九年级数学上册第三章知识点总结(北师大版).doc
- 格式:doc
- 大小:31.52 KB
- 文档页数:16
北师大版《数学》(九年级上册)知识点总结第一章 证明(二)一、公理(1)三边对应相等的两个三角形全等(可简写成“边边边”或“SSS ”)。
(2)两边及其夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS ”)。
(3)两角及其夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA ”)。
(4)全等三角形的对应边相等、对应角相等。
推论:两角及其中一角的对边对应相等的两个三角形全等(可简写成“角角边”或“AAS ”)。
二、等腰三角形1、等腰三角形的性质(1)等腰三角形的两个底角相等(简称:等边对等角)(2)等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(三线合一)。
等腰三角形的其他性质:①等腰直角三角形的两个底角相等且等于45°②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。
③等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b <a ④等腰三角形的三角关系:设顶角为顶角为∠A ,底角为∠B 、∠C ,则∠A=180°—2∠B ,∠B=∠C=2180A ∠-︒ 2、等腰三角形的判定(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。
(2)有两条边相等的三角形是等腰三角形.三、等边三角形性质:(1)等边三角形的三个角都相等,并且每个角都等于60°。
(2)三线合一判定:(1)三条边都相等的三角形是等边三角形(2)三个角都相等的三角形是等边三角形(3):有一个角是60°的等腰三角形是等边三角形。
四、直角三角形(一)、直角三角形的性质1、直角三角形的两个锐角互余2、在直角三角形中,30°角所对的直角边等于斜边的一半。
3、直角三角形斜边上的中线等于斜边的一半4、勾股定理:直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 其它性质:1、直角三角形斜边上的高线将直角三角形分成的两个三角形和原三角形相似。
九(上)数学知识点第一章证明(一)1、你能证明它吗?(1)三角形全等的性质及判定全等三角形的对应边相等,对应角也相等判定:SSS、SAS、ASA、AAS、(2)等腰三角形的判定、性质及推论性质:等腰三角形的两个底角相等(等边对等角)判定:有两个角相等的三角形是等腰三角形(等角对等边)推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)(3)等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于60度;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴。
判定定理:有一个角是60度的等腰三角形是等边三角形。
或者三个角都相等的三角形是等边三角形。
(4)含30度的直角三角形的边的性质定理:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半。
2、直角三角形(1)勾股定理及其逆定理定理:直角三角形的两条直角边的平方和等于斜边的平方。
逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
(2)命题包括已知和结论两部分;逆命题是将倒是的已知和结论交换;正确的逆命题就是逆定理。
(3)直角三角形全等的判定定理定理:斜边和一条直角边对应相等的两个直角三角形全等(HL)3、线段的垂直平分线(1)线段垂直平分线的性质及判定性质:线段垂直平分线上的点到这条线段两个端点的距离相等。
判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上。
(2)三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
(3)如何用尺规作图法作线段的垂直平分线分别以线段的两个端点A、B为圆心,以大于AB的一半长为半径作弧,两弧交于点M、N;作直线MN,则直线MN就是线段AB的垂直平分线。
4、角平分线(1)角平分线的性质及判定定理性质:角平分线上的点到这个角的两边的距离相等;判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上。
九年级数学上册第三章知识点第三章: 函数与方程1. 函数定义和表示:- 函数是一种特殊的关系,表示两个变量之间的依赖关系。
- 一般用 f(x) 或 y 表示函数,其中 x 是自变量,y 是因变量。
- 函数还可以用映射法、列表法、图象法等表示。
2. 函数的性质:- 定义域和值域:函数的定义域是自变量的取值范围,值域是因变量的取值范围。
