1,∴t 2-4kt +3=0.问题转化为关于t 的二次方程t 2-4kt +3=0在[0,2]内有解.令f (t )=t 2-4kt +3,则当2k ≤0,即k ≤0时,∵f (0)=3,∴方程t 2-4kt +3=0在[0,2]内无解.当0<2k ≤2,即0<k ≤1时,由Δ=16k 2-12≥0,解得k ≤-或k ≥,∴≤k ≤1.323232当2k >2,即k >1时,由f (2)≤0得4-8k +3≤0,解得k ≥,∴k >1.78综上,实数k 的取值范围为.[32,+∞)。
平面向量问题的类型与解法大家知道,平面向量问题是近几年高考的热点问题之一,每年高考必有一个五分小题,有时在大题中也会涉及到平面向量的内容。
从题型上,以选择题或填空题为主,难度系数为低档或中档,但近几年有向高档题目发展的趋势。
纵观近几年高考试题,归结起来平面向量问题主要包括:①平面向量几何运算问题;②平面向量坐标运算问题;③平面向量数量积的问题等几种类型。
各种类型问题结构上具有一定的特征,解答方法也各不相同。
那么在实际解答平面向量问题时,到底应该如何抓住问题的结构特征,快捷,准确地给予解答呢?下面通过典型例题的详细解析,来回答这个问题。
【典例1】解答下列问题:1、在∆ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB u u u r =( )A 34AB u u u r - 14AC u u u r B 14AB u u u r - 34AC u u u r C 34AB u u u r + 14AC u u u rD 14AB u u u r +34AC u u u r 【解析】【知识点】①平面向量几何运算的法则与基本方法;②向量共线的充分必要条件;③三角形一边上中线的定义与性质。
【解题思路】运用向量几何运算的基本方法和三角形一边上中线的性质,结合问题条件求出向量EB u u u r 关于向量AB u u u r ,AC u u u r 的式子就可得出选项。
A【详细解答】如图,Q ∆ABC 中,AD 为BC 边上的中线,BC uuu r =AC u u u r -AB u u u r ,∴AD u u u r =AC u u u r -DC u u u r =AC u u u r -12 E BC uuu r =12AC u u u r +12AB u u u r ,Q E 为AD 的中点,∴AE u u u r B D C =12AD u u u r =14AC u u u r +14AB u u u r ,⇒EB u u u r =AB u u u r -AE u u u r =AB u u u r - 14AC u u u r -14AB u u u r =34AB u u u r - 14AC u u u r , ⇒A 正确,∴选A 。
高中数学必修4第二章平面向量热点问题向量基本概念1.以下命题:①若AB →=DC →,则A 、B 、C 、D 四点是平行四边形的四个顶点;②若m =n ,n =k ,则m =k ;③若m ∥n ,n ∥k ,则m ∥k ;④单位向量都是共线向量.其中,正确命题的个数是( ). A .0 B .1 C .2D .3解析 ①A 、B 、C 、D 四点可能共线;③当n =0时,命题不成立;④单位向量的模相等,但方向不确定,所以未必共线. 答案 B2.已知m ,n 是实数,a ,b 是向量,则下列命题中正确的为 ( ). ①m (a -b )=m a -m b ;②(m -n )a =m a -n a ;③若m a =m b ,则a =b ;④若m a =n a ,则m =n .A .①④B .①②C .①③D .③④解析 ①和②属于数乘对向量与实数的分配律,正确;③中,若m =0,则不能推出a =b ,错误;④中,若a =0,则m ,n 没有关系,错误. 答案 B 向量的线性运算1.已知四边形ABCD 是一菱形,则下列等式中成立的是( ). A.AB →+BC →=CA → B .AB →+AC →=BC → C.AC →+BA →=AD →D .AC →+AD →=DC →解析 对于A ,AB →+BC →=AC →≠CA →;对于B ,AB →+AC →≠BC →;对于C ,AC →+BA →=BA →+AC →=BC →,又AD →=BC →,∴AC →+BA →=AD →;对于D ,AC →+AD →≠DC →. 答案 C2.如图,在梯形ABCD 中,AD ∥BC ,AC 与BD 交于O 点,则BA →-BC →-OA →+OD →+DA →=________. 解析 BA →-BC →-OA →+OD →+DA →=(BA →-BC →)-(OA →-OD →)+DA →=CA →-DA →+DA →=CA →. 答案 CA →3.