流动阻力和能量损失资料
- 格式:ppt
- 大小:3.58 MB
- 文档页数:91
第六章流动阻力及能量损失本章主要研究恒定流动时,流动阻力和水头损失的规律。
对于粘性流体的两种流态——层流与紊流,通常可用下临界雷诺数来判别,它在管道与渠道内流动的阻力规律和水头损失的计算方法是不同的。
对于流速,圆管层流为旋转抛物面分布,而圆管紊流的粘性底层为线性分布,紊流核心区为对数规律分布或指数规律分布。
对于水头损失的计算,层流不用分区,而紊流通常需分为水力光滑管区、水力粗糙管区及过渡区来考虑。
本章最后还阐述了有关的边界层、绕流阻力及紊流扩散等概念。
第一节流态判别一、两种流态的运动特征1883年英国物理学家雷诺(Reynolds O.)通过试验观察到液体中存在层流和紊流两种流态。
1.层流观看录像1-层流层流(laminar flow),亦称片流:是指流体质点不相互混杂,流体作有序的成层流动。
特点:(1)有序性。
水流呈层状流动,各层的质点互不混掺,质点作有序的直线运动。
(2)粘性占主要作用,遵循牛顿内摩擦定律。
(3)能量损失与流速的一次方成正比。
(4)在流速较小且雷诺数Re较小时发生。
2.紊流观看录像2-紊流紊流(turbulent flow),亦称湍流:是指局部速度、压力等力学量在时间和空间中发生不规则脉动的流体运动。
特点:(1)无序性、随机性、有旋性、混掺性。
流体质点不再成层流动,而是呈现不规则紊动,流层间质点相互混掺,为无序的随机运动。
(2)紊流受粘性和紊动的共同作用。
(3)水头损失与流速的1.75~2次方成正比。
(4)在流速较大且雷诺数较大时发生。
二、雷诺实验如图6-1所示,实验曲线分为三部分:(1)ab段:当υ<υc时,流动为稳定的层流。
(2)ef段:当υ>υ''时,流动只能是紊流。
(3)be段:当υc<υ<υ''时,流动可能是层流(bc段),也可能是紊流(bde段),取决于水流的原来状态。
图6-1图6-2观看录像3观看录像4观看录像5实验结果(图6-2)的数学表达式层流:m1=1.0, h f=k1v , 即沿程水头损失与流线的一次方成正比。
两种液体阻力及能量损失形式一、引言在日常生活中,我们经常会遇到液体阻力和能量损失的现象,特别是在涉及流体力学的领域。
液体阻力是指液体流动过程中对物体运动的阻碍,而能量损失则是指由于液体阻力所引起的能量消耗。
这两种现象在工程、物理学和运动学等领域都具有重要的意义。
本文将介绍两种主要的液体阻力形式和能量损失形式,并探讨它们对物体运动和系统效率的影响。
二、两种液体阻力形式1. 粘滞阻力粘滞阻力是液体流动中最常见的一种形式。
液体的粘滞阻力是由于其内部的分子之间相互作用而产生的,当物体在液体中运动时,粘滞阻力将阻碍其运动,并使其速度减慢。
粘滞阻力的大小与液体的粘度有关,粘度越大,粘滞阻力也越大。
2. 惯性阻力惯性阻力是液体流动中的另一种重要形式。
惯性阻力是由于液体内部的流动速度不均匀而产生的,当物体在液体中高速运动时,惯性阻力会由于液体的流动速度产生较大的压力差,从而产生一个相对于流动方向的反作用力。
惯性阻力的大小与物体的速度和形状有关,速度越大,形状越流线型,惯性阻力也越大。
三、两种能量损失形式1. 粘性耗散粘性耗散是由于液体粘滞阻力引起的能量消耗。
当物体在液体中运动时,液体分子会因为相互摩擦而产生能量损失。
这种能量损失是由液体分子间摩擦产生的,因此与液体粘度和物体的运动速度有关。
粘性耗散会使得物体的动能转化为热能,从而引起能量的损失。
2. 惯性耗散惯性耗散是由于液体惯性阻力引起的能量消耗。
当物体在液体中高速运动时,液体的流动速度不均匀,从而产生了惯性阻力。
这种惯性阻力会导致能量的损失,使得物体的动能转化为其他形式的能量,比如声能等。
惯性耗散的大小与物体的速度和形状有关,速度越大,形状越流线型,惯性耗散也越大。
四、阻力和能量损失对物体运动的影响液体的阻力和能量损失对物体运动具有很大影响。
液体的阻力会对物体的速度和加速度产生影响。
粘滞阻力和惯性阻力都会使物体的速度减小,并且粘滞阻力对速度的减小影响更为显著。
第四节 管内流动阻力与能量损失一、流体的两种流动形态1. 雷诺实验流体具有两种不同的流动形态,一种称为滞流或层流,一种称为湍流或紊流。
为了了解流体在管内流动状况及其影响因素,雷诺设计了一个实验可直接观察到两种不同的流动形态。
演示动画v ↑层流(滞流) v ↑↑过渡流 v ↑↑↑湍流(紊流)采用不同的管径d 、流速v 、粘度μ、密度ρ,分别作实验,最后归纳为雷诺数:μρdv =Re 0003.Re s m kg s m kg s m kg sm kg m kgs m m ⋅⋅=⋅⋅⋅⋅==不论采用什么单位制,Re 均无因次,凡是由几个有内在联系的物理量按无因次这个条件组合起来的数群,称为准数。
在化工生产中,不但有圆管,还有非圆形的,对于非圆形管内的流体流动,找一个与直径相当的量,Re 才能算出,为此引入当量直径这个概念。
2、流动类型雷诺准数这个数群,既反映了所包含的各个物理量的内在联系,又说明了流动流型的本质。
所以,流体的流动类型就可以由Re 来判断。
实验证明:Re <2000 为层流 Re >4000湍流 2000<Re<4000 过渡流 3、滞流和湍流的流动特征演示动画润湿周边流通截面积⨯=4e d ()()dD d D d D d e -=+-⨯=ππ4422滞流(或层流)流动特点:●流体质点仅沿着与管轴平行的方向作直线运动,质点无径向脉动,质点之间互不混合;●定态流动时,管内各点的速度沿直径存在一定分布,管壁处流速为零,管中心处流速最大,平均流速为最大流速的1/2。
演示动画湍流流动特点:●流体质点除了沿管轴方向向前流动外,还有径向脉动,各质点的速度在大小和方向上都随时变化,质点互相碰撞和混合。
●定态流动时,流体在管中心相当大范围内的流速接近最大流速,管壁处流速为零,平均流速为最大流速的0.8倍。
4、流体流动的边界层流动边界层:存在着较大速度梯度的流体层区域,即流速降为主体流速的99%以内的区域边界层流型:层流边界层和湍流边界层边界层厚度:边界层外缘与壁面间的垂直距离。