- 奇偶性:如果对于任意 x,有 f(-x) = f(x),则函数是偶函数;如果对于任意 x,有f(-x) = -f(x),则函数是奇函数。
- 单调性:如果对于任意 x1 < x2,有 f(x1) < f(x2),则函数是增函数;如果对于任意 x1 < x2,有 f(x1) > f(x2),则函数是减函数。
- 周期性:如果存在一个正数 T,使得对于任意 x,有 f(x+T) = f(x),则函数是周期函数。
3. 一次函数:- 函数的形式为 f(x) = kx + b,其中 k 和 b 都是常数。
- k 是斜率,表示函数的倾斜程度。
- b 是截距,表示函数与 y 轴的交点。
4. 二次函数:- 函数的形式为 f(x) = ax^2 + bx + c,其中 a, b, c 都是常数且 a ≠ 0。
- a 决定了二次函数的开口方向和开口的大小。
- (h, k) 是二次函数的顶点,其中 h 和 k 分别是顶点的 x 坐标和 y 坐标。
5. 反比例函数:- 函数的形式为 f(x) = k/x,其中 k 是常数且 k ≠ 0。
- 函数的图象为一条经过原点的开口向右下方的曲线。
6. 线性方程与一次不等式:- 一次方程的形式为 ax + b = 0,其中 a 和 b 是已知数且 a ≠ 0。
- 方程的解为 x = -b/a。
- 一次不等式的形式为 ax + b > 0 或 ax + b < 0。
- 方程的解为 x > -b/a 或 x < -b/a。
九年级数学上册第三章知识点总结(北师大版)一、有理数的概念与性质1. 有理数的定义有理数是整数和分数的统称,包括正整数、负整数、零和所有的正负分数。
2. 有理数的比较有理数的比较可以利用数轴进行,较大的数在数轴上对应的点靠右,较小的数在数轴上对应的点靠左。
3. 有理数的运算性质有理数的加法、减法、乘法、除法满足封闭性、结合律、交换律、分配律。
4. 有理数的约分与化简将有理数的分子和分母同时除以它们的最大公约数,可以得到最简形式的有理数。
二、实数的表示1. 实数的性质实数包括有理数和无理数,实数的运算满足封闭性、传递性、对称性等性质。
2. 实数的表示方法实数可以用有理数表示,也可以用无理数表示。
(1)有理数的表示有理数可以用分数的形式表示,也可以用小数表示。
(2)无理数的表示无理数无法用两个整数的比值表示,可以用无限不循环小数或根式表示。
3. 无理数的性质无理数包括无限不循环小数和无限循环小数两种。
4. 实数的区间表示法实数可以用区间表示法表示在数轴上的连续的一段。
三、实数的运算1. 实数的加法与减法实数的加法满足交换律、结合律、存在单位元、存在逆元等性质。
实数的减法即加法的逆运算。
2. 实数的乘法与除法实数的乘法满足交换律、结合律、存在单位元、存在逆元等性质。
实数的除法即乘法的逆运算。
3. 乘方运算实数的乘方运算即将一个实数连乘若干次。
4. 实数的分配律实数的乘法对于加法满足分配律。
四、实数的应用实数广泛应用于各个领域,包括自然科学、社会科学和工程技术等。
1. 数学建模实数在数学建模中起到了重要作用,通过实数的运算可以描述和解决实际问题。
2. 统计学与概率论实数在统计学和概率论中被广泛应用,例如描述数据的均值、方差以及概率的计算等。
3. 物理学与工程学实数在物理学和工程学中有着广泛的应用,例如描述物体的位置、速度、加速度等物理量。
4. 经济学与金融学实数在经济学和金融学中也有重要作用,例如描述价格、收益率、利率等。
九年级第三章
概率的进一步认识
一、用树状图或表格求概率
知识点1:用列表法求概率
1.列表法:用表格的形式反映事件发生的各种结果出现的次数和方式,以及某一事件发生的可能出现的次数和方式,并求出概率。
2.适当条件:当一次试验涉及两个因素,并且可能出现的等可能结果的数目较多时为了不重不漏地列出所有可能的结果,常采用列表法
3.具体步骤:
(1)列表;
(2)计数;确定所有等可能的结果数n和符合要求的结果数m
m
(3)求值利用概率公式P(A)=
n
知识点2:用画树状图法求概率
1.画树状图法:用树状图的形式反映事件发生的各种结果出现的次数和方式,以及某一事件发生的可能出现的次数和方式,并求出概率。
2.适当条件:当一次试验涉及两个或者更多因素时,为了不重不漏地列出可能的结果,通常采用画树状图法。
知识点3:游戏的公平性
1.游戏是否公平,即判断双方的概率是否相等
2.把不公平的游戏变公平的方法
改变游戏规则,使双方获胜的概率相等
若游戏中涉及得分情况,先计算出概率后,再根据游戏规则,改变游戏得分,使双方平均每次游戏所得分数相等。
二、用频率估计概率
1.一般地,大量重复试验中,如果事件A 发生频率
n m 稳定于某个常数p ,那么事件A 发生的概率为p 2.P(A)=n
m (当试验的结果有无限多个,或者可能出现的结果发生的可能性不相同时,我们一般通过频率来估计概率)。
九年级数学上册知识点归纳(北师大版)第一章特殊平行四边形第二章一元二次方程第三章概率的进一步认识第四章图形的相似第五章投影与视图第六章反比例函数(八下前情回顾)※平行四边的定义:两线对边分别平行的四边形叫做平行四边形.....,平行四边形不相邻的两顶点连成的线段叫做它的对角线...。
