圆柱和圆锥的奥数题
- 格式:doc
- 大小:16.00 KB
- 文档页数:3
圆柱与圆锥练习一、填空。
1、把一个圆柱体削成一个最大的圆锥体,削去部分的体积是40立方厘米,问原来圆柱的体积是()立方厘米。
2、正方形木块的棱长是10厘米,将其加工成一个最大的圆柱形木块,圆柱形木块的体积是()立方厘米。
3、一个圆柱的高是5厘米,侧面展开是一个长为31.4厘米的长方形。
这个圆柱的体积是()厘米。
4、一个长方形的长是5厘米,宽是2厘米,以其中的一条边为轴旋转一周,可以得到一个圆柱,圆柱的体积最大是()立方厘米。
5、一个圆柱削成一个最大的圆锥后,削去本分的体积比圆锥体积多30立方厘米,则原来圆柱的体积是()立方厘米。
二、解决问题。
1、把一个长、宽、高分别为9厘米、7厘米、3厘米的长方体铁块和一个棱长为5厘米的正方体铁块,熔铸成一个底面直径为10厘米的圆锥形铁块。
求圆锥形铁块的高。
2、在一只底面直径是30厘米的圆柱形木桶里,有一个直径为10厘米的圆柱形钢材浸没在水里,当钢材从桶里取出来时,桶里的水下降了3厘米。
这段钢材长为多少?3、圆柱形容器A 和B 的深度相等,底面半径分别为3厘米和4厘米把A 容器装满水,然后把水倒入B 容器,水深比B 容器的高的四分之三少1.2厘米。
B 容器的深度是多少厘米?4、用铁皮做一个如下图所示空心零件(单位:厘米),需用铁皮多少平方厘米?2724 45、一个圆柱形玻璃杯内盛有水,水面高2.5厘米,玻璃杯内侧的底面积是72平方厘米。
在这个杯中放进棱长6厘米的正方体铁块后,水面没有淹没铁块,这时水面高多少厘米?6、一个底面半径是10厘米的圆柱形玻璃杯中,装有10厘米深的水。
将一个底面半径4厘米、高6厘米的圆锥形铅锤放入杯子中,杯中的水面上升了多少厘米?7、有一个底面直径为20厘米的圆柱形容器里,盛有一些水。
把一个底面半径为3厘米的圆锥形铅锤完全浸没在水中,水面上升0.3厘米,铅锤的高是多少厘米?8、把一个底面直径为2厘米、高为6厘米的圆柱形钢材熔铸成一个圆锥体,这个圆锥的底面积是15平方厘米,它的高是多少厘米?。
2020-2021圆柱与圆锥(奥数)一、圆柱与圆锥1.一个底面半径为12厘米的圆柱形杯中装有水,手里浸泡了一个底面直径是12厘米,高是18厘米的圆锥体铁块,当铁块从杯中取山来时,杯中的水面会下降多少厘米??【答案】解: ×3.14×(12÷2)2×18÷(3.14×122)= ×3.14×36×18÷(3.14×144)=1.5(厘米)答:桶内的水将下降1.5厘米。
【解析】【分析】水面下降部分水的体积就是圆锥的体积,根据圆锥的体积公式先计算出圆锥体铁块的体积,也就是水面下降部分水的体积。
用水面下降部分水的体积除以杯子的底面积即可求出水面下降的高度。
2.一个圆锥沙堆,底面半径是2米,高1.5米,每立方米的黄沙重2吨,这堆沙重多少吨? 【答案】解: ×3.14×22×1.5×2= ×3.14×4×1.5×2=6.26×2=12.56(吨)答:这堆沙重12.56吨。
【解析】【分析】圆锥的体积=底面积×高×,根据体积公式计算出沙子的体积,再乘每立方米黄沙的重量即可求出总重量。
3.具有近600年历史的北京天坛祈年殿为砖木结构,殿高38米,底层直径32米,三层重檐向上逐层收缩作伞状。
殿内有28根金丝楠木大柱,里圈的4根寓意春、夏、秋、冬四季,每根高约19米,直径1.2米。
因为它们是殿内最高的柱子,所以也叫通天柱,取的是和上天互通声息的意思。
(x取整数3)(1)请你根据上面信息,计算祈年殿的占地面积是多少平方米?(2)如果要给4根通天柱刷油漆,则刷漆面积一共是多少平方米?【答案】(1)解:3×(32÷2)2=768(平方米)答:计算祈年殿的占地面积是768平方米。
