高等数学 极限运算法则
- 格式:ppt
- 大小:843.50 KB
- 文档页数:28
高数求极限运算法则极限(Limit)是高等数学中非常重要的数学概念,是对函数在某一特定变量无穷接近某个值的概念,是理解微积分及其它研究的基础。
极限的求取是高数教学的重要内容,它不仅提高了学生的数学思维能力,还有助于培养其创新能力。
因此,高数求极限的运算法则的掌握就显得尤为重要。
一、定义极限又称无穷小,是指分母函数值趋近于无穷小,且分子函数值恒不变时,分母函数不变时其商函数极限,记作:$$lim_{xto a}f(x)=L$$其中$xto a$(x逼近a)表示x不断逼近a,当$xto a$时,$f(x)=L$。
二、极限的计算1、无穷小的消去法即在极限的运算中,若分母中出现无穷小,可让其消去,即$lim_{xto a}f(x)=f(a)$,$f(a)$为极限值。
2、无穷大的消去法即若极限运算中出现无穷大,首先判断一下分子和分母的大小,根据大小将分母合理改写,使无穷大可以化简消去,然后将合理改写后的分母和分子相除,得到极限的值。
3、积分型极限计算法则即若函数形式为$frac{f(x_0)+f(x_1)+f(x_2)+cdots+f(x_n)}{x_0+x_1+x_2+cdots+x_n}$,此时函数的极限可以用随机积分法求出。
4、指数函数极限计算法则即若函数形式为$a^x$,其中a为任意正数,当$xto infty$时极限值为无穷大;当$xto -infty$时极限值为0。
5、三角函数极限计算法则即当函数形式为$sin x$或$cos x$等三角函数的极限时,可以运用三角恒等公式,将它们改写成有限值表达式,求出其极限值。
6、指数型函数极限计算法则即当函数形式为$a^x$,其中a为任意正数,此时函数的极限可以用对数函数法求出,其计算方法是将该函数改写成对数函数形式,再用极限运算法则加以求解。
三、总结1、极限定义:极限是指函数在某一特定变量无穷接近某个值的概念,记作:$$lim_{xto a}f(x)=L$$2、求极限的方法:包括无穷小的消去法、无穷大的消去法、积分型极限计算法则、指数函数极限计算法则、三角函数极限计算法则、指数型函数极限计算法则等,其中各种方法有其特色,使用了正确的方法可以满足不同的求解要求。
高数极限运算法则讲解极限是数学中最重要的概念,它是用来描述一个函数d(x)在某个点a接近而不是等于某个值L时,对x的变化可以推导出一个结果。
也就是说,当x趋向于a时,d(x)会趋向于L,这时d(x)就称为以a为极限的函数。
实际应用中,很多复杂的数学问题都可以通过极限来解决。
极限也是高等数学的重点。
二、极限的运算法则(1)极限加法:当两个函数f (x)和g (x)的极限都存在的时候,两函数的极限的和也存在,其极限关系式为:lim_x→a[f(x)+g(x)]=lim_x→a f(x)+lim_x→a g(x)。
(2)极限减法:当两个函数f (x)和g (x)的极限都存在的时候,两函数的极限的差也存在,其极限关系式为:lim_x→a[f(x)-g(x)]=lim_x→a f(x)-lim_x→a g(x)。
(3)极限乘法:当两个函数f (x)和g (x)的极限都存在的时候,两函数的极限的积也存在,其极限关系式为:lim_x→a[f(x)*g(x)]=lim_x→a f(x)*lim_x→a g(x)。
(4)极限除法:当函数f (x)和g (x)都有极限,且lim_x→a g(x)非零时,两函数的极限的商也存在,其极限关系式为:lim_x→a [f(x)/g(x)]=lim_x→a f(x)/lim_x→a g(x)。
(5)极限交换法则:当两个函数f (x)和g (x)的极限都存在的时候,函数的项可以进行交换,即lim_x→a[f(x)g(x)]=lim_x→a g(x)lim_x→a f(x)。
(6)极限重复法则:当函数f (x)有极限,当x趋向于a时,函数f (x)重复m次,其极限关系式为:lim_x→a[f(x)^m]=[lim_x →a f(x)]^m。
三、极限的应用(1)冯科普雷定理:当n≥3时,给定f(x)在区间[a,b]上有n次连续可导,且f(a)=f(b),就一定存在某一点c∈(a,b),使得f′(c)=0。
