《高等数学》极限运算法则
- 格式:pdf
- 大小:1.57 MB
- 文档页数:24
高数求极限运算法则极限(Limit)是高等数学中非常重要的数学概念,是对函数在某一特定变量无穷接近某个值的概念,是理解微积分及其它研究的基础。
极限的求取是高数教学的重要内容,它不仅提高了学生的数学思维能力,还有助于培养其创新能力。
因此,高数求极限的运算法则的掌握就显得尤为重要。
一、定义极限又称无穷小,是指分母函数值趋近于无穷小,且分子函数值恒不变时,分母函数不变时其商函数极限,记作:$$lim_{xto a}f(x)=L$$其中$xto a$(x逼近a)表示x不断逼近a,当$xto a$时,$f(x)=L$。
二、极限的计算1、无穷小的消去法即在极限的运算中,若分母中出现无穷小,可让其消去,即$lim_{xto a}f(x)=f(a)$,$f(a)$为极限值。
2、无穷大的消去法即若极限运算中出现无穷大,首先判断一下分子和分母的大小,根据大小将分母合理改写,使无穷大可以化简消去,然后将合理改写后的分母和分子相除,得到极限的值。
3、积分型极限计算法则即若函数形式为$frac{f(x_0)+f(x_1)+f(x_2)+cdots+f(x_n)}{x_0+x_1+x_2+cdots+x_n}$,此时函数的极限可以用随机积分法求出。
4、指数函数极限计算法则即若函数形式为$a^x$,其中a为任意正数,当$xto infty$时极限值为无穷大;当$xto -infty$时极限值为0。
5、三角函数极限计算法则即当函数形式为$sin x$或$cos x$等三角函数的极限时,可以运用三角恒等公式,将它们改写成有限值表达式,求出其极限值。
6、指数型函数极限计算法则即当函数形式为$a^x$,其中a为任意正数,此时函数的极限可以用对数函数法求出,其计算方法是将该函数改写成对数函数形式,再用极限运算法则加以求解。
三、总结1、极限定义:极限是指函数在某一特定变量无穷接近某个值的概念,记作:$$lim_{xto a}f(x)=L$$2、求极限的方法:包括无穷小的消去法、无穷大的消去法、积分型极限计算法则、指数函数极限计算法则、三角函数极限计算法则、指数型函数极限计算法则等,其中各种方法有其特色,使用了正确的方法可以满足不同的求解要求。
高等数学极限求法总结高等数学极限求法总结极限的判断定义是:单调递增有上界则有极限,单调递减有下界则有极限。
下面是小编整理的高等数学极限求法总结,希望对你有帮助!函数极限可以分成而运用ε-δ定义更多的见诸于已知的极极限值的证明题中。
掌握这类证明对初学者深刻理解运用极限定义大有裨益。
限为例,f(x) 在点以A为极限的定义是:对于任意给定的正数ε(无论它多么小),总存在正数,使得当x满足不等式时,对应的f(x)函数值都满足不等式:,那么常数A就叫做函数f(x)当x→x时的极限。
1.利用极限的四则运算法则:极限四则运算法则的条件是充分而非必要的,因此,利用极限四则运算法则求函数极限时,必须对所给的函数逐一进行验证它是否满足极限四则运算法则条件,满足条件者。
方能利用极限四则运算法则进行求之。
不满足条件者,不能直接利用极限四则运算法则求之。
但是,井非不满足极限四则运算法则条件的函数就没有极限,而是需将函数进行恒等变形,使其符合条件后,再利用极限四则运算法则求之。
而对函数进行恒等变形时,通常运用一些技巧如拆项、分子分母同时约去零因子、分子分母有理化、通分、变量替换等等。
例 1 求 lim( x 2 3x + 5).x→ 2解: lim( x 2 3x + 5) = lim x 2 lim 3x + lim 5= (lim x) 2 3 lim x + lim 5= 2 2 3 2 + 5 = 3.x→2 x →2 x →2 x →2 x →2 x →2 x →22.利用洛必达法则洛必达(L Hopital)法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法.简单讲就是,在求一个含分式的函数的极限时,分别对分子和分母求导,在求极限,和原函数的极限是一样的。
一般用在求导后为零比零或无穷比无穷的类型。
利用洛必达求极限应注意以下几点:设函数f(x)和F(x)满足下列条件:(1)x→a时,lim f(x)=0,lim F(x)=0;(2)在点a的某去心邻域内f(x)与F(x)都可导,且F(x)的导数不等于0;(3)x→a时,lim(f(x)/F(x))存在或为无穷大则x→a时,lim(f(x)/F(x))=lim(f(x)/F(x))例1:1-cosx = 1-{1-2[sin(x/2)]^2} = 2[sin(x/2)]^2xsinx = 2xsin(x/2)cos(x/2)原式= lim 2[sin(x/2)]^2 / [2xsin(x/2)cos(x/2)] = tgx / x对分子分母同时求导(洛必达法则)(tgx) = 1 / (cosx)^2(x) = 1原式 = lim 1/(cosx)^2当 x --> 0 时,cosx ---> 1原式 = 13.利用两个重要极限:应用第一重要极限时,必须同时满足两个条件:① 分子、分母为无穷小,即极限为 0 ;② 分子上取正弦的角必须与分母一样。
高数极限运算法则讲解极限是数学中最重要的概念,它是用来描述一个函数d(x)在某个点a接近而不是等于某个值L时,对x的变化可以推导出一个结果。
也就是说,当x趋向于a时,d(x)会趋向于L,这时d(x)就称为以a为极限的函数。
实际应用中,很多复杂的数学问题都可以通过极限来解决。
极限也是高等数学的重点。