(2)解:3×1.2×19×4=273.6(平方米)答:刷漆面积一共是273.6平方米。
【精品】圆柱与圆锥(奥数)一、圆柱与圆锥1.如图,一个内直径是20cm的纯净水水桶里装有纯净水,水的高度是22cm.将水桶倒放时,空余部分的高度是3cm,无水部分是圆柱形.这个纯净水水桶的容积是多少升?【答案】解:3.14×(20÷2)2×22+3.14×(20÷2)2×3=3.14×100×(22+3)=3.14×100×25=7850(立方厘米)7850立方厘米=7.85升答:这个纯净水水桶的容积是7.85升。
【解析】【分析】水桶的容积包括水的体积和空余部分的体积,根据圆柱的体积公式分别计算后再相加即可求出水桶的容积。
2.计算下面圆柱的表面积。
(单位:厘米)【答案】解:3.14×(4÷2)²×2+3.14×4×6=100.48(平方厘米)【解析】【分析】圆柱体的表面积是两个底面积加上一个侧面积,底面积根据圆面积公式计算,用底面周长乘高求出侧面积。
3.如下图,已知圆锥底面周长是18.84dm,求圆锥的体积。
【答案】解:18.84÷3.14÷2=3(dm)3.14×3²×5×=3.14×15=47.1(dm²)【解析】【分析】用底面周长除以3.14再除以2求出底面半径,然后用底面积乘高再乘求出体积。
4.一个圆锥形沙堆,高是1.8米,底面半径是5米,每立方米沙重1.7吨,这堆沙约重多少吨?【答案】解:沙堆的体积: ×3.14×52×1.8= ×3.14×25×1.8=47.1(立方米)沙堆的重量:1.7×47.1≈80.07(吨)答:这堆沙约重80.07吨。
【解析】【分析】根据圆锥的体积公式先计算出沙堆的体积,再乘每立方米沙的重量即可求出这堆沙的重量。
挑战奥数【例1】如图所示是一根圆木被锯掉一半后剩余的部分,求这块木料的表面积。
(单位:厘米)解析:观察示意图发现,木料的表面积包括三部分:圆柱侧面积的一半,一个底面积和一个剖开的截面的面积(长20cm、宽10cm的长方形)。
由此列式解答如下:侧面积的一半:3.14×10×20÷2=314(cm2)底面积:3.14×(10÷2)2=78.5(cm2)截面面积:20×10=200(cm2)木料表面积:314+78.5+200=592.5(cm2)答:这块木料的表面积是592.5cm2。
变式练习1如图所示的百宝箱,上部是一个圆柱的一半,下部是一个长50cm,宽40cm,高20cm的长方体,这个百宝箱的表面积是多少?3.14×(40÷2)2=1256(cm2)3.14×40×50÷2=3140(cm2)50×40+50×20×2+40×20×2=5600(cm2)1256+3140+5600=9996(cm2)答:百宝箱的表面积是9996cm2。
【例2】一个直角梯形,上底和高都是3厘米,下底是上底的2倍。
如图所示旋转成立体图形,这个立体图形的体积是多少立方厘米?解析:根据题意可知:梯形的下底是:3×2=6(厘米),圆锥的高是:6-3=3(厘米)。
沿直角梯形的一条直角边旋转一周得到的立体图形:上面是圆锥、下面是圆柱,根据圆柱、圆锥的体积公式求出它们的体积之和即可。
圆锥体积:3.14×32×3÷3=28.26(cm3)圆柱体积:3.14×32×3=84.78(cm3)立体图形体积:28.26+84.78=113.04(cm3)答:立体图形的体积是113.04cm3。
变式练习2如图,四边形ABCD为直角梯形,∠B=90°,AB=12cm,CD=6cm,BC=6cm,以CD为轴旋转后得一个旋转体。
圆柱和圆锥(1)
1、一根圆柱体木料长20分米,把它截成4个相等的圆柱体,表面积增加
了18.84平方分米,截后每段圆柱体的体积是多少立方厘米?
