动力学中的传送带问题
- 格式:doc
- 大小:161.00 KB
- 文档页数:4
传送带模型中的动力学和功能关系问题1.模型概述传送带模型是高中物理中比较成熟的模型,典型的有水平和倾斜两种情况.一般设问的角度有两个:(1)动力学角度:首先要正确分析物体的运动过程,做好受力情况分析,然后利用运动学公式结合牛顿第二定律,求物体及传送带在相应时间内的位移,找出物体和传送带之间的位移关系.(2)能量角度:求传送带对物体所做的功、物体和传送带由于相对滑动而产生的热量、因放上物体而使电动机多消耗的电能等,常依据功能关系或能量守恒定律求解.2.传送带模型问题中的功能关系分析(1)功能关系分析:W F=ΔE k+ΔE p+Q.(2)对W F和Q的理解:①传送带的功:W F=Fx传;②产生的内能Q=F f s相对.传送带模型问题的分析流程一:传送带中的动力学问题如图所示,一水平的浅色传送带左、右两端相距8m,传送带上左端放置一煤块(可视为质点),初始时,传送带和煤块都是静止的,煤块与传送带之间的动摩擦因数为0.2.从某时刻起,传送带以4m/s2的加速度沿顺时针方向加速运动,经一定时间t后,马上以同样大小的加速度做匀减速运动直到停止,最后,煤块恰好停在传送带的右端,此过程中煤块在传送带上留下了一段黑色痕迹(g=10m/s2,近似认为煤块所受滑动摩擦力等于最大静摩擦力大小).求:(1)传送带的加速时间t;(2)当煤块停止运动时,煤块在传送带上留下黑色痕迹的长度.跟踪训练:如图所示,一水平的浅色长传送带上放置一质量为m的煤块(可视为质点),煤块与传送带之间的动摩擦因数为μ.初始时,传送带与煤块都是静止的.现让传送带以恒定的加速度a 开始运动,当其速度达到v后,便以此速度作匀速运动.经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动,关于上述过程,以下判断正确的是(重力加速度为g )( )A .将在煤块的左侧留下黑色痕迹B .煤块与传送带间先有滑动摩擦力,当相对静止后有静摩擦力C .μ与a 之间一定满足关系μg <aD .传送带加速度a 越大,黑色痕迹的长度越长二:传送带中的功能关系例:如图所示,绷紧的传送带与水平面的夹角θ=30°,皮带在 电动机的带动下,始终保持v 0=2 m/s 的速率运行,现把一质量为m =10 kg 的工件(可看做质点)轻轻放在皮带的底端,经过时间t =1.9 s ,工件被传送到h =1.5 m 的高处,取g =10 m/s 2,求:(1)工件与传送带间的动摩擦因数(2)电动机由于传送工件多消耗的电能 (3)求此过程中传送带对物体所做的功 跟踪训练:1:如图所示,质量为m 的物体在水平传送带上由静止释放, 传送带由电动机带动,始终保持以速度v 匀速运动,物体与传送带间的动摩擦因数为μ,物体在滑下传送带之前能保持与传送带相对静止,对于物体从静止释放到与传送带相对静止这一过程,下列说法中正确的是( )A .电动机多做的功为12mv 21B .物体在传送带上的划痕长v 2μgC .传送带克服摩擦力做的功为12mv 2D .电动机增加的功率为μmgv2:如图所示,小物块A 、B 由跨过定滑轮的轻绳相连,A 置于倾角为37°的光滑固定斜面上,B 位于水平传送带的左端,轻绳分别与斜面、传送带平行。
传送带模型中的动力学及能量观点的综合问题学校:_________班级:___________姓名:_____________模型概述1.传送带的特点:传送带运输是利用货物和传送带之间的摩擦力将货物运送到其他地方,物体(视为质点)放在传送带上,由于物体和传送带相对滑动(或有相对运动趋势)而产生摩擦力,根据物体和传送带间的速度关系,摩擦力可能是动力,也可能是阻力。
2.传送带问题的解题关键:抓住v物=v传的临界点,当v物=v传时,摩擦力发生突变,物体的加速度发生突变。
3.传送带问题中位移的区别1)物体位移:以地面为参考系,单独对物体由运动学公式求得的位移。
