六年级 圆柱和圆锥的奥数题复习课程
- 格式:doc
- 大小:14.50 KB
- 文档页数:4
第18讲圆柱和圆锥的表面积圆柱的表面积包括两个底面积和一个侧面积,解答与圆柱、圆锥的表面积有关的问题时,可以通过观察实物模型、画图或想象图形的方法,明确题意,再分步计算各部分的内容,最后完成解题.例1 用一张长20.7分米、宽10分米的铁皮按下图所示剪出阴影部分做成一个圆柱形油桶,求这个油桶的表面积.思维点拨要求油桶的表面积,只要求出(侧面积十底面积×2)就行了.本题的关键是要判断如图所示的圆柱侧面展开后的长方形的长是否等于剪下的圆的周长.用20.7-10÷2=15.7(分米),再用15.7÷3.14=5(分米),正好就是圆的直径,证明阴影部分的面积就是油桶的表面积.例2 —个圆柱的侧面积是25.12平方厘米,高是4厘米,求这个圆柱的表面积.思维点拨侧面积是用底面周长×高得到的,所以用侧面积÷高一底面周长,从而可以求出底面半径,进而求出底面积即可.例3 把一个圆柱沿着底面直径分割成两个半圆柱,表面积增加了48平方厘米,如果这个圆柱的底面半径是2厘米,求原来圆柱的表面积是多少平方厘米.思维点拨表面积之所以增加,是因为增加了两个长方形截面,而这个长方形的宽即是圆柱的底面直径,长即是圆柱的高,所以用48÷2÷(2×2)即得圆柱的高,即可求出它的表面积了.例4 把一个长80厘米的圆柱平均截成两段,表面积增加了56.52平方厘米,那么原来圆柱的侧面积是多少平方厘米?思维点拨要求圆柱的侧面积,知道了圆柱的底面周长和高就可求出了,要求底面周长,只要求出底面半径就行了.用增加的面积56.52÷2即可得底面积.例5 一个圆柱形钢材被切割成如下形状,求圆柱形钢材剩下的侧面积是多少.思维点拨可以想象一下:剩下的侧面积展开后会是一个什么形状?(也可以实验一下) 答案是两个一样的梯形,那么就是求两个梯形的面积了.例6 如图,底面半径分别为2分米、1分米的两个圆柱,它们的高都是3分米,组成一个零件,求这个零件的表面积.思维点拨这个零件的表面积其实就是两个圆柱的表面积之和减去被上面圆柱底面遮住的两个底面积.●课内练习1.用一张长16.56厘米、宽8厘米的铁皮按下图所示做成一个圆柱,求圆柱的表面积.2.一个圆柱的高是6分米,侧面积是75.36平方分米,求它的表面积.3.把一个圆柱沿着底面相互垂直的两条直径切割成四等份,表面积增加了20平方分米,已知底面半径是1分米,那么,原来匮柱的表面积是多少?4.把两个底面相同,高都是3分米的圆柱底面粘在一起,这时新得到的圆柱比原来两个圆柱的表面积减少了25.12平方分米,求粘合成的圆柱的侧面积是多少.5.用一张长方形铁皮(宽30厘米,长31.4厘米)做成一个最大的如下所示的空心管,那么,被剪去的铁皮面积是多少?6.如图,底面半径分别为2分米、1分米、0.5分米,高都是3分米的三个圆柱组成一个零件,求这个零件的表面积.●课外作业1.有一张长方形硬纸板,长10分米,宽6分米,用它做成一个尽可能大的有上、下底面的圆柱,求这个圆柱的表面积.2.一个圆柱的底面周长是18.84厘米,高是7厘米,这个圆柱的表面积是多少平方厘米?3.如图,这是一个底面被锯掉14的圆在形树干,这时,这个树干的表面积是多少?4.把两个底面相同、高都是3分米的圆柱底面粘在一起,这时新得到的圆柱体比原来两个圆柱的表面积减少了25.12平方分米,求粘合成的圆柱的表面积.5.用铁皮做一个如图所示的空心管,需要面积多大的铁皮?6.从一个长40厘米、底面半径是10厘米的圆柱体零件的底面打一个圆柱形的小孔,小孔的直径是6厘米,孔深5厘米,求这个零件的表面积.7.一个圆柱体的高是8厘米,侧面积是50.24平方厘米,求它的表面积.8.把一个圆柱体沿着底面的3条直径切割为6等份,表面积增加了60平方分米.已知底面半径是1分米,问:原来圆柱体的表面积是多少?9.把一长50厘米的圆柱体切成两个圆柱体,表面积增加了100.48平方厘米,求原来圆柱体的表面积.10.如下图的一块铁皮,能否做一个底面直径为5厘米、高为10厘米的圆柱体?你知道吗奇数一般可表示为2n+1或2n-1(n是自然数).