2、把底面直径是2分米的圆柱形木块沿底面直径分成相同的两块,表面积
增加了8平方分米,求这个圆柱的体积。
3、把一个圆柱的底面平均分成若干个扇形,然后切拼成一个近似长方体,
表面积比原来增加了400平方厘米,已知圆柱高20厘米,求该圆柱体积。
4、一个圆柱的侧面展开图是一个正方形,如果这个圆柱的高缩短2厘米,
表面积就减少12.56平方厘米,原来这个圆柱的体积是多少立方厘米?(得数保留两位小数)
5、用铁皮做一个如下图所示的空心零件(单位:厘米),需用铁皮多少平方
厘米?
16
思考:如果上图是实心的,它的体积是多少立方厘米?
6、半个圆柱的底面周长是10.28厘米,高6厘米,它的体积是多少立方厘米?
7、把一段圆柱形木料沿着直径切成两半,已知圆柱的底面直径为10厘米,
高为15厘米,求半个圆柱的表面积。
8、圆柱的高是5厘米,过底面圆心把圆柱分成相等的两半,表面积增加60
平方厘米,求原来圆柱的体积。
9、如图所示:一张扇形薄铁片,弧长18.84分米,它能够围成一个高4分米
的圆锥。
求圆锥的容积。
10、求下图的体积和表面积。
(单位:厘米)。
【数学】圆柱与圆锥(奥数)一、圆柱与圆锥1.具有近600年历史的北京天坛祈年殿为砖木结构,殿高38米,底层直径32米,三层重檐向上逐层收缩作伞状。
殿内有28根金丝楠木大柱,里圈的4根寓意春、夏、秋、冬四季,每根高约19米,直径1.2米。
因为它们是殿内最高的柱子,所以也叫通天柱,取的是和上天互通声息的意思。
(x取整数3)(1)请你根据上面信息,计算祈年殿的占地面积是多少平方米?(2)如果要给4根通天柱刷油漆,则刷漆面积一共是多少平方米?【答案】(1)解:3×(32÷2)2=768(平方米)答:计算祈年殿的占地面积是768平方米。
(2)解:3×1.2×19×4=273.6(平方米)答:刷漆面积一共是273.6平方米。
【解析】【分析】(1)根据圆面积公式计算占地面积,底面直径是32米;(2)通天柱是圆柱形,刷漆的部分是侧面积,侧面积=底面周长×高,根据公式计算一个侧面积,再乘4就是刷漆的总面积。
2.计算圆柱的表面积。
【答案】解:3.14×(6÷2)²×2+3.14×6×10=3.14×18+3.14×60=56.52+188.4=244.92(cm³)【解析】【分析】圆柱的表面积是两个底面积加上侧面积,根据圆面积公式计算底面积,用底面周长乘高求出侧面积。
3.将一根底面直径是20厘米,长1米的圆木沿着直径劈成相等的两半。
每半块木头的表面积和体积是多少?【答案】解:1米=100厘米,表面积:3.14×(20÷2)2+[3.14×20×100]÷2+20×100=5454(平方厘米)体积:3.14×(20÷2)2×100÷2=15700(立方厘米)答:每半块木头的表面积是5454平方厘米,体积是15700立方厘米。
