极限的运算法则
- 格式:ppt
- 大小:839.50 KB
- 文档页数:12
1.极限法则:极限是一个数列取极限值的概念,它表示一个数包含在另一个数中时,前者的值趋于后者。
2.链式法则:链式法则是极限的一种计算方法,即从一个已知限的出发,由此推出另外一个极限。
3.运算法则:
(1)可积性法则:假设函数有连续的极限,则在极限中乘以另外一个函数后再求极限,则取得的极限结果等于先求出两个函数的极限再相乘;
(2)可逆性法则:假设函数有连续的极限,则在极限中除以另外一个函数后再求极限,则取得的极限结果等于先求出两个函数的极限再相除;
(3)可幂次性:假设对函数求极限,则取出的极限结果等于该函数的幂次方的极限。
极限的运算法则及计算方法极限是微积分中的一个重要概念,用于研究函数在接近其中一点时的趋势。
在许多情况下,计算极限可以通过应用一些运算法则来简化。
本文将介绍极限的运算法则以及一些常用的计算方法。
一、极限的四则运算法则1. 乘法法则:如果函数f(x)的极限存在,g(x)的极限存在,则(f(x) * g(x))的极限等于f(x)的极限乘以g(x)的极限,即lim(x→a) [f(x) * g(x)] = lim(x→a) f(x) * lim(x→a) g(x)。
2. 除法法则:如果函数f(x)的极限存在,g(x)的极限存在且g(x)不等于0,则(f(x) / g(x))的极限等于f(x)的极限除以g(x)的极限,即lim(x→a) [f(x) / g(x)] = lim(x→a) f(x) / lim(x→a) g(x)。
3. 加法法则:如果函数f(x)的极限存在,g(x)的极限存在,则(f(x) + g(x))的极限等于f(x)的极限加上g(x)的极限,即lim(x→a) [f(x) + g(x)] = lim(x→a) f(x) + lim(x→a) g(x)。
4. 减法法则:如果函数f(x)的极限存在,g(x)的极限存在,则(f(x) - g(x))的极限等于f(x)的极限减去g(x)的极限,即lim(x→a) [f(x) - g(x)] = lim(x→a) f(x) - lim(x→a) g(x)。
二、极限的乘方法则1. 幂函数法则:对于任意正整数n,如果函数f(x)的极限存在,则(f(x)^n)的极限等于f(x)的极限的n次方,即lim(x→a) [f(x)^n] = [lim(x→a) f(x)]^n。
2. 平方根法则:如果函数f(x)的极限存在且大于等于0,则√[f(x)]的极限等于f(x)的极限的平方根,即lim(x→a) √[f(x)] =√[lim(x→a) f(x)]。
三、特殊函数的极限计算法则1. 三角函数:常见的三角函数包括正弦函数sin(x)、余弦函数cos(x)和正切函数tan(x)等。
极限的运算一 极限的四则运算法则定理:若()A x f =lim ,()B x g =lim ,则有 (1)()()[]()()x g x f B A x g x f lim lim lim ±=±=± (2)()()[]()()x g x f AB x g x f lim lim lim ⋅==⋅ (3)()()()()x g x f B A x g x f lim lim lim==,(0≠B ) 注意:法则(1)和法则(2)可以推广到有限个函数的情况。
另外,法则(2)还有三个推论。
推论:(1)()()x f k x kf lim lim =, (k 为常数)(2)()[]()[]n x f nx f lim lim =,(n 为正整数) (3)()[]()[]nnx f x f 11lim lim =,(n 为正整数)例1()235lim 22+-→x x x -=→225lim x x +→x x 3lim 22lim 2→x=-→22lim 5x x +→x x 2lim 32=-→22)lim (5x x +⨯232=26252+-⨯=16观察这个例子可以发现函数2352+-x x 在2→x 时的极限正好等于它在2=x 这一点的函数值,因此,我们可以得到这样一条规律:若()x f 是多项式,则()()00lim x f x f x x =→。