凡是个位数字是奇数(即1,3,5,7,9)的整数必为奇数,两个奇数的和、差必为偶数,两个奇数的积、商(除数不为0)仍为奇数.你能很怏算出下列50个连续奇数的和吗?1+3+5+7+…+97+99=?我们先看下列等式:1=121+3=221+3+5=321+3+5+7=42…可见从数1起连续奇数的和是一个完全平方数,其中连续奇数的个数恰好是完全平方数的底数.所以1+3+5+7+…+97+99=502=2500.第18讲圆柱和圆锥的表面积●培优教程例1本题要注意的是圆柱形侧面展开后的长方形的长等于剪下的圆的周长.由图可见,圆的直径为5分米,因此,圆周长为7c×5-15.7(分米),长方形的长为20.7-5=15.7(分米),正好等于圆周长.因此,圆柱形油桶的侧面积为 (20.7-10÷2)×10=157(平方分米).上、下底面积为2×π×(10÷2÷2)2=39.25(平方分米).所以圆柱形油桶的表面积为157+39.25=196.25(平方分米).例2 关键要求出圆柱体的底面积,由题意可知,一个底面的周长为25.12÷4=6.28(厘米).由周长可求出底面圆的半径,从而圆柱体的底面积为2×π×(6.28÷π÷2)2=6.28(平方厘米).所以表面积为25.12+6.28=31.4(平方厘米).例3 关键要求出圆柱的高.沿底面直径分割后增加的表面积即是两个长方形的面积,所以高可求出,为48÷2÷4=6(厘米).侧面积为2×π×2×6=2×3.14×12=75.36(平方厘米).底面积为2×π×22-8×3.14=25.12(平方厘米).所以表面积为75.36+25.12=100.48(平方厘米).例4 增加的表面积是两个底面的面积,所以底面的半径即可求得,即半径R的平方为R2=56.52÷2÷π=9,所以R=3(厘米).圆柱的侧面积为2πR×高=2×3.14×3×80=1507.2(平方厘米).例5侧面的展开图是两个形状相同的梯形,该梯形的上底为4分米,下底为5分米,高为底面周长的一半,高为1 2×π×2=12×3.14×2-3.14(分米),所以侧面积为2×(4+5)÷2×3.14=28.26(平方分米).例6 零件的表面积等于两个圆柱的表面积减去上面圆柱底面遮住的两个底面积.所以表面积为2π×2×3+2×π×22+2π×1×3=26×3.14=81.64(平方分米).●针对性训练课内练习1.因为(16.56-8÷2)÷3.14=4(厘米),8÷2=4(厘米),所以,阴影部分的长方形就是圆柱的侧面积.侧面积:(16.56-8÷2)×8=100.48(平方厘米).底面积×2:(8÷2÷2)2×3.14×2=25.12(平方厘米).表面积:100.48+25.12=125.6(平方厘米).2. (75.36-6÷3.14÷2)2×3.14×2+75.36=100.48(平方分米).3.高:20÷4÷(1×2)=52(分米),表面积:12×3.14×2+1×2×3.14×52=21.98(平方分米).4.半径2:25.12÷2÷3.14=4(分米2),所以半径是2分米,侧面积为(2×2×3. 14)×(3×2)=75.36(平方分米).5.被剪去的铁皮是两个一样的三角形.三角形的底是30-20=10(厘米),高是底面周长的一半:31.4÷2=15.7(厘米),所以,被剪去的面积是10×15.7×÷×2=157(平方厘米).6.表面积即三个圆柱的侧面积加两个最大的底面积,(2×2×3.14+1×2×3.14+0.5×2×3.14)×3+2×22×3.14=91.06(平方分米).课外作业1.以宽为标准,可以放两个直径为3分米的圆.那么,底面周长应为3×3.14=9.42(分米),侧面积:9.42×6-56.52(平方分米),底面积×2:(6÷2÷2)2×3.14×2-14.13(平方分米),表面积:56.52+14.13=70.65(平方分米).2.(18.84÷3.14÷2)2×3.14×2+18.84×7=188.4(平方厘米).3. 