如图,设点P 、Q 是线段AB 的三等分点,若OA =a ,OB =b ,则OP= ,OQ= (用a 、b 表示)3.2133+a b , 1233+a b 4.在△ABC 中,如果AD 、BE 分别为BC 、AC 上的中线,且AD →=a ,BE →=b ,那么BC →为( ). A.23a +43b B.23a -23b C.23a -43bD .-23a +43b4解析 由题意,得BC →=BE →+EC →=b +12AC →=b +12(AD →+DC →)=b +12a +14BC →,即BC →=b +12a +14BC →.解得BC →=23a +43b . 答案 A三点共线问题1.若三点A (2,2),B (a ,0),C (0,b )(ab ≠0)共线,则1a +1b的值为________.解析 AB →=(a -2,-2),AC →=(-2,b -2),依题意,有(a -2)(b -2)-4=0, 即ab -2a -2b =0,所以1a +1b =12.答案 122.设1e ,2e 为两个不平行的向量.如果12AB e e =+ ,1228BC e e =+ ,CD = 123()e e -.求证:A ,B ,D 三点共线.2.证明:=+=1255e e +=5AB ∴,BD AB是共线向量,且有公共点B ,∴A ,B ,D 三点共线3.如图,ABCD 中,点M 是AB 的中点,点N 在BD 上,且BD BN 31=,求证:M 、N 、C 三点共线.ABMC3.证明:MN BN BM =-1132BD BA =-11(32BA BC BA =+)-1136BC BA=-MC BC BM - =12BC BA - =13MN =∴C 、M 、N 三点共线C4.证明:若向量,,终点A ,B ,C 共线,则存在实数μλ,,且μλ+=1,使得OB OA OC μλ+=;反之,也成立.4.证明:若向量,,终点A ,B ,C 共线,则//,故存在实数m ,使得=m .)(OA OB m OB OC -=-∴,故OB m OA m OC )1(++-=∴,令1,+=-=m m μλ,则存在μλ,,且1=+μλ,使得OB OA OC μλ+=;反之,若OB OA OC μλ+=,且1=+μλ,则μλ-=1,OB OA OC μμ+-=)1()(-=-μ,μ=,∴,共线,即A ,B ,C 共线.即向量OC OB OA ,,终点A ,B ,C 共线.三角形的心与平面向量1.已知A 、B 、C 三点不共线,O 是△ABC 内的一点,若++=0,则O 是△ABC 的( ) A. 重心B. 垂心C. 内心D. 外心2.已知O 是平面上一定点,A B C ,,是平面上不共线的三个点,动点P 满足()OP OA AB AC λ=++,(0)λ∈+∞,,则P 的轨迹一定通过ABC △的().A. 重心B. 垂心C. 内心D. 外心【解析】 由题意()AP AB AC λ=+ ,当(0)λ∈+∞,时,由于()AB AC λ+ 表示BC 边上的中线所在直线的向量,所以动点P 的轨迹一定通过ABC △的重心,如图⑵.3.已知O 是平面上一定点,A B C ,,是平面上不共线的三个点,动点P 满足A B A CO P O A A B A C λ⎛⎫ ⎪=++⎪⎝⎭,(0)λ∈+∞,,则动点P 的轨迹一定通过ABC △的(). A. 重心B. 垂心C. 内心D. 外心【解析】 由题意得AB AC AP AB AC λ⎛⎫ ⎪=+ ⎪⎝⎭,∴当(0)λ∈+∞,时,AP 表示BAC ∠的平分线所在直线方向的向量,故动点P 的轨迹一定通过ABC △的内心,如图⑹.4. 已知O 是平面上一定点,A B C ,,是平面上不共线的三个点,动点P 满足c o s c o s A B A C O P O A A B B A C C λ⎛⎫ ⎪=++ ⎪⎝⎭,(0)λ∈+∞,,则动点P 的轨迹一定通过ABC △的().A. 重心B. 垂心C. 内心D. 外心【解析】 由题意cos cos AB AC AP AB B AC C λ⎛⎫ ⎪=+ ⎪⎝⎭,由于0cos cos AB AC BC AB B AC C ⎛⎫ ⎪+⋅= ⎪⎝⎭, 即0cos cos AB BC AC BCBC CB AB B AC C⋅⋅+=-=,所以AP 表示垂直于BC 的向量,即P 点在过点A 且垂直于BC 的直线上,所以动点P 的轨迹一定通过ABC △的垂心,如图⑷.5.已知O 是平面上的一定点,A B C ,,是平面上不共线的三个点,动点P 满足2c o s c o s O B O C A B A C OP AB B AC C λ⎛⎫+ ⎪=++ ⎪⎝⎭,(0)λ∈+∞,,则动点P 的轨迹一定通过ABC △的()A. 重心B. 垂心C. 内心D. 外心【解析】 由于2OB OC + 过BC 的中点,当(0)λ∈+∞,时,cos cos AB AC AB B AC C λ⎛⎫ ⎪+ ⎪⎝⎭表示垂直于BC的向量(注意:理由见二、4条解释。