※平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分。
※平行四边形的判别方法:两组对边分别平行的四边形是平行四边形。
两组对边分别相等的四边形是平行四边形。
一组对边平行且相等的四边形是平行四边形。
两条对角线互相平分的四边形是平行四边形。
※平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等。
这个距离称为平行线之间的距离。
第一章特殊平行四边形1菱形的性质与判定菱形的定义:一组邻边相等的平行四边形叫做菱形。
※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。
菱形是轴对称图形,每条对角线所在的直线都是对称轴。
※菱形的判别方法:一组邻边相等的平行四边形是菱形。
对角线互相垂直的平行四边形是菱形。
四条边都相等的四边形是菱形。
2矩形的性质与判定※矩形的定义:有一个角是直角的平行四边形叫矩形..。
矩形是特殊的平行四边形。
※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。
(矩形是轴对称图形,有两条对称轴)※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。
对角线相等的平行四边形是矩形。
四个角都相等的四边形是矩形。
※推论:直角三角形斜边上的中线等于斜边的一半。
3正方形的性质与判定正方形的定义:一组邻边相等的矩形叫做正方形。
※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。
(正方形是轴对称图形,有两条对称轴)※正方形常用的判定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形;对角线相等的菱形是正方形;对角线互相垂直的矩形是正方形。
北师大版-数学九年级上册知识点归纳总结第一章特殊的平行四边形一、平行四边形1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。
2.平行四边形的性质(1)平行四边形的对边平行且相等。
(对边)(2)平行四边形相邻的角互补,对角相等(对角)(3)平行四边形的对角线互相平分。
(对角线)(4)平行四边形是中心对称图形,对称中心是对角线的交点。
常用点:(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。
(2)推论:夹在两条平行线间的平行线段相等。
3.平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形。
(对边)(2)定理1:两组对边分别相等的四边形是平行四边形。
(对边)(3)定理2:一组对边平行且相等的四边形是平行四边形。
(对边)(4)定理3:两组对角分别相等的四边形是平行四边形。
(对角)(5)定理4:对角线互相平分的四边形是平行四边形。
(对角线)4.两条平行线的距离两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。
注意:平行线间的距离处处相等。
5.平行四边形的面积: S平行四边形=底边长×高=ah二、菱形1.菱形的定义:有一组邻边相等的平行四边形叫做菱形2.菱形的性质(1)菱形的四条边相等,对边平行。
(边)(2)菱形的相邻的角互补,对角相等。
(对角)(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角。
(对角线)(4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线。
3.菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形。
(2)定理1:四边都相等的四边形是菱形。
(边)(3)定理2:对角线互相垂直的平行四边形是菱形。
(对角线)(4)定理3:对角线垂直且平分的四边形是菱形。
(对角线)4.菱形的面积:S菱形=底边长×高=两条对角线乘积的一半三、矩形1.矩形的定义:有一个角是直角的平行四边形叫做矩形。
北师大版九年级数学(上册)知识点汇总第一章特殊平行四边形第二章一元二次方程第三章概率的进一步认识第四章图形的相似第五章投影与视图第六章反比例函数第一章特殊平行四边形1.1菱形的性质与判定菱形的定义:一组邻边相等的平行四边形叫做菱形.※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角.菱形是轴对称图形,每条对角线所在的直线都是对称轴.※菱形的判别方法:一组邻边相等的平行四边形是菱形.对角线互相垂直的平行四边形是菱形.四条边都相等的四边形是菱形.1.2 矩形的性质与判定※矩形的定义:有一个角是直角的平行四边形叫矩形.矩形是特殊的平行四边形...※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角.