圆柱与圆锥练习二概念整理:1. 圆柱特征:两个相等的圆形底面,无数条高,曲面围成的侧面(可能是长方形、正方形、平行四边形、不规则图形)侧面积:S=Ch表面积:S= C×(r+h) S==S侧+2S底= 2πrh+2πr2体积:V=Sh 体积=侧面积÷2×半径S = V÷h h = V÷S 2. 圆锥:特征:一个圆形底面,一条高,曲面围成的侧面(展开后是扇形)体积:体积=底面积×高÷3 高=体积×3÷底面积高=体积×3÷底面积V=πr2h÷3ShV31h=3V÷S S=3V÷h3.圆柱与圆锥的体积关系(1)等底等高的圆柱与圆锥,圆柱的体积是3份,圆锥的体积是1份.它们的体积和4份,它们的体积差2份(2)等底等积的圆柱与圆锥,圆锥的高是3份,圆柱的高是1份.它们高的和4份,它们高的差2份。
(3)等高等积的圆柱与圆锥圆锥的底面积是3份,圆柱的底面积是1份.它们底面积的和4份,底面积的积差2份。
4.圆柱转化成近似的长方体的过程中,(1)高不变 (2)体积不变 (3)底面积不变 (4)表面积多出2个长方形,长=高,宽=半径5、沿着圆柱的直径切开,多出2个长方形,长=高,宽=直径6、平行于圆柱的上下底面切开,多出2个圆7、三角形、长方形、正方形、梯形旋转形成的形体,一定要确定形体找准高和半径。
8、长方形做成无底的圆柱形管子,以长作为底面周长,体积大9、圆柱与圆锥的高、底面积和体积的关系的应用采用列表法相等的用1表示10、圆柱削成一个最大的圆锥,说明是圆柱和圆锥是等底等高11、长方体和正方体削成最大的圆柱或圆锥,而是要找准圆柱或圆锥的底和高圆柱和圆锥的练习二1. (1)一个圆柱的高减少2厘米侧面积就减少50.24平方厘米,它的体积减少多少立方厘米?1、(2)一个圆柱的高增加3分米,侧面积就增加56.52平方分米,它的体积增加多少立方分米?2.(1)一个圆柱体木块,底面半径是8厘米,高是30厘米。
圆柱与圆锥圆柱与圆锥的相关公式:r表示半径,h表示高,l表示圆锥母线长;图形名称内容侧面积表面积体积圆柱圆锥例题1 把一个高3分米的圆柱体的底面分成许多相等的扇形,然后把圆柱体切开,拼成一个与它等底等高的近似长方体,它的表面积比圆柱体的表面积增加了36平方分米,求这个圆柱体的体积。
例题2 求下图中图形按图中所示方向旋转一周后所形成的立体图形的体积。
(单位:厘米)随堂练习:1.有内半径分别为1厘米和4厘米且深度相等的圆柱形容器A 和B ,把A 容器装满水,再倒入B 容器里,水的深度比容器深度的43还低3厘米,容器的深度是多少0101厘米?2.高都是1米,底面半径分别是0.5米、1米和1.5米的三个圆柱组成的几何体如图,求这个物体的表面积。
例题3 如图,一张扇形薄铁片,弧长18.84分米,它能够围成一个高4分米的圆锥,试求圆锥的容积。
(接缝处忽略不计)例题4 如图,圆锥形容器中装有3升水,水面高度正好是圆锥子高度的一半,这个容器还能装多少升水?h随堂练习:1.埃及著名的胡夫胡夫金字塔为正四棱锥形,正方形底座边长为230.4米,塔高146.7米,假定建筑金字塔所用材料全部是石灰石,每立方米重2700千克,那么胡夫金字塔的总重量是多少千克?2.一个底面半径是6厘米的圆锥体形金属铸件,放进棱长15厘米的正方形体一容器中的水中,这个铸件全部被水浸没,容器中的水面纟原来升高1.2厘米,求这个圆锥体的高(精确到0.1厘米)例题5 如图,在圆锥中,AB和BC 长均为10厘米,底面周长为10 厘米,有一只小虫准备从A点出发,沿着锥面爬到线段BC,那么它爬行的最短距离是多少厘米?例题6 一个长方体木块,长、宽、高分别是6厘米,8厘米,10厘米,把它加工成一个最大的圆锥体,这个圆锥体的体积是多少立方厘米?随堂练习:1.下图是一个立方体图形的侧面展开图(单位:厘米),求这个立体图形的表面积和体积。