),所以P 在BC 垂直平分线上,动点P 的轨迹一定通过ABC △的外心,如图⑻。
向量共线问题1.已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =( ) A .(-2,-4)B .(-3,-6)C .(-4,-8)D .(-5,-10)解析 由a =(1,2),b =(-2,m ),且a ∥b ,得1×m =2×(-2)⇒m =-4,从而b =(-2,-4),那么2a +3b =2×(1,2)+3×(-2,-4)=(-4,-8). 答案 C2. 设a =(1,2),b =(2,3),若向量λa +b 与向量c =(-4,-7)共线,则λ=________. 解析 ∵λa +b =(λ+2,2λ+3)与c =(-4,-7)共线,∴(λ+2)×(-7)-(2λ+3)×(-4)=0,解得λ=2. 答案 23.设a 、b 都是非零向量,下列四个条件中,可以得到= 是( D )(A)|a|=|b|且a ∥b (B)a=-b (C)a ∥b (D)a=2b 解析:∵表示与a 同向的单位向量,表示与b 同向的单位向量,∴a 与b 必须方向相同才能满足=.故选D.向量的坐标运算1.设平面向量a =(-1,0),b =(0,2),则2a -3b =( ) A .(6,3) B .(-2,-6)C .(2,1)D .(7,2)解析:2a -3b =(-2,0)-(0,6)=(-2,-6). 答案:B2.已知平面向量a =(x,1),b =(-x ,x 2),则向量a +b ( ). A .平行于x 轴B .平行于第一、三象限的角平分线C .平行于y 轴D .平行于第二、四象限的角平分线解析 由题意得a +b =(x -x,1+x 2)=(0,1+x 2),易知a +b 平行于y 轴. 答案 C1.(2012·德州模拟)已知向量a =(1,2),b =(x,4),若向量a ⊥b ,则x =( ) (A)2 (B)-2 (C)8 (D)-84.在直角三角形ABC 中,∠C=90°,AB =5,AC =4,则AB ·BC的值为( )(A)9 (B)-9 (C)12 (D)-125.已知三个向量a 、b 、c 两两所夹的角都为120°,|a |=1,|b |=2,|c |=3,则向量a +b +c 与向量a 的夹角为( )(A)30° (B)60° (C)120° (D)150°1.【解析】选D.∵a =(1,2),b =(x,4),且a ⊥b , ∴a ·b =0即(1,2)·(x,4)=0, ∴x +8=0,∴x =-8 4.【解析】选B.如图所示,BC =AB 2-AC 2=3, cosB =BC BA =35,∴AB ·BC =-BA ·BC=-|BA|·|BC |cosB=-5×3×35=-9.5.【解题指南】先求(a +b +c )·a 和|a +b +c |,再利用向量夹角公式求余弦值,进而求角.【解析】选D.由已知得(a +b +c )·a=a 2+a ·b +a ·c =1+2cos 120°+3cos120°=-32,|a +b +c |=1+4+9+4cos120°+6cos120°+12cos120° = 3.设向量a +b +c 与向量a 的夹角为θ,则cos θ=⋅(a +b +c)a|a +b +c ||a |=-323=-32,即θ=150°,故向量a +b +c 与向量a 的夹角为150°.3.已知a =(1,2),b =(x,4)且a ·b =10,则|a -b |=( ) A .-10 B .10 C .- 5D. 53.解析:因为a ·b =10,所以x +8=10,x =2,所以a -b =(-1,-2),故|a -b |= 5.答案:D(2013·辽宁理)(3)已知点()()1,3,4,1,A B -则与向量AB同方向的单位向量为 (A )3455⎛⎫ ⎪⎝⎭,- (B )4355⎛⎫ ⎪⎝⎭,- (C )3455⎛⎫- ⎪⎝⎭, (D )4355⎛⎫- ⎪⎝⎭, 【答案】A【解析】134=(3,-4)=(,-)555AB e AB ,故选A (2013·辽宁理)17.(本小题满分12分) 设向量)(),sin ,cos ,sinx ,0,.2a x x b x x π⎡⎤==∈⎢⎥⎣⎦(I )若.a b x =求的值;(II )设函数()(),.f x a b f x =求的最大值 【答案】(I )由||||a b = 可得22||||a b = ,代入得22223sin sin cos sin x x x x +=+解得21sin 4x =,又0,.2x π⎡⎤∈⎢⎥⎣⎦,故1sin ,26x x π== (II )由。