2)物体相对传送带的位移(划痕长度)Δx①若有一次相对运动:Δx=x传-x物或Δx=x物-x传。
②若有两次相对运动:两次相对运动方向相同,则Δx=Δx1+Δx2(图甲);两次相对运动方向相反,则Δx等于较长的相对位移大小(图乙)。
4.传送带问题的基本类型有水平传送带和倾斜传送带两种基本模型.1)水平传送带常见类型及滑块运动情况类型滑块运动情况①可能一直加速②可能先加速后匀速①v0>v时,可能一直减速,也可能先减速再匀速②v0=v时,一直匀速③v0<v时,摩擦力为动力,可能一直加速,也可能先加速再匀速①传送带较短时,摩擦力为阻力,滑块一直减速到达左端②传送带足够长时,摩擦力先为阻力,滑块先向左减速,减速到零后摩擦力再为动力,物体反向加速运动回到右端。
2)倾斜传送带常见类型及滑块运动情况类型滑块运动情况①可能一直加速②可能先加速后匀速①可能一直加速②可能先加速后匀速③可能先以a 1加速再以a 2加速5.传送带问题分析的基本思路求解的关键在于根据物体和传送带之间的相对运动情况,确定摩擦力的大小和方向.当物体的速度与传送带的速度相等时,物体所受的摩擦力有可能发生突变,速度相等前后对摩擦力的分析是解题的关键.1)动力学分析:首先要正确分析物体的运动过程,做好受力分析,然后利用运动学公式结合牛顿第二定律求物体及传送带在相应时间内的位移,找出物体和传送带之间的位移关系.2)功能关系分析①功能关系分析:电机所做的功W =ΔE k (+ΔE P )+Q ②对W 和Q 的理解:Ⅰ、因放上物体而使电动机多消耗的电能:W Ⅱ、传送带克服摩擦力做的功:W f =F f ⋅x 传;Ⅲ、产生的内能:Q =W f =-F f ⋅x 相对.典题攻破1.水平传送带1.(2024·河南郑州·三模)(多选)如图所示,足够长的水平传送带以恒定速率v 1=2m/s 向右运动,一质量为m =1kg 的滑块从传送带右端以水平向左的速率v 2=4m/s 滑上传送带,经过时间t =9s ,最终滑块又返回至传送带的右端。
8动力学方法分析“传送带”问题1.水平传送带模型项目图示滑块可能的运动情况情景1①可能一直加速②可能先加速后匀速情景2①v0>v,可能一直减速,也可能先减速再匀速②v0=v,一直匀速③v0<v时,可能一直加速,也可能先加速再匀速情景3①传送带较短时,滑块一直减速到达左端②传送带较长时,滑块还要被传送带传回右端.若v0>v,返回时速度为v,若v0<v,返回时速度为v02.倾斜传送带模型项目图示滑块可能的运动情况情景1①可能一直加速(μ>tan θ,传送带较短,或速度v较大)②可能先加速后匀速(μ>tan θ,传送带足够长,或速度v较小)情景2①可能一直加速(传送带较短,或速度v较大)②可能先加速后匀速(μ>tan θ,传送带较长,或速度v较小)③可能先以a1加速后以a2加速(μ<tan θ,传送带较长,或速度v较小)情景3①可能一直加速(μ<tan θ)②可能一直匀速(μ=tan θ)③可能先减速后反向加速(μ>tan θ,传送带较长)④可能一直减速(μ>tan θ,传送带较短)1.速度相等时摩擦力的突变(1)从有到无:如水平传送带,达到同向共速后,滑动摩擦力突变为0.(2)动静突变:如倾斜向上传送物块(μ>tan θ),共速后滑动摩擦力变为静摩擦力.(3)方向变化:如倾斜向下传送物块(μ<tan θ),共速后方向由向下变为向上(仍为滑动摩擦力).2.三种分析方法应用技巧(1)动力学方法:计算位移时用平均速度法较简单,若从静止加速到传送带速度v ,物块位移x 物=v 2t ,传送带位移x 带=v t ,相对位移大小Δx =x 带-x 物=v 2t . (2)能量方法:动能定理中的位移和速度均为对地,而摩擦生热Q =F f x 相对,x 相对是指二者的相对位移(同向相减,反向相加).(3)动量方法:涉及求时间时可用动量定理.3.电机做功的两种计算方法(1)由于传送带是匀速的,电机做的功等于传送带克服摩擦力做的功.