例23512222lim +--+→x x x x x =()()35122222lim lim +--+→→x x x x x x =3252122222+⨯--+⨯=39-=3- 例3222123lim x x x x -+-→=()()2222123lim lim x x xx x -+-→→=0从以上三个例子可以看出极限四则运算法则的运用是比较简单的,但是如果我们拿到的极限不满足极限四则运算法则的条件,就不能用极限的四则运算法则来求极限了。
极限的运算法则及计算方法极限是数学分析中的重要概念,用于描述函数在一些点无限接近一些值的情况。
极限的运算法则涉及到极限的四则运算、复合函数的极限、反函数的极限以及夹逼定理等内容。
下面将详细介绍极限的运算法则及计算方法。
1.极限的四则运算法则:(1)和差运算法则:设函数f(x)和g(x)在点x=a处极限存在,那么函数f(x)和g(x)的和差的极限存在,并且有以下公式:lim (f(x) ± g(x)) = lim f(x) ± lim g(x)(2)乘积运算法则:设函数f(x)和g(x)在点x=a处极限存在,那么函数f(x)和g(x)的乘积的极限存在,并且有以下公式:lim f(x)g(x) = lim f(x) · lim g(x)(3)商运算法则:设函数f(x)和g(x)在点x=a处极限存在,并且lim g(x)≠0,那么函数f(x)和g(x)的商的极限存在,并且有以下公式:lim f(x)/g(x) = lim f(x)/lim g(x)2.复合函数的极限:(1)设函数f(x)在点x=a处极限存在,并且函数g(x)在点x=limf(x)处极限存在,那么复合函数g(f(x))在点x=a处极限存在,并且有以下公式:lim g(f(x)) = lim g(u) (u→lim f(x)) = lim g(u) (u→a) = lim g(v) (v→a)(2)特别地,如果函数f(x)在点x=a处极限存在,并且函数g(x)在点x=lim f(x)处连续,那么复合函数g(f(x))在点x=a处极限存在,并且有以下公式:lim g(f(x)) = g(lim f(x)) = g(f(a))3.反函数的极限:(1)设函数y=f(x)在点x=a处具有反函数,并且在点x=a处极限存在,那么函数x=f^[-1](y)在点y=f(a)处极限存在,并且有以下公式:lim x→a f^[-1](y) = f^[-1](lim y→f(a))4.夹逼定理:假设函数g(x)≤f(x)≤h(x)在点x=a处成立,并且g(x)和h(x)在点x=a处极限都等于L,那么函数f(x)在点x=a处也存在极限,并且极限等于L,即有以下公式:lim f(x) = L以上就是极限的运算法则及计算方法的基本内容。
极限四则运算法则由极限定义来求极限是不可取的,也是不行的,因此需寻求一些方法来求极限。
定理1:若B x g A x f ==)(lim ,)(lim ,则)]()(lim[x g x f ±存在,且)(lim )(lim )]()(lim[x g x f B A x g x f ±=±=±。
证明: 只证B A x g x f +=+)]()(lim[,过程为0x x →,对0,01>∃>∀δε,当100δ<-<x x 时,有2)(ε<-A x f ,对此ε,02>∃δ,当200δ<-<x x 时,有2)(ε<-B x g ,取},mi n {21δδδ=,当δ<-<00x x 时,有所以B A x g x f x x +=+→))()((lim 0。
其它情况类似可证。
注:本定理可推广到有限个函数的情形。
定理2:若B x g A x f ==)(lim ,)(lim ,则)()(lim x g x f ⋅存在,且)(lim )(lim )()(lim x g x f AB x g x f ⋅==。
证明:因为B x g A x f ==)(lim ,)(lim ,⇒,)(,)(βα+=+=B x g A x f(βα,均为无穷小))())(()()(αβαββα+++=++=⇒B A AB B A x g x f ,记 αβαβγ++=B A , γ⇒为无穷小, AB x g x f =⇒)()(lim 。
推论1:)(lim )](lim[x f c x cf =(c 为常数)。
推论2:n n x f x f )]([lim )](lim [=(n 为正整数)。
定理3:设0)(lim ,)(lim ≠==B x g A x f ,则)(lim )(lim )()(lim x g x f B A x g x f ==。