22×3.14×(1-14)×2+2×2×3.14×(1-14)×10+2×10×2=153.04(平方分米).4.R2:25.12÷2÷3.14=4(分米2),则底面半径为2分米,则粘合成的圆柱的表面积为25.12+2×3.14×2×(3×2)=100.48(平方分米).5.铁皮的面积就是两个一样的梯形的面积,(1+3)×(1×3.14×12)×12×2=6.28(平方厘米).6.零件的表面积也就是大圆柱的表面积加上小圆柱的侧面积.10×2×3.14×40+102×3.14×2+6×3.14×5=3234.2(平方厘米).7.底面圆周长为50.24÷8=6.28(厘米),所以底面圆半径为R=1(厘米),圆柱的上、下底面积为2πR2=2×3.14×12=6.28(平方厘米).所以圆柱体的表面积为50.24+6.28=56.52(平方厘米).8.把圆柱体沿底面直径切割成6等份,增加了6个长方形的面积,长方形的一条边是圆柱体的高,另一条边是底面直径(2分米),于是圆柱的高为60÷6-2=5(分米).圆柱体的表面积为2πR2+2πR×h=2πR(R+h)=2×3.14×1×6=37.68(平方分米).9.增加的面积是两个底面的面积,于是底面半径的平方R2=100.482 3.14⨯=16(厘米2),可知R=4(厘米).圆柱体的表面积为2πR2+2πR·h=2πR(R+h)=2×3.14×4×(4+50)=1356.48(平方厘米).10. 20-5=15,15÷3.142=4.77,4.77<5,所以不能做底面直径为5厘米、高为10厘米的圆柱体,。
小学奥数讲义:圆柱和圆锥圆柱和圆锥【知识要点】1、圆柱的表面积=底面积×2+侧面积圆柱的体积=底面积×高2、圆锥的体积=31×底面积×高【精选例题】1、圆柱体的侧面展开,放平,是边长分别为10厘米和12厘米的长方形,那么这个圆柱体的体积是________立方厘米。
(结果用π表示)2、如图所示,圆柱形的售报亭的高和底面直径相等,且顶部平均分成六份,开一个边长等于底面半径的正方形售报窗口。
问:窗口处挖去的圆柱部分的面积占圆柱侧面积的几分之几?3、下图所示图形是一个底面直径是20厘米的装有一部分水的圆柱形容器,水中放着一个底面直径为12厘米,高为10厘米的圆锥体铅锤,当铅锤从水中取出后,容器中的水下降了几厘米?4、如图所示,圆锥形容器中装有5升水,水面高度正好是圆锥高度的一半,这个容器还能装多少升水?5、有一种饮料瓶的瓶身呈圆柱形(不包括瓶颈),容积是30立方分米。
现在瓶中装有一些饮料,正放时饮料高度为20厘米,倒放时空余部分的高度为5厘米(见图)。
问:瓶内现有饮料多少立方分米?6、有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(如图)。
如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米?7、一车工用一段长30厘米,直径为8厘米的圆钢,车一个如下图所示的零件,这个零件的表面积是多少?8、如图,在一个棱长为20厘米的正方体密闭容器的下底固定了一个实心圆柱体,容器内盛有m 升水时,水面恰好经过圆柱体的上底面。
如果将容器倒置,圆柱体有8厘米露出水面。
已知圆柱体的底面积是正方体底面积的81,求实心圆柱体的体积。
【练习】1、将一个棱长是20厘米的正方体,削成一个圆柱体,并且使圆柱体的体积最大,求此时削去的那部分体积。
2、把一段长1.2m 的圆钢切成两段,表面积增加50平方厘米,这段圆钢的体积是多少立方厘米?3、用一块长60厘米、宽40厘米的铁皮做圆柱形水桶的侧面,另找一块铁皮做底。
六年级下册数学教案-2.3 圆柱与圆锥的复习课︳西师大版教学内容本节内容为圆柱与圆锥的复习课,主要包括对圆柱和圆锥的定义、性质、体积和表面积的计算方法的回顾与深化。
通过复习,学生应能够理解圆柱和圆锥的基本概念,掌握它们的计算方法,并能够运用这些知识解决实际问题。
教学目标1. 巩固学生对圆柱和圆锥的基本概念的理解。
2. 培养学生运用圆柱和圆锥的计算方法解决实际问题的能力。
3. 提高学生对几何图形的观察能力和空间想象力。