(2)从能量守恒分析,电机做的功等于物块机械能的增加量和系统摩擦产生的热.示例1 (倾斜传送带模型)(2020·山东模拟)如图1,长为L 、倾角θ=30°的传送带始终以2.5 m/s 的速率顺时针方向运行,小物块以4.5 m/s 的速度从传送带底端A 沿传送带上滑,恰能到达传送带顶端B ,已知物块与斜面间的动摩擦因数为34,取g =10 m/s 2,最大静摩擦力与滑动摩擦力大小相等,则下列图象中能正确反映物块在传送带上运动的速度v 随时间t 变化规律的是( )图1答案 B解析 开始阶段,物块的速度比传送带的速度大,相对于传送带向上运动,受到的滑动摩擦力沿传送带向下,根据牛顿第二定律得mg sin 30°+μmg cos 30°=ma 1,解得a1=8.75 m/s2,方向沿传送带向下当物块与传送带共速时,因mg sin 30°>μmg cos 30°时,所以物块与传送带不能保持相对静止,根据牛顿第二定律得mg sin 30°-μmg cos 30°=ma2,解得a2=1.25 m/s2,方向沿传送带向下,所以物块继续做加速度较小的匀减速运动,直到速度为零,故A、C、D错误,B正确.示例2(倾斜传送带模型)(多选)如图2甲所示,倾角为37°、足够长的传送带以恒定速度运行,将一质量m=1 kg的小物体以某一初速度放在传送带上,物体相对地面的速度大小随时间变化的关系如图乙所示,取沿传送带向上为正方向,g=10 m/s2,sin 37°=0.6,cos 37°=0.8,则下列说法正确的是()图2A.传送带逆时针转动,速度大小为4 m/sB.物体与传送带间的动摩擦因数为0.75C.0~8 s内物体位移的大小为14 mD.0~8 s内物体与传送带之间因摩擦而产生的热量为126 J答案CD解析从题图乙中可知小物体先沿传送带向下做减速运动后沿传送带向上做加速运动,匀速运动,故可知传送带顺时针转动,最终物体和传送带的速度相同,故传送带速度大小为4 m/s,A错误;根据v-t图象的斜率表示加速度,可得物体相对传送带滑动时的加速度大小为a=22m/s2=1 m/s2,由牛顿第二定律得μmg cos θ-mg sin θ=ma,解得μ=0.875,故B错误;0~8 s内物体位移大小为x=-12×2×2 m+2+62×4 m=14 m,故C正确;0~8 s内只有前6 s内物体与传送带发生相对滑动,0~6 s内传送带运动的位移为x带=4×6 m=24 m,0~6 s内物体的位移为x物=-12×2×2 m+4×42m=6 m,则x相对=x带-x物=24 m-6 m=18 m,0~8 s内物体与传送带之间因摩擦而产生的热量为Q=μmg cos θ·x相对=126 J,故D正确.示例3 (水平传送带模型)(2020·全国卷Ⅲ·25改编)如图3,相距L =11.5 m 的两平台位于同一水平面内,二者之间用传送带相接.传送带向右匀速运动,其速度的大小v 可以由驱动系统根据需要设定.质量m =10 kg 的载物箱(可视为质点),以初速度v 0=5.0 m/s 自左侧平台滑上传送带.载物箱与传送带间的动摩擦因数μ=0.10,重力加速度取g =10 m/s 2.图3(1)若v =4.0 m/s ,求载物箱通过传送带所需的时间;(2)求载物箱到达右侧平台时所能达到的最大速度和最小速度.答案 (1)2.75 s (2)4 3 m/s 2 m/s解析 (1)传送带的速度为v =4.0 m/s 时,载物箱在传送带上先做匀减速运动,设其加速度大小为a ,由牛顿第二定律有μmg =ma ①设载物箱滑上传送带后匀减速运动的距离为s 1,由运动学公式有v 2- v 02=-2as 1② 联立①②式,代入题给数据得s 1=4.5 m ③因此,载物箱在到达右侧平台前,速度先减小到v ,然后开始做匀速运动.设载物箱从滑上传送带到离开传送带所用的时间为t 1,做匀减速运动所用的时间为t 1′,由运动学公式有v =v 0-at 1′④t 1=t 1′+L -s 1v ⑤联立①③④⑤式并代入题给数据得t 1=2.75 s ⑥(2)当载物箱滑上传送带后一直做匀减速运动时,到达右侧平台时的速度最小,设为v 1;当载物箱滑上传送带后一直做匀加速运动时,到达右侧平台时的速度最大,设为v 2.由动能定理有-μmgL =12m v 12-12m v 02⑦ μmgL =12m v 22-12m v 02⑧由⑦⑧式并代入题给条件得v1= 2 m/s,v2=4 3 m/s。