(矩形是轴对称图形,有两条对称轴)※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义).对角线相等的平行四边形是矩形.四个角都相等的四边形是矩形.※推论:直角三角形斜边上的中线等于斜边的一半.1.3 正方形的性质与判定正方形的定义:一组邻边相等的矩形叫做正方形.※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质.(正方形是轴对称图形,有两条对称轴)※正方形常用的判定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形;对角线相等的菱形是正方形;对角线互相垂直的矩形是正方形.正方形、矩形、菱形和平行边形四者之间的关系(如图3所示):※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形.※※鹏翔教图3※等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等.同一底上的两个内角相等的梯形是等腰梯形.※三角形的中位线平行于第三边,并且等于第三边的一半.※夹在两条平行线间的平行线段相等.※在直角三角形中,斜边上的中线等于斜边的一半第二章 一元二次方程2.1 认识一元二次方程......2.2 ...用.配方法求解.....一元二次方程......2.3 用公式法求解一元二次方程2.4 用因式分解法求解一元二次方程2.5 一元二次方程的跟与系数的关系2.6 应用一元二次方程※只含有一个未知数的整式方程,且都可以化为02=++c bx ax (a 、b 、c 为常数,a ≠0)的形式,这样的方程叫一元二次方程....... ※把02=++c bx ax (a 、b 、c 为常数,a ≠0)称为一元二次方程的一般形式,a 为二次项系数;b 为一次项系数;c 为常数项.※解一元二次方程的方法:①配方法 <即将其变为0)(2=+m x 的形式> ②公式法 aac b b x 242-±-= (注意在找abc 时须先把方程化为一般形式)③分解因式法 把方程的一边变成0,另一边变成两个一次因式的乘积来求解.(主要包括“提公因式”和“十字相乘”)※配方法解一元二次方程的基本步骤:①把方程化成一元二次方程的一般形式;②将二次项系数化成1;③把常数项移到方程的右边;④两边加上一次项系数的一半的平方;⑤把方程转化成0)(2=+m x 的形式; ⑥两边开方求其根.※根与系数的关系:当b 2-4ac>0时,方程有两个不等的实数根;当b 2-4ac=0时,方程有两个相等的实数根;当b 2-4ac<0时,方程无实数根.※如果一元二次方程02=++c bx ax 的两根分别为x 1、x 2,则有:ac x x a bx x =⋅-=+2121. ※一元二次方程的根与系数的关系的作用:(1)已知方程的一根,求另一根;(2)不解方程,求二次方程的根x 1、x 2的对称式的值,特别注意以下公式:①2122122212)(x x x x x x -+=+ ②21212111x x x x x x +=+ ③212212214)()(x x x x x x -+=- ④21221214)(||x x x x x x -+=- ⑤||22)(|)||(|2121221221x x x x x x x x +-+=+⑥)(3)(21213213231x x x x x x x x +-+=+ ⑦其他能用21x x +或21x x 表达的代数式.(3)已知方程的两根x 1、x 2,可以构造一元二次方程:0)(21221=++-x x x x x x (4)已知两数x 1、x 2的和与积,求此两数的问题,可以转化为求一元二次方程0)(21221=++-x x x x x x 的根※在利用方程来解应用题时,主要分为两个步骤:①设未知数(在设未知数时,大多数情况只要设问题为x ;但也有时也须根据已知条件及等量关系等诸多方面考虑);②寻找等量关系(一般地,题目中会含有一表述等量关系的句子,只须找到此句话即可根据其列出方程).※处理问题的过程可以进一步概括为: 解答检验求解方程抽象分析问题→→ 第三章 概率的进一步认识3.1 用树状图或表格求概率3.2 用频率估计概率※在频率分布表里,落在各小组内的数据的个数叫做频数..; 每一小组的频数与数据总数的比值叫做这一小组的频率..; 即:实验次数频数数据总数频数频率== 在频率分布直方图中,由于各个小长方形的面积等于相应各组的频率,而各组频率的和等于1.因此,各个小长方形的面积的和等于1.※频率分布表和频率分布直方图是一组数据的频率分布的两种不同表示形式,前者准确,后者直观.用一件事件发生的频率来估计这一件事件发生的概率.可用列表的方法求出概率,但此方法不太适用较复杂情况.※假设布袋内有m 个黑球,通过多次试验,我们可以估计出布袋内随机摸出一球,它为白球的概率;※要估算池塘里有多少条鱼,我们可先从池塘里捉上100条鱼做记号,再放回池塘,之后再从池塘中捉上200条鱼,如果其中有10条鱼是有标记的,再设池塘共有x 条鱼,则可依照20010100 x 估算出鱼的条数.