二、极限的运算法则(1)极限加法:当两个函数f (x)和g (x)的极限都存在的时候,两函数的极限的和也存在,其极限关系式为:lim_x→a[f(x)+g(x)]=lim_x→a f(x)+lim_x→a g(x)。
(2)极限减法:当两个函数f (x)和g (x)的极限都存在的时候,两函数的极限的差也存在,其极限关系式为:lim_x→a[f(x)-g(x)]=lim_x→a f(x)-lim_x→a g(x)。
(3)极限乘法:当两个函数f (x)和g (x)的极限都存在的时候,两函数的极限的积也存在,其极限关系式为:lim_x→a[f(x)*g(x)]=lim_x→a f(x)*lim_x→a g(x)。
(4)极限除法:当函数f (x)和g (x)都有极限,且lim_x→a g(x)非零时,两函数的极限的商也存在,其极限关系式为:lim_x→a [f(x)/g(x)]=lim_x→a f(x)/lim_x→a g(x)。
(5)极限交换法则:当两个函数f (x)和g (x)的极限都存在的时候,函数的项可以进行交换,即lim_x→a[f(x)g(x)]=lim_x→a g(x)lim_x→a f(x)。
(6)极限重复法则:当函数f (x)有极限,当x趋向于a时,函数f (x)重复m次,其极限关系式为:lim_x→a[f(x)^m]=[lim_x →a f(x)]^m。
三、极限的应用(1)冯科普雷定理:当n≥3时,给定f(x)在区间[a,b]上有n次连续可导,且f(a)=f(b),就一定存在某一点c∈(a,b),使得f′(c)=0。
高等数学极限的公式总结在高等数学中,极限的公式是非常重要的概念,这些公式能够帮助我们理解函数的极限,并进行极限的运算。
以下是一些常见的高等数学极限的公式总结:1. 极限的四则运算性质:lim(a+b) = lim a + lim blim(a-b) = lim a - lim blim(ab) = lim a lim b (假设lim a 和 lim b都存在)lim(a/b) = lim a / lim b (假设lim b 不等于0)2. 极限的常数性质:lim a = a (当a是一个常数)3. 极限的单调性:lim(f(x0+delta x) - f(x0)) / delta x = f'(x0) (当delta x -> 0)4. 连续函数的性质:如果f(x)在x0处连续,那么lim f(x) = f(x0) 当 x -> x05. 无穷小量与无穷大量:当x -> 0时,x是无穷小量,1/x是无穷大量。
6. 洛必达法则:如果lim (f'(x)/g'(x))存在,那么lim (f(x)/g(x)) = lim (f'(x)/g'(x)) (当x->a时)。
7. 泰勒公式:对于任何n阶可导函数f(x),存在一个多项式Pn(x),使得对于所有-∞ < x < ∞,有f(x) = Pn(x) + o(x^n),其中o(x^n)是高阶无穷小。
8. 夹逼准则:如果存在一个区间或闭区间[a, b],满足f(a) <= g(a), f(b) >= g(b),并且lim f(x) = lim g(x),则lim g(x)存在,并且lim g(x) = lim f(x)。
9. 无穷大与无穷小的关系:lim x -> ∞ f(x) = lim x -> ∞ f(x) (如果存在的话)lim x -> ∞ f(x) = 0 (如果lim x -> ∞ f(x)存在的话)10. 极限的唯一性:对于任意给定的正数ε,总存在一个正数δ,使得当x - x0 < δ时,有f(x) - A < ε。
《应用高等数学》极限的四则运算法则应用高等数学中的极限的四则运算法则是指在计算数列或函数极限时,可以利用四则运算的运算规则进行运算,以便更方便地求出极限值。
四则运算法则主要包括极限和、极限差、极限积和极限商四种情况。
1.极限和法则:若函数f(x)和g(x)在点x=a处极限存在,则它们的和函数[f(x)+g(x)]在点x=a处也存在极限,且极限等于两个函数在点x=a处极限的和,即:lim (x→a) [f(x) + g(x)] = lim (x→a) f(x) + lim (x→a) g(x) 2.极限差法则:若函数f(x)和g(x)在点x=a处极限存在,则它们的差函数[f(x)-g(x)]在点x=a处也存在极限,且极限等于两个函数在点x=a处极限的差,即:lim (x→a) [f(x) - g(x)] = lim (x→a) f(x) - lim (x→a) g(x) 3.极限积法则:若函数f(x)和g(x)在点x=a处极限存在,则它们的积函数[f(x)*g(x)]在点x=a处也存在极限,且极限等于两个函数在点x=a处极限的积,即:lim (x→a) [f(x) * g(x)] = (lim (x→a) f(x)) * (lim (x→a)g(x))4.极限商法则:若函数f(x)和g(x)在点x=a处极限存在,并且g(x)≠0,则它们的商函数[f(x)/g(x)]在点x=a处也存在极限,且极限等于两个函数在点x=a处极限的商,即:lim (x→a) [f(x) / g(x)] = (lim (x→a) f(x)) / (lim (x→a) g(x))需要注意的是,上述四则运算法则只适用于函数在点x=a处极限存在的情况,且在使用这些法则时应保持合理性,并且注意避免除以零等错误操作。
这些四则运算法则在高等数学中被广泛应用于求解各种极限问题,通过利用这些法则,可以更简洁、方便地求出函数的极限值,从而帮助我们更好地理解函数的性质和变化规律。