第四章 空间力系(3)
- 格式:ppt
- 大小:598.50 KB
- 文档页数:19
第四章空间力系一、要求1、能熟练地计算力在空间直角坐标轴上的投影和力对轴之矩。
2、对空间力偶的性质及其作用效应要有清晰的理解。
3、了解空间力系向一点简化的方法和结果。
4、能应用平衡条件求解空间汇交力系、空间任意力系、空间平行力系的平衡问题。
5、能正确地画出各种常见空间约束的约束反力。
二、重点、难点1、本章重点:力在空间直角坐标轴上的投影和力对轴之矩。
空间汇交力系、空间任意力系、空间平行力系的平衡方程的应用。
各种常见的空间约束及约束反力。
2、本章难点:空间矢量的运算,空间结构的几何关系与立体图。
三、学习指导1、空间力系的基本问题及其研究方法空间力系研究的基本问题仍然是静力学的三个基本问题,即:物体的受力分析、力系的等效替换和力系的平衡条件。
空间力系是力系中最普遍的情形,其它各种力系都是它的特殊情形。
按由浅入深、由特殊到一般的认识规律研究空间力系,是从理论上对静力学作一个系统而完整的总结。
与平面力系的研究方法相似,这里也采用力向一点平移的方法将空间任意力系分解为空间汇交力系和空间力偶系,再应用这两个力系的合成方法来简化原力系,然后根据简化结果推导出平衡条件。
由于空间力系各力作用线分布在空间,因而使问题复杂化。
出现了力在坐标轴上的二次投影法、力对轴的矩以及用向量表示力对点的矩和力偶矩等新问题,简化的结果和平衡方程也复杂了。
2、各类力系的平衡方程各类力系的独立的平衡方程的数目不变。
但是平衡方程的形式可以改变。
上表列出的是一般用形式。
解题指导1、对于解力在直角坐标轴上投影或力沿直角坐标轴分解这类问题,重要的是确定力在空间的位置。
一般解题的思路如下:(1)认清题意,仔细查看结构(或机构)的立体图,它由哪些部件组成,各部件在空间的位置,以及它们和坐标轴的关系。
(2)认清力的作用线在结构(或机构)的哪个平面内,寻找它与坐标面的交角,然后找力与坐标平面的夹角及力与坐标轴的夹角。
(3)考虑用一次投影或二次投影的方法求解。
第四章空间力系本章将研究空间力系的简化和平衡条件。
工程中常见物体所受各力的作用线并不都在同一平面内,而是空司分布的,例如车床主轴、起重设备、高压输电线塔和飞机的起落架等结构。
设计这些结构时,需用空间力系的平衡条件进行计算。
与平面力系一样,空间力系可以分为空间汇交力系、空司力偶系和空间任意力系来研究。
§4-1 空间汇交力系1.力在直角坐标轴上的投影和力沿直角坐标轴的分解若已知力F与正交坐标系Oxyz三轴间的夹角分别为α、β、γ,如图4-1所示,则力在三个轴上的投影等于力F的大小乘以与各轴夹角的余弦,即X=cosαY=cosβ (4-1)Z=cosγ当力与坐标轴Ox、Oy间的夹角不易确定时,可把力先投影到坐标平面Oxy上,得到力,然后再把这个力投影到x、y轴上。
在图4-2中,已知角γ和,则力在三个坐标轴上的投影分别为X=sinγcosY=sinγsin (4-2)Z=cosγ若以、、表示力F沿直角坐标轴x、y、z的正交分量,以i、j、k分别表示沿x、y、z坐标轴方向的单位矢量,如图4-3所示,则图4-2=++=X i+Y j+Z k (4-3)由此,力在坐标轴上的投影和力沿坐标轴的正交分矢量间的关系可表示为:=X i,=Y j,=Z k (4-4)如果己知力F在正交轴系Oxyz的三个投影,则力F的大小和方向余弦为=cos(,i)=cos(,j)= (4-5)cos(,k)=例4-1图4-4所示的圆柱斜齿轮,其上受啮合力的作用。
已知斜齿轮的齿倾角(螺旋角) β和压力角α,试求力沿x、y和z轴的分力。
解:先将力向z轴和Oxy平面投影,得Z=-sinα=cosα再将力向x、y轴投影,得X=-sinβ=-cosαsinβY=-cosβ=-cosαcosβ则沿各轴的分力为=-cosαsinβi,=-cosαcosβj,=-sinαk式中i、j、k为沿x、y、z轴的单位矢量,负号表明各分力与轴的正向相反。
静力学第四章空间力系杨文刚车床主轴受力分析§4-1 空间汇交力系§4-2 力对点之矩和力对轴之矩§4-3 空间力偶系§4-4 空间任意力系§4-5 重心空间汇交力系空间力偶系空间任意力系空间力系主要内容学习方法:在平面力系的基础上推广;注意其与平面力系的异同。
1 回顾平面汇交力系:力的平行四边形法则∑=iR F F 简化结果:平衡条件:=∑i F ∑=0x F ∑=0y F平面汇交力系合成的平行四边形法则对空间汇交力系是否适用?∑=i R F F 简化结果:平衡条件:=∑i F ∑=0x F ∑=0y F ∑=0zF2 空间汇交力系的简化与平衡条件§4-2 力对点之矩和力对轴之矩1 回顾平面力对点之矩1.大小:力F 与力臂的乘积2.方向:转动方向两个要素:()hF F M±=注意:其力矩作用面固定。
代数量2 空间力对点之矩三要素:(1)大小:力F与力臂的乘积(2)方向:转动方向(3)作用面:力矩作用面。
定位矢量2 空间力对点之矩3 力对轴之矩力与轴相交或与轴平行时(力与轴在同一平面内时),力对该轴的矩为零。
代数量3 力对轴之矩= -+ 0=1 回顾平面力偶in i i M MM ∑==∑=1两个要素:a.大小:力与力偶臂乘积b.方向:转动方向力偶矩d F M ⋅±=代数量=∑i M 简化结果:平衡条件:2 空间力偶空间力偶的三要素:(1)大小:力与力偶臂的乘积;(2)方向:转动方向;(3)作用面:力偶作用面。
2 空间力偶力偶矩矢矢量力偶矩相等的力偶等效2 空间力偶(1)力偶中两力在任意坐标轴上投影的代数和为零。
(2)力偶对任意点取矩都等于力偶矩,不因矩心的改变而改变。
(3)只要保持力偶矩不变,力偶可在其作用面内任意移转,且可以同时改变力偶中力的大小与力偶臂的长短,对刚体的作用效果不变。
(5)只要保持力偶矩不变,力偶可从其所在平面移至另一与此平面平行的任一平面,对刚体的作用效果不变。