(注意估算出来的数据不是确切的,所以应谓之“约是XX ”)※生活中存在大量的不确定事件,概率是描述不确定现象的数学模型,它能准确地衡量出事件发生的可能性的大小,并不表示一定会发生.概率的求法:(1)一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 个结果,那么事件A 发生的概率为P (A )=nm (2)、列表法用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法.(3)树状图法通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法.(当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.)第四章 图形的相似4.1 成正比线段4.2 平行线段成比例4.3 形似多边形4.4 探索三角形相似的条件4.5 相似三角形判定定理的证明4.6 利用相似三角形测高4.7 相似三角形的性质4.8 图形的位似一. 线段的比※1. 如果选用同一个长度单位量得两条线段AB , CD 的长度分别是m 、n ,那么就说这两条线段的比AB:CD=m:n ,或写成nm B A =. ※2. 四条线段a 、b 、c 、d 中,如果a 与b 的比等于c 与d 的比,即d c b a =,那么这四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段.※3. 注意点:①a:b=k ,说明a 是b 的k 倍;②由于线段 a 、b 的长度都是正数,所以k 是正数;③比与所选线段的长度单位无关,求出时两条线段的长度单位要一致; ④除了a=b 之外,a:b ≠b:a ,b a 与a b 互为倒数; ⑤比例的基本性质:若d c b a =, 则ad=bc; 若ad=bc , 则d c b a = 二. 黄金分割_ 图1 _ B_ C _ A※1. 如图1,点C 把线段AB 分成两条线段AC 和BC ,如果ACBC AB AC =,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比. 1:618.0215:≈-=AB AC ※2.黄金分割点是最优美、最令人赏心悦目的点.四. 相似多边形¤1. 一般地,形状相同的图形称为相似图形.※2. 对应角相等、对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.五. 相似三角形※1. 在相似多边形中,最为简简单的就是相似三角形.※2. 对应角相等、对应边成比例的三角形叫做相似三角形.相似三角形对应边的比叫做相似比.※3. 全等三角形是相似三角的特例,这时相似比等于1. 注意:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上.※4. 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.※5. 相似三角形周长的比等于相似比.※6. 相似三角形面积的比等于相似比的平方.六.探索三角形相似的条件※1. 相似三角形的判定方法:_ D _A _l基本定理:平行于三角形的一边且和其他两边(或两边的延长线)相交的直线,所截得的三角形与原三角形相似.※2. 平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.如图2, l 1 // l 2 // l 3,则EF BC DE AB . ※3. 平行于三角形一边的直线与其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.八. 相似的多边形的性质※相似多边形的周长等于相似比;面积比等于相似比的平方. 九. 图形的放大与缩小※1. 如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形; 这个点叫做位似中心; 这时的相似比又称为位似比.※2. 位似图形上任意一对对应点到位似中心的距离之比等于位似比.◎3. 位似变换:①变换后的图形,不仅与原图相似,而且对应顶点的连线相交于一点,并且对应点到这一交点的距离成比例.像这种特殊的相似变换叫做位似变换.这个交点叫做位似中心.②一个图形经过位似变换后得到另一个图形,这两个图形就叫做位似形.③利用位似的方法,可以把一个图形放大或缩小.第五章投影与视图5.1 投影5.2 视图※三视图包括:主视图、俯视图和左视图.三视图之间要保持长对正,高平齐,宽相等.一般地,俯视图要画在主视图的下方,左视图要画在正视图的右边.主视图:基本可认为从物体正面视得的图象俯视图:基本可认为从物体上面视得的图象左视图:基本可认为从物体左面视得的图象※视图中每一个闭合的线框都表示物体上一个表面(平面或曲面),而相连的两个闭合线框一定不在一个平面上.※在一个外形线框内所包括的各个小线框,一定是平面体(或曲面体)上凸出或凹的各个小的平面体(或曲面体).※在画视图时,看得见的部分的轮廓线通常画成实线,看不见的部分轮廓线通常画成虚线..