一、 极限定义、运算法则和一些结果1. 定义: (各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。
说明: (1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明, 例如: ; ; ;等等(2)在后面求极限时, (1)中提到的简单极限作为已知结果直接运用, 而不需再用极限严格定义证明。
2. 极限运算法则定理1 已知 , 都存在, 极限值分别为A, B, 则下面极限都存在, 且有 (1)(2)B A x g x f ⋅=⋅)()(lim(3))0(,)()(lim 成立此时需≠=B BA x g x f 说明: 极限号下面的极限过程是一致的;同时注意法则成立的条件, 当条件不满足时, 不能用。
3. 两个重要极限(1) 1sin lim 0=→xx x (2) e x x x =+→1)1(lim ; e x x x =+∞→)11(lim 说明: ( 1 )不仅要能够运用这两个重要极限本身, 还应能够熟练运用它们的变形形式.(2)一定注意两个重要极限成立的条件。
一定注意两个重要极限 成立的条件。
例如: , , ;等等。
4. 洛比达法则定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。
定理3 当 时, 下列函数都是无穷小(即极限是0), 且相互等价, 即有:x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。
说明: 当上面每个函数中的自变量x 换成 时( ), 仍有上面的等价关系成立, 例如: 当 时, ~ ; ~ 。
定理4 如果函数 都是 时的无穷小, 且 ~ , ~ , 则当 存在时, 也存在且等于 , 即 = 。
5. 洛比达法则定理5 假设当自变量x 趋近于某一定值(或无穷大)时, 函数 和 满足: (1) 和 的极限都是0或都是无穷大;(2) 和 都可导, 且 的导数不为0;(3))()(lim x g x f ''存在(或是无穷大); 则极限 也一定存在, 且等于 , 即 = 。
高数函数极限运算法则函数极限运算是高等数学中一门重要的分支,它有助于阐明定理、证明公式、验证函数形式以及求函数值。
本文从三个方面,分别介绍函数极限的定义、概念及其。
一、定义函数极限运算(Function Limit Computation)是指当函数f(x) 中的x变化时,极限的概念用来表示函数的某些特性,比如这个函数的值的朝向、变化率等,以及这个函数可能到达的最大值或最小值。
在定义上,极限可以用函数f(x)中变量x的极限定义来表示,即:lim〖f(x)〗=L (x→a)其中L是一个常数,a是x的一个值或一组值,表示x→a时,f(x)的值准备趋近于L。
二、概念函数极限运算的目的是确定当x接近某个值(或称为无穷小值)时,f(x)的值是否保持恒定或出现忽略小量变化的趋势。
需要注意的是,在瞬时的情况下,f(x)的值是可以改变的,但是当x接近某个值时,f(x)的值可能保持恒定或是出现小量变化的趋势。
在确定极限的时候,我们需要考虑的概念有:有界极限和无界极限;连续极限和离散极限;对称极限和不对称极限;有穷极限和无穷极限;正极限和负极限等。
此外,在特殊情况下,我们还会考虑复数极限、多元极限和多元函数极限等概念。
三、运算在定义及概念的基础上,我们可以开始探讨运算函数极限的方法,其中包括求取函数极限的量化方法、求取极限的特殊性方法、求取函数极限的图解方法等。
1、量化方法利用量化方法求取函数极限,要从函数f(x)中提取特定的变量x,然后利用极限定义,即lim〖f(x)〗=L (x→a),将f(x)变为L,最后采用代数运算,得出L的值,从而求出极限值。
2、特殊性方法利用特殊性方法求取函数极限,通过分析函数的特殊性,搜索到适用的极限求取方法,再根据某种特殊性求取极限值。
3、图解方法图解方法是求取函数极限的一种最简单的计算方法,这种方法通过绘图的形式,可以根据函数图形的特点,用直观的方式来判断函数极限的值。
综上所述,函数极限运算是高等数学中一门重要的分支,它与函数及其定义、概念及运算有着密切的联系,有助于阐明定理、证明公式、验证函数形式以及求函数值。