2.两个同样材料做成的球A 和B ,一个实心,一个空心,A 的直径为7,重量为22,B 的直径为10.6,重量为33.3,问哪个球是实心球?(球体体积积=334r ) 3.一个草垛,上面是一个圆锥,底面周长是6.24米,圆锥的高是0.6米;下面是一个圆台,下底面周长为4.71米,圆台的高是1.5米。
圆柱与圆锥(奥数)(1)一、圆柱与圆锥1.一个底面半径为12厘米的圆柱形杯中装有水,手里浸泡了一个底面直径是12厘米,高是18厘米的圆锥体铁块,当铁块从杯中取山来时,杯中的水面会下降多少厘米??【答案】解: ×3.14×(12÷2)2×18÷(3.14×122)= ×3.14×36×18÷(3.14×144)=1.5(厘米)答:桶内的水将下降1.5厘米。
【解析】【分析】水面下降部分水的体积就是圆锥的体积,根据圆锥的体积公式先计算出圆锥体铁块的体积,也就是水面下降部分水的体积。
用水面下降部分水的体积除以杯子的底面积即可求出水面下降的高度。
2.一个圆锥体形的沙堆,底面周长是25.12米,高1.8米,用这堆沙在8米宽的公路上铺5厘米厚的路面,能铺多少米?【答案】解:5厘米=0.05米沙堆的底面半径:25.12÷(2×3.14)=25.12÷6.28=4(米)沙堆的体积: ×3.14×42×1.8=3.14×16×0.6=3.14×9.6=30.144(立方米)所铺沙子的长度:30.144÷(8×0.05)=30.144÷0.4=75.36(米).答:能铺75.36米。
【解析】【分析】根据1米=100厘米,先将厘米化成米,除以进率100,然后求出沙堆的底面半径,用公式:C÷2π=r,要求沙堆的体积,用公式:V=πr2h,最后用沙堆的体积÷(公路的宽×铺沙的厚度)=铺沙的长度,据此列式解答.3.有一个底面直径为20厘米的装有一些水的圆柱形玻璃杯,已知杯中水面距杯口2.24厘米.若将一个半径为9厘米的圆锥形铅锤完全浸入水中,水会溢出314立方厘米.求铅锤的高.【答案】解:3.14×(20÷2)2×2.24+314=3.14×100×2.24+314=703.36+314=1017.36(立方厘米),1017.36 ÷(3.14×92)=1017.36×3÷254.34=3052.08÷254.34=12(厘米),答:铅锤的高是12厘米。
例1、如右图所示,圆锥形容器中装有5升水,水面高度正好是圆锥高度的一半,这个容器还能装多少升水?分析与解:本题的关键是要找出容器上半部分的体积与下半部分的关系。
实际上如果假设水的半径为1,高度也是1,那么圆锥容器的高度与半径应该都是2,这样根据圆锥的体积计算公式,圆锥容器的容积应该是水的8倍。
这表明容器可以装8份5升水,已经装了1份,还能装水5×(8-1)=35(升)。
例2、有一种饮料瓶的瓶身呈圆柱形(不包括瓶颈),容积是30分米3。
现在瓶中装有一些饮料,正放时饮料高度为20厘米,倒放时空余部分的高度为5厘米(见右图)。
问:瓶内现有饮料多少立方分米?例3、皮球掉进一个盛有水的圆柱形水桶中。
皮球的直径为15厘米,水桶底面直径厘米。