物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影..太阳光线可以看成平行的光线,像这样的光线所形成的投影称为平行投影..... 探照灯、手电筒、路灯的光线可以看成是从一点出发的,像这样的光线所形成的投影称为中心投影..... ※区分平行投影和中心投影:①观察光源;②观察影子.眼睛的位置称为视点..;由视点发出的线称为视线..;眼睛看不到的地方称为盲区... ※从正面、上面、侧面看到的图形就是常见的正投影,是当光线与投影垂直时的投影. ①点在一个平面上的投影仍是一个点;②线段在一个面上的投影可分为三种情况:线段垂直于投影面时,投影为一点;线段平行于投影面时,投影长度等于线段的实际长度;线段倾斜于投影面时,投影长度小于线段的实际长度.③平面图形在某一平面上的投影可分为三种情况:平面图形和投影面平行的情况下,其投影为实际形状;平面图形和投影面垂直的情况下,其投影为一线段;平面图形和投影面倾斜的情况下,其投影小于实际的形状.第六章 反比例函数6.1 反比例函数6.2 反比例函数的图像与性质6.3 反比例函数的应用※反比例函数的概念:一般地,xk y =(k 为常数,k ≠0)叫做反比例函数,即y 是x 的反比例函数. (x 为自变量,y 为因变量,其中x 不能为零)※反比例函数的等价形式:y 是x 的反比例函数 ←→ )0(≠=k xk y ←→ )0(1≠=-k kx y ←→ )0(≠=k k xy ←→ 变量y 与x 成反比例,比例系数为k.※判断两个变量是否是反比例函数关系有两种方法:①按照反比例函数的定义判断;②看两个变量的乘积是否为定值<即k xy =>.(通常第二种方法更适用)※反比例函数的图象由两条曲线组成,叫做双曲线※反比例函数的画法的注意事项:①反比例函数的图象不是直线,所“两点法”是不能画的;②选取的点越多画的图越准确;③画图注意其美观性(对称性、延伸特征).※反比例函数性质:①当k>0时,双曲线的两支分别位于一、三象限;在每个象限内,y 随x 的增大而减小; ②当k<0时,双曲线的两支分别位于二、四象限;在每个象限内,y 随x 的增大而增大; ③双曲线的两支会无限接近坐标轴(x 轴和y 轴),但不会与坐标轴相交.※反比例函数图象的几何特征:(如图4所示)点P(x ,y)在双曲线上都有|21||||S k xy S AOB OAPB ===∆矩形。
北师大版数学九年级上册课本知识点第一章证明(二)1、(2页)公理三边对应相等的两个三角形全等。
(sss)公理两边及其夹角对应成正比的两个三角形全系列等。
(sas)公理两边及其夹角对应相等的两个三角形全等。
(asa)公理全系列等三角形的对应边成正比、对应角成正比。
推论两角及其中一角的对边对应相等的两个三角形全等。
(aas)2、(3页)定理等腰三角形的两个底角成正比。
3、(4页)推论等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合。
随堂练习1.证明:等边三角形的三个角都相等,并且每个角都等于60。
4、(7页)定理存有两个角成正比的三角形就是等腰三角形。
(等角对等边)5、(8页)在证明时,先假设命题的结论不成立,然后推导出定义、公理、已证定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。
这种证明方法称为反证法。
6、(11页)定理存有一个角等同于60的等腰三角形就是等边三角形。
7、(12页)定理在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半。
8、(13页)随堂练1.证明:三个角都成正比的三角形就是等边三角形。
9、(16页)定理直角三角形两条直角边的平方和等于斜边的一半。
10、(17页)定理如果三角形两边的平方和等同于第三边的平方,那么这个三角形就是直角三角形。
11、(18页)在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题。
一个命题就是真命题,它的逆命题却不一定就是真命题。
如果一个定理的逆命题经过证明就是真命题,那么它也就是一个定理,这两个定理称作互逆定理。
12、(23页)定理斜边和一条直角边对应相等的两个直角三角形全等。
(“斜边、直角边”或“hl”)13、(26页)定理线段垂直平分线上的的边这条线段两个端点的距离成正比。
14、(27页)定理到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
九年级数学上册第三章知识点总结(北师大版)一、平行四边形1、平行四边形的性质定理:平行四边形的对边相等。
平行四边形的对角相等(邻角互补)。
平行四边形的对角线互相平分。
2、平行四边形的判定方法:定义:两组对边分别平行的四边形是平行四边形。
判定定理:两组对边分别相等的四边形是平行四边形。
一组对边平行且相等的四边形是平行四边形。
两组对角分别相等的四边形是平行四边形。
对角线互相平分的四边形是平行四边形。
二、矩形1、矩形的性质定理:矩形的四个角都是直角。
矩形的对角线相等。
2、矩形的判定方法:定义:有一个角是直角的平行四边形是矩形。
