图与网络分析
- 格式:ppt
- 大小:1.86 MB
- 文档页数:159
高等数学作为大学数学教育的核心课程之一,包含了许多重要的数学概念和方法。
其中,图论与网络分析是高等数学中的一个重要分支,涉及了图的定义、图的性质以及与网络相关的问题的解决方法。
首先,让我们来了解一下什么是图。
在数学中,图是由若干个节点和连接这些节点的边组成的结构。
节点可以表示各种实体,如人、城市等,而边则表示节点之间的关系。
图可以分为有向图和无向图两种类型。
在有向图中,边具有方向,表示节点之间的单向关系;而在无向图中,边没有方向,表示节点之间的双向关系。
我们可以通过绘制节点之间的边来可视化地表示图的结构。
在高等数学中,我们主要研究的是无向图。
通过图的分析,我们可以更好地理解各种实体之间的相互关系。
例如,在社交网络中,可以用图来表示人与人之间的关系;在物流领域中,可以用图来表示商品与配送中心之间的联系。
通过对图的分析,可以帮助我们揭示隐藏在复杂关系中的规律,并为解决实际问题提供指导。
而图论是研究图的性质和图中问题的解决方法的一门学科。
通过图的性质分析,可以推断出图中节点之间的关系,比如节点的连通性、路径的存在性等。
图论中的常用概念包括度、连通图、路径等。
节点的度表示与该节点相连的边的数量,连通图指的是任意两个节点之间都存在路径的图,而路径则是指从一个节点到另一个节点所经过的边的序列。
借助这些概念,我们可以计算图的直径(即最长路径的长度)、聚类系数(表示节点之间的紧密联系程度)等指标,从而更好地了解图的结构。
在网络分析中,我们关注的是如何在真实世界中获得图的数据并对其进行分析。
近年来,随着互联网的发展,大量的网络数据被生成和存储。
通过网络分析,可以从这些数据中挖掘出有价值的信息。
例如,在社交网络中,可以通过分析用户之间的连接模式,了解人们的兴趣爱好和行为习惯;在生物学中,可以分析蛋白质相互作用网络,推断出未知蛋白质的功能等。
网络分析的方法包括社区发现、中心性分析、网络模型等。
这些方法可以帮助我们揭示网络结构中的规律和特征,并为决策者提供支持。
图与网络分析试题及答案一、填空题1.图的最基本要素是点、点与点之间构成的边2.在图论中,通常用点表示,用边或有向边表示研究对象,以及研究对象之间具有特定关系。
3.在图论中,通常用点表示研究对象,用边或有向边表示研究对象之间具有某种特定的关系。
4.在图论中,图是反映研究对象_之间_特定关系的一种工具。
5.任一树中的边数必定是它的点数减1。
6.最小树问题就是在网络图中,找出若干条边,连接所有结点,而且连接的总长度最小。
7.最小树的算法关键是把最近的未接_结点连接到那些已接结点上去。
8.求最短路问题的计算方法是从0≤f ij≤c ij开始逐步推算的,在推算过程中需要不断标记平衡和最短路线。
二、单选题1、关于图论中图的概念,以下叙述(B)正确。
A图中的有向边表示研究对象,结点表示衔接关系。
B图中的点表示研究对象,边表示点与点之间的关系。
C图中任意两点之间必有边。
D图的边数必定等于点数减1。
2.关于树的概念,以下叙述(B)正确。
A树中的点数等于边数减1 B连通无圈的图必定是树C含n个点的树是唯一的D任一树中,去掉一条边仍为树。
3.一个连通图中的最小树(B),其权(A)。
A是唯一确定的 B可能不唯一 C可能不存在 D一定有多个。
4.关于最大流量问题,以下叙述(D)正确。
A一个容量网络的最大流是唯一确定的B达到最大流的方案是唯一的C当用标号法求最大流时,可能得到不同的最大流方案D当最大流方案不唯一时,得到的最大流量亦可能不相同。
5.图论中的图,以下叙述(C)不正确。
A.图论中点表示研究对象,边或有向边表示研究对象之间的特定关系。
B.图论中的图,用点与点的相互位置,边的长短曲直来表示研究对象的相互关系。
C.图论中的边表示研究对象,点表示研究对象之间的特定关系。
D.图论中的图,可以改变点与点的相互位置。
只要不改变点与点的连接关系。
6.关于最小树,以下叙述(B)正确。
A.最小树是一个网络中连通所有点而边数最少的图B.最小树是一个网络中连通所有的点,而权数最少的图C.一个网络中的最大权边必不包含在其最小树内D.一个网络的最小树一般是不唯一的。