第5章图与网络分析
- 格式:ppt
- 大小:5.72 MB
- 文档页数:78
第五章习题与解答5-1试求题5-1图(a)、(b)网络的频率特性。
u r R1u cR2CR2R1u r u c(a) (b)题5-1图R-C网络解(a)依图:⎪⎪⎪⎩⎪⎪⎪⎨⎧+==+=++=++=2121111212111111221)1(11)()(RRCRRTCRRRRKsTsKsCRsCRRRsUsUrcττωωτωωωωω11121212121)1()()()(jTjKCRRjRRCRRjRjUjUjGrca++=+++==(b)依图:⎩⎨⎧+==++=+++=CRRTCRsTssCRRsCRsUsUrc)(1111)()(2122222212ττωωτωωωωω2221211)(11)()()(jTjCRRjCRjjUjUjGrcb++=+++=="5-2某系统结构图如题5-2图所示,试根据频率特性的物理意义,求下列输入信号作用时,系统的稳态输出)(tcs和稳态误差)(tes(1)tt r2sin)(=(2))452cos(2)30sin()(︒--︒+=ttt r题5-2图反馈控制系统结构图解 系统闭环传递函数为: 21)(+=Φs s 频率特性:2244221)(ωωωωω+-++=+=Φj j j 幅频特性: 241)(ωω+=Φj相频特性: )2arctan()(ωωϕ-=-系统误差传递函数: ,21)(11)(++=+=Φs s s G s e则 )2arctan(arctan )(,41)(22ωωωϕωωω-=++=Φj j e e(1)当t t r 2sin )(=时,2=ω,r m =1则 ,35.081)(2==Φ=ωωj 45)22arctan()2(-=-=j ϕ4.1862arctan )2(,79.085)(2====Φ=j j e e ϕωω )452sin(35.0)2sin()2(-=-Φ=t t j r c m ss ϕ)4.182sin(79.0)2sin()2(+=-Φ=t t j r e e e m ss ϕ (2) 当 )452cos(2)30sin()(︒--︒+=t t t r 时: ⎩⎨⎧====2,21,12211m m r r ωω5.26)21arctan()1(45.055)1(-=-===Φj j ϕ 4.18)31arctan()1(63.0510)1(====Φj j e e ϕ>)]2(452cos[)2()]1(30sin[)1()(j t j r j t j r t c m m ss ϕϕ+-⋅Φ-++⋅Φ=)902cos(7.0)4.3sin(4.0--+=t t)]2(452cos[)2()]1(30sin[)1()(j t j r j t j r t e e e m e e m ss ϕϕ+-⋅Φ-++⋅Φ=)6.262cos(58.1)4.48sin(63.0--+=t t5-3 若系统单位阶跃响应 h t e e t tt()..=-+≥--11808049试求系统频率特性。
第一章线性规划及单纯形法一、复习思考题1 试述线性规划数学模型的结构及各要素的特征。
2 线性规划的解有哪几种情况。
3 什么是线性规划问题的标准形式,如何将一个非标准型的线性规划问题转化为标准形式。
4 试述线性规划问题的可行解、基解、基可行解、最优解的概念以及上述解之间的相互关系。
5 试述单纯形法的计算步骤,如何在单纯形表上去判别问题是具有惟一最优解、无穷多最优解、无界解或无可行解。
6 如果线性规划的标准型式变换为求目标函数的极小化min z,则用单纯形法计算时如何判别问题已得到最优解。
7 在确定初始可行基时,什么情况下要在约束条件中增添人工变量,在目标函数中人工变量前的系数为(一M)的经济意义是什么。
8 什么是单纯形法计算的两阶段法,为什么要将计算分两个阶段进行,以及如何根据第一阶段的计算结果来判定第二阶段的计算是否需继续进行。
9 简述退化的含义及处理退化的勃兰特规则。
10 举例说明生产和生活中应用线性规划的方面,并对如何应用进行必要描述。
二、判断下列说法是否正确1、图解法同单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的;2、线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大;3、线性规划问题的每一个基解对应可行域的一个顶点.4、如线性规划问题有最优解,则最优解一定对应可行域边界上的一个点;5、用单纯形法求解标准型式的线性规划问题时,与>j对应的变量都可被选作换入变量;6、单纯形法计算中,选取最大正检验数σk 对应的变量xk作为换入变量,将使目标函数值得到最快的增长;7、线性规划问题任一可行解都可以用全部基可行解的线性组合表示;9、对一个有n个变量,m个约束的标准型的线性规划问题,其可行域的顶点恰好为mn C个;10、单纯形法的迭代计算过程是从一个可行解转换到目标函数值更大的另一个可行解;11、若线性规划问题具有可行解,且其可行域有界,则该线性规划问题最多具有有限个数的最优解;12、线形规划可行域的某一项点若其目标函数值优于所有顶点的目标函数值,则该顶点处的目标函数值达到最优。