判定定理:有三个角是直角的四边形是矩形。
对角线相等的平行四边形是矩形。
(对角线相等且互相平分的四边形是矩形。
)三、菱形1、菱形的性质定理:菱形的四条边都相等。
菱形的对角线相等,并且每条对角线平分一组对角。
2、菱形的判定方法:定义:有一组邻边相等的平行四边形是菱形。
判定定理:四条边都相等的四边形是菱形。
对角线互相垂直的平行四边形是菱形。
(对角线互相垂直且平分的四边形是菱形。
)四、正方形1、正方形的性质定理:正方形的四个角都是直角,四条边都相等。
正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角。
2、正方形的判定定理:l 有一个角是直角的菱形是正方形。
l 有一组邻边相等的矩形是正方形。
l 有一个角是直角且有一组邻边相等的平行四边形是正方形。
l 对角线相等的菱形是正方形。
l 对角线互相垂直的矩形是正方形。
l 对角线相等且互相垂直的平行四边形是正方形。
l 对角线相等且互相垂直、平分的四边形是正方形。
五、等腰梯形1、等腰梯形的性质定理:等腰梯形的两条对角线相等。
等腰梯形在同一底上的两个角相等。
2、等腰梯形的判定方法:定义:两腰相等的梯形是等腰梯形。
判定定理:在同一底上的两个角相等的梯形是等腰梯形。
六、三角形的中位线1、定义:连接三角形两边中点的线段叫做三角形的中位线。
2、性质定理:三角形的中位线平行于第三边,且等于第三边的一半。
七、其他定理或结论:1、夹在两条平行线间的平行线段相等。
2、三角形的一条中位线与第三边上的中线互相平分。
3、菱形的面积等于其对角线乘积的一半。
4、连接三角形每两边的中点,就得到了四个全等的三角形和三个平行四边形,所得的三角形的周长是原三角形周长的,所得的三角形的面积是原三角形面积的。
八、中点四边形1. 依次连接四边形各边中点所得到的新四边形的形状,取决于原四边形两条对角线的位置关系和数量关系,即两条对角线是否相等或者是否垂直。
2. 依次连接任意四边形各边的中点,就得到一个平行四边形。
一、平行四边形1、平行四边形的性质定理:平行四边形的对边相等。
平行四边形的对角相等(邻角互补)。
平行四边形的对角线互相平分。
2、平行四边形的判定方法:定义:两组对边分别平行的四边形是平行四边形。
判定定理:两组对边分别相等的四边形是平行四边形。
一组对边平行且相等的四边形是平行四边形。
两组对角分别相等的四边形是平行四边形。
对角线互相平分的四边形是平行四边形。
二、矩形1、矩形的性质定理:矩形的四个角都是直角。
矩形的对角线相等。
2、矩形的判定方法:定义:有一个角是直角的平行四边形是矩形。
判定定理:有三个角是直角的四边形是矩形。
对角线相等的平行四边形是矩形。
(对角线相等且互相平分的四边形是矩形。
)三、菱形1、菱形的性质定理:菱形的四条边都相等。
菱形的对角线相等,并且每条对角线平分一组对角。
2、菱形的判定方法:定义:有一组邻边相等的平行四边形是菱形。
判定定理:四条边都相等的四边形是菱形。
对角线互相垂直的平行四边形是菱形。
(对角线互相垂直且平分的四边形是菱形。
)四、正方形1、正方形的性质定理:正方形的四个角都是直角,四条边都相等。
正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角。
2、正方形的判定定理:l 有一个角是直角的菱形是正方形。
l 有一组邻边相等的矩形是正方形。
l 有一个角是直角且有一组邻边相等的平行四边形是正方形。
l 对角线相等的菱形是正方形。
l 对角线互相垂直的矩形是正方形。
l 对角线相等且互相垂直的平行四边形是正方形。
l 对角线相等且互相垂直、平分的四边形是正方形。
五、等腰梯形1、等腰梯形的性质定理:等腰梯形的两条对角线相等。
等腰梯形在同一底上的两个角相等。
2、等腰梯形的判定方法:定义:两腰相等的梯形是等腰梯形。
判定定理:在同一底上的两个角相等的梯形是等腰梯形。
六、三角形的中位线1、定义:连接三角形两边中点的线段叫做三角形的中位线。
2、性质定理:三角形的中位线平行于第三边,且等于第三边的一半。
七、其他定理或结论:1、夹在两条平行线间的平行线段相等。
2、三角形的一条中位线与第三边上的中线互相平分。
3、菱形的面积等于其对角线乘积的一半。
4、连接三角形每两边的中点,就得到了四个全等的三角形和三个平行四边形,所得的三角形的周长是原三角形周长的,所得的三角形的面积是原三角形面积的。
八、中点四边形1. 依次连接四边形各边中点所得到的新四边形的形状,取决于原四边形两条对角线的位置关系和数量关系,即两条对角线是否相等或者是否垂直。
2. 依次连接任意四边形各边的中点,就得到一个平行四边形。
一、平行四边形1、平行四边形的性质定理:平行四边形的对边相等。
平行四边形的对角相等(邻角互补)。
平行四边形的对角线互相平分。
2、平行四边形的判定方法:定义:两组对边分别平行的四边形是平行四边形。
判定定理:两组对边分别相等的四边形是平行四边形。
一组对边平行且相等的四边形是平行四边形。
两组对角分别相等的四边形是平行四边形。
对角线互相平分的四边形是平行四边形。