教学难点1. 圆柱和圆锥的体积和表面积的计算方法。
2. 圆柱和圆锥在实际问题中的应用。
教具学具准备1. 教具:圆柱和圆锥的模型、计算器。
2. 学具:练习本、铅笔、橡皮。
教学过程1. 导入:通过提问方式引导学生回顾圆柱和圆锥的基本概念。
2. 讲解:详细讲解圆柱和圆锥的体积和表面积的计算方法,并通过例题演示。
3. 练习:让学生独立完成练习题,巩固所学知识。
4. 应用:通过解决实际问题,让学生将所学知识运用到实际中。
5. 总结:对本节课的内容进行总结,强调重点和难点。
板书设计1. 板书圆柱与圆锥的复习课2. 板书内容:圆柱和圆锥的定义、性质、体积和表面积的计算方法。
作业设计1. 基础题:计算给定圆柱和圆锥的体积和表面积。
2. 提高题:解决实际问题,应用圆柱和圆锥的知识。
课后反思本节课通过复习圆柱和圆锥的基本概念和计算方法,使学生能够更好地理解和掌握这些知识。
在教学过程中,通过讲解、练习和应用,学生能够将所学知识运用到实际中,提高了他们的几何图形的观察能力和空间想象力。
但在教学过程中,也发现部分学生对某些概念的理解还不够深入,需要在今后的教学中进一步加强。
重点细节:教学难点教学难点详细补充和说明教学难点主要包括圆柱和圆锥的体积和表面积的计算方法,以及这些几何形状在实际问题中的应用。
这些难点对于学生来说,不仅需要理解理论知识,还需要能够将这些知识灵活运用于解决具体问题。
以下是对这些难点的详细补充和说明。
小学数学奥数基础教程圆柱与圆锥这一讲学习与圆柱体和圆锥体相关的体积、表面积等问题。
例1如右图所示,圆锥形容器中装有5升水,水面高度正好是圆锥高度的一半,这个容器还可以装多少升水?剖析与解:此题的重点是要找出容器上半部分的体积与下半部分的关系。
这表示容器能够装8份5升水,已经装了1份,还可以装水5×(8-1)=35(升)。
例2用一块长 60厘米、宽40厘米的铁皮做圆柱形水桶的侧面,另找一块铁皮做底。
这样做成的铁桶的容积最大是多少?(精准到1厘米3)剖析与解:铁桶有以60厘米的边为高和以40厘米的边为高两种做法。
专心爱心专心1时桶的容积是桶的容积是例3有一种饮料瓶的瓶身呈圆柱形(不包含瓶颈),容积是30分米3。
此刻瓶中装有一些饮料,正放时饮料高度为20厘米,倒放时空余部分的高度为5厘米(见右图)。
问:瓶内现有饮料多少立方分米?剖析与解:瓶子的形状不规则,而且不知道底面的半径,仿佛没法计算。
比较一下正放与倒放,由于瓶子的容积不变,装的饮料的体积不变,因此空余部分的体积应该同样。
将正放与倒放的空余部分变换一下地点,能够看出饮料瓶的容积应该等于底面积不变,高为20+5=25(厘米)例4皮球掉进一个盛有水的圆柱形水桶中。
皮球的直径为15厘米,水桶专心爱心专心2中后,水桶中的水面高升了多少厘米?解:皮球的体积是水面高升的高度是450π÷900π=(厘米)。
答:水面高升了厘米。
例5有一个圆柱体的部件,高10厘米,底面直径是 6厘米,部件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见右图)。
假如将这个部件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米?剖析与解:需要涂漆的面有圆柱体的下底面、外侧面、上边的圆环、圆孔的侧面、圆孔的底面,此中上边的圆环与圆孔的底面能够拼成一个与圆柱体的底面同样的圆。
涂漆面积为专心爱心专心3例6将一个底面半径为20厘米、高27厘米的圆锥形铝块,和一个底面半径为30厘米、高20厘米的圆柱形铝块,熔铸成一底面半径为15厘米的圆柱形铝块,求这个圆柱形铝块的高。
期末备考—北师大版六年级下册数学优选题单元复习讲义第一单元《圆柱和圆锥》1、“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。
2、圆柱的特征:(1)圆柱的两个底面是半径相等的两个圆,侧面是曲面。
(2)两个底面间的距离叫做圆柱的高。
(3)圆柱有无数条高,且高的长度都相等。
(4)圆柱是由长方形绕长或宽旋转360度得到的立方体,所以沿高线切割后的切面是长方形。