皮球又4/5的体积浸在水里,问:皮球吊进水中后,水桶中的水面升高了多少厘米?(半径为r的球的体积是4/3∏r³。
)解:皮球体积是:4/3∏r³=4/3∏×(15/2的立方)=562.5∏(立方厘米)皮球浸在水里的部分:562.5×4/5=450∏(立方厘米)水桶的底面积:∏×(60/2的平方)=900∏(立方厘米)水面升高的高度是450π÷900π=0.5(厘米)。
答:水面升高了0.5厘米。
例4、有一卷紧紧缠绕在一起的塑料薄膜,薄膜直径为20厘米,中间有一直径为8厘米的卷轴,以知薄膜的厚度为0.04厘米,则薄膜展开后的长度为多少厘米?分析:薄膜的体积不变,可以假设薄膜的高度为1厘米。
可以根据薄膜的体积不变解题。
空心圆柱的薄膜体积:3.14×(10²-4²)×1=1×0.04×X,这样求出“X”即可。
例5、有一个下面是圆柱体,上面是圆锥体的容器,圆柱体的高度是10厘米,圆锥体的高度是6厘米,容器内的液面高度是7厘米。
当将这个容器倒过来放时,从圆锥的见到液面的高是多少厘米?分析:圆锥体的体积是底面积乘以高再乘以三分之一,相当与同底等高的圆柱体的体积的三分之一,把这个圆锥体的体积转换一下,就相等与同底的高为2厘米的圆柱体的体积。
4、圆柱形容器A 和B 的深度相等,底面半径分别为3厘米和4厘米。
把A 容器装满水,然后把水倒入B 容器,水深比B 容器的高的43
少
1.2厘米。
B 容器的深度是多少厘米?
2、用铁皮做一个如下图所示空心零件(单位:厘米),需用铁皮多少平方厘米?
8、一个圆柱形玻璃杯内盛有水,水面高2.5厘米,玻璃杯内侧的底面积是72平方厘米。
在这个杯中放进棱长6厘米的正方体铁块后,水面没有淹没铁块,这时水面高多少厘米?
7、一个底面半径是10厘米的圆柱形玻璃杯中,装有10厘米深的水。
将一个底面半径4厘米、高6厘米的圆锥形铅锤放入杯子中,杯中的水面上升了多少厘米?
24
5、有一个底面直径为20厘米的圆柱形容器里,盛有一些水。
把一个底面半径为3厘米的圆锥形铅锤完全浸没在水中,水面上升0.3厘米,铅锤的高是多少厘米?
6、把一个底面直径为2厘米、高为6厘米的圆柱形钢材熔铸成一个圆锥体,这个圆锥的底面积是15平方厘米,它的高是多少厘米?
一、填空。
1、把一个圆柱体削成一个最大的圆锥体,削去部分的体积是40立方厘米,问原来圆柱的体积是()立方厘米。
2、正方形木块的棱长是10厘米,将其加工成一个最大的圆柱形木块,圆柱形木块的体积是()立方厘米。
3、一个圆柱的高是5厘米,侧面展开是一个长为31.4厘米的长方形。
这个圆柱的体积是()厘米。
4、一个长方形的长是5厘米,宽是2厘米,以其中的一条边为轴旋转一周,可以得到一个圆柱,圆柱的体积最大是()立方厘米。
5、一个圆柱削成一个最大的圆锥后,削去本分的体积比圆锥体积多30立方厘米,则原来圆柱的体积是()立方厘米。
二、解决问题。
1、把一个长、宽、高分别为9厘米、7厘米、3厘米的长方体铁块和一个棱长为5厘米的正方体铁块,熔铸成一个底面直径为10厘米的圆锥形铁块。
求圆锥形铁块的高。
2、在一只底面直径是30厘米的圆柱形木桶里,有一个直径为10厘米的圆柱形钢材浸没在水里,当钢材从桶里取出来时,桶里的水下降了3厘米。
这段钢材长为多少?。