二、矩形1、矩形的性质定理:矩形的四个角都是直角。
矩形的对角线相等。
2、矩形的判定方法:定义:有一个角是直角的平行四边形是矩形。
判定定理:有三个角是直角的四边形是矩形。
对角线相等的平行四边形是矩形。
(对角线相等且互相平分的四边形是矩形。
)三、菱形1、菱形的性质定理:菱形的四条边都相等。
菱形的对角线相等,并且每条对角线平分一组对角。
2、菱形的判定方法:定义:有一组邻边相等的平行四边形是菱形。
判定定理:四条边都相等的四边形是菱形。
对角线互相垂直的平行四边形是菱形。
(对角线互相垂直且平分的四边形是菱形。
)四、正方形1、正方形的性质定理:正方形的四个角都是直角,四条边都相等。
正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角。
2、正方形的判定定理:l 有一个角是直角的菱形是正方形。
l 有一组邻边相等的矩形是正方形。
l 有一个角是直角且有一组邻边相等的平行四边形是正方形。
l 对角线相等的菱形是正方形。
l 对角线互相垂直的矩形是正方形。
l 对角线相等且互相垂直的平行四边形是正方形。
l 对角线相等且互相垂直、平分的四边形是正方形。
五、等腰梯形1、等腰梯形的性质定理:等腰梯形的两条对角线相等。
等腰梯形在同一底上的两个角相等。
2、等腰梯形的判定方法:定义:两腰相等的梯形是等腰梯形。
判定定理:在同一底上的两个角相等的梯形是等腰梯形。
六、三角形的中位线1、定义:连接三角形两边中点的线段叫做三角形的中位线。
2、性质定理:三角形的中位线平行于第三边,且等于第三边的一半。
七、其他定理或结论:1、夹在两条平行线间的平行线段相等。
2、三角形的一条中位线与第三边上的中线互相平分。
3、菱形的面积等于其对角线乘积的一半。
4、连接三角形每两边的中点,就得到了四个全等的三角形和三个平行四边形,所得的三角形的周长是原三角形周长的,所得的三角形的面积是原三角形面积的。
八、中点四边形1. 依次连接四边形各边中点所得到的新四边形的形状,取决于原四边形两条对角线的位置关系和数量关系,即两条对角线是否相等或者是否垂直。
2. 依次连接任意四边形各边的中点,就得到一个平行四边形。
一、平行四边形1、平行四边形的性质定理:平行四边形的对边相等。
平行四边形的对角相等(邻角互补)。
平行四边形的对角线互相平分。
2、平行四边形的判定方法:定义:两组对边分别平行的四边形是平行四边形。
判定定理:两组对边分别相等的四边形是平行四边形。
一组对边平行且相等的四边形是平行四边形。
两组对角分别相等的四边形是平行四边形。
对角线互相平分的四边形是平行四边形。
二、矩形1、矩形的性质定理:矩形的四个角都是直角。
矩形的对角线相等。
2、矩形的判定方法:定义:有一个角是直角的平行四边形是矩形。
判定定理:有三个角是直角的四边形是矩形。
对角线相等的平行四边形是矩形。
(对角线相等且互相平分的四边形是矩形。
)三、菱形1、菱形的性质定理:菱形的四条边都相等。
菱形的对角线相等,并且每条对角线平分一组对角。
2、菱形的判定方法:定义:有一组邻边相等的平行四边形是菱形。
判定定理:四条边都相等的四边形是菱形。
对角线互相垂直的平行四边形是菱形。
(对角线互相垂直且平分的四边形是菱形。
)四、正方形1、正方形的性质定理:正方形的四个角都是直角,四条边都相等。
正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角。
2、正方形的判定定理:l 有一个角是直角的菱形是正方形。
l 有一组邻边相等的矩形是正方形。
l 有一个角是直角且有一组邻边相等的平行四边形是正方形。
l 对角线相等的菱形是正方形。
l 对角线互相垂直的矩形是正方形。
l 对角线相等且互相垂直的平行四边形是正方形。
l 对角线相等且互相垂直、平分的四边形是正方形。
五、等腰梯形1、等腰梯形的性质定理:等腰梯形的两条对角线相等。
等腰梯形在同一底上的两个角相等。
2、等腰梯形的判定方法:定义:两腰相等的梯形是等腰梯形。
判定定理:在同一底上的两个角相等的梯形是等腰梯形。
六、三角形的中位线1、定义:连接三角形两边中点的线段叫做三角形的中位线。
2、性质定理:三角形的中位线平行于第三边,且等于第三边的一半。
七、其他定理或结论:1、夹在两条平行线间的平行线段相等。
2、三角形的一条中位线与第三边上的中线互相平分。
3、菱形的面积等于其对角线乘积的一半。
4、连接三角形每两边的中点,就得到了四个全等的三角形和三个平行四边形,所得的三角形的周长是原三角形周长的,所得的三角形的面积是原三角形面积的。
八、中点四边形1. 依次连接四边形各边中点所得到的新四边形的形状,取决于原四边形两条对角线的位置关系和数量关系,即两条对角线是否相等或者是否垂直。
2. 依次连接任意四边形各边的中点,就得到一个平行四边形。
一、平行四边形1、平行四边形的性质定理:平行四边形的对边相等。
平行四边形的对角相等(邻角互补)。
平行四边形的对角线互相平分。
2、平行四边形的判定方法:定义:两组对边分别平行的四边形是平行四边形。
判定定理:两组对边分别相等的四边形是平行四边形。
一组对边平行且相等的四边形是平行四边形。