3、圆锥的特征:(1)圆锥的底面是一个圆,和底面相对的位置有一个顶点。
(2)圆锥的侧面是一个曲面。
(3)圆锥只有一条高。
(4)圆锥是由直角三角形绕一条直角边旋转360度得到的立方体,所以沿高线切割后的切面是等腰三角形。
4、沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)(如果不是沿高剪开,有可能还会是平行四边形)。
圆柱的侧面积=底面周长×高,用字母表示为:S侧=Ch。
圆柱的侧面积公式的应用:(1)已知底面周长和高,求侧面积,可运用公式:S侧=ch;(2)已知底面直径和高,求侧面积,可运用公式:S侧=πdh;(3)已知底面半径和高,求侧面积,可运用公式:S侧=2πrh圆柱表面积的计算方法:如果用S侧表示一个圆柱的侧面积,S底表示底面积,d表示底面直径,r 表示底面半径,h表示高,那么这个圆柱的表面积为:S表=S侧+2S底或S表=πdh+πd2/2 或S表=2πrh+2πr2圆柱表面积的计算方法的特殊应用:(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。
(2)圆柱的表面积只包括侧面积的,例如烟囱、油管等圆柱形物体。
5、圆柱的体积:一个圆柱所占空间的大小。
6、圆柱体积公式的推导:复习六年级上册圆的面积公式的推导:把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。
拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径。
所以圆的面积=π×半径×半径=π×半径2如同,圆的面积公式的推导,也可以沿着圆柱底面的扇形和圆柱的高把圆柱切开,把它分成若干等份,分得越细越好,再把它拼成一个近似长方体的立体图形,形状改变了,但体积没变,那么就可以发现拼成的这个长方体的底面积与圆柱的底面积是相等的,长方体的高也与圆柱的高相等,而长方体的体积=底面积×高,也就等于圆柱的体积。
圆柱与圆锥练习
一、填空。
1、把一个圆柱体削成一个最大的圆锥体,削去部分的体积是40立方厘米,问原来圆柱的体积是()立方厘米。
2、正方形木块的棱长是10厘米,将其加工成一个最大的圆柱形木块,圆柱形木块的体积是()立方厘米。
3、一个圆柱的高是5厘米,侧面展开是一个长为31.4厘米的长方形。
这个圆柱的体积是()厘米。
4、一个长方形的长是5厘米,宽是2厘米,以其中的一条边为轴旋转一周,可以得到一个圆柱,圆柱的体积最大是()立方厘米。
5、一个圆柱削成一个最大的圆锥后,削去本分的体积比圆锥体积多30立方厘米,则原来圆柱的体积是()立方厘米。
二、解决问题。
1、把一个长、宽、高分别为9厘米、7厘米、3厘米的长方体铁块和一个棱长为5厘米的正方体铁块,熔铸成一个底面直径为10厘米的圆锥形铁块。
求圆锥形铁块的高。
2、在一只底面直径是30厘米的圆柱形木桶里,有一个直径为10厘米的圆柱形钢材浸没在水里,当钢材从桶里取出来时,桶里的水下降了3厘米。
这段钢材长为多少?
3、圆柱形容器A和B的深度相等,底面半径分别为3厘米和4厘米把A容器装满水,然后把水倒入B容器,水深比B容器的高的四分之三少1.2厘米。
B容器的深度是多少厘米?
4、用铁皮做一个如下图所示空心零件(单位:厘米),需用铁皮多少平方厘米?
5、一个圆柱形玻璃杯内盛有水,水面高2.5厘米,玻璃杯内侧的底面积是72平方厘米。
在这个杯中放进棱长6厘米的正方体铁块后,水面没有淹没铁块,这时水面高多少厘米?
6、一个底面半径是10厘米的圆柱形玻璃杯中,装有10厘米深的水。
将一个底面半径4厘米、高6厘米的圆锥形铅锤放入杯子中,杯中的水面上升了多少厘米?
7、有一个底面直径为20厘米的圆柱形容器里,盛有一些水。
把一个底面半径为3厘米的圆锥形铅锤完全浸没在水中,水面上升0.3厘米,铅锤的高是多少厘米?
8、把一个底面直径为2厘米、高为6厘米的圆柱形钢材熔铸成一个圆锥体,这个圆锥的底面积是15平方厘米,它的高是多少厘米?。