动力学中的传送带问题一、传送带模型中要注意摩擦力的突变①滑动摩擦力消失 ②滑动摩擦力突变为静摩擦力 ③滑动摩擦力改变方向二、传送带模型的一般解法①确定研究对象;②分析其受力情况和运动情况,(画出受力分析图和运动情景图),注意摩擦力突变对物体运动的影响;③分清楚研究过程,利用牛顿运动定律和运动学规律求解未知量。
难点疑点:传送带与物体运动的牵制。
牛顿第二定律中a 是物体对地加速度,运动学公式中S 是物体对地的位移,这一点必须明确。
分析问题的思路:初始条件→相对运动→判断滑动摩擦力的大小和方向→分析出物体受的合外力和加速度大小和方向→由物体速度变化再分析相对运动来判断以后的受力及运动状态的改变。
一、水平放置运行的传送带1.如图所示,物体A 从滑槽某一高度滑下后又滑上粗糙的水平传送带,传送带静止不动时,A 滑至传送带最右端的速度为v 1,需时间t 1,若传送带逆时针转动,A 滑至传送带最右端的速度为v 2,需时间t 2,则( )A .1212,v v t t ><B .1212,v v t t <<C .1212,v v t t >>D .1212,v v t t ==2.如图7所示,一水平方向足够长的传送带以恒定的速度v 1沿顺时针方向转动,传送带右端有一与传送带等高的光滑水平面,一物体以恒定速度v 2沿直线向左滑向传送带后,经过一段时间又反回光滑水平面,速率为v 2′,则下列说法正确的是:( )A .只有v 1= v 2时,才有v 2′= v 1B . 若v 1 >v 2时, 则v 2′= v 2C .若v 1 <v 2时, 则v 2′= v 2D .不管v 2多大,v 2′= v 2.3.物块从光滑斜面上的P 点自由滑下通过粗糙的静止水平传送带后落到地面上的Q 点.若传送带的皮带轮沿逆时针方向匀速转动,使传送带随之运动,如图所示,物块仍从P 点自由滑下,则( )A .物块有可能落不到地面B .物块将仍落在Q 点C .物块将会落在Q 点的左边D .物块将会落在Q 点的右边4.(2003年·江苏理综)水平传送带被广泛地应用于机场和火车站,用于对旅客的行李进行安全检查右图为一水平传送带装置示意图,绷紧的传送带A 、B 始终保持v =1m/s 的恒定速率运行;一质量为m =4kg 的行李无初速地放在A 处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.设行李与传送带间的动摩擦因数μ=0.1,AB 间的距离l =2m ,g 取10m /s 2.(1)求行李刚开始运动时所受的滑动摩擦力大小与加速度大小;(2)求行李做匀加速直线运动的时间;(3)如果提高传送带的运行速率,行李就能被较快地传送到B 处.求行李从A 处传送到B 处的最短时间和传送带对应的最小运行速率.5.(16分)如图17所示,水平传送带的长度L =5m ,皮带轮的半径R =0.1m ,皮带轮以角速度ω顺时针匀速转动。
现有一小物体(视为质点)以水平速度v 0从A 点滑上传送带,越过B 点后做平抛运动,其水平位移为S 。
保持物体的初速度v 0不变,多次改变皮带轮的角速度ω,依次测量水平位移S ,得到如图18所示的S —ω图像。
回答下列问题:(1)当010ω<<rad /s 时,物体在A 、B 之间做什么运动?(2)B 端距地面的高度h 为多大?Q(3)物块的初速度v 0多大?6.一水平的浅色长传送带上放置一煤块(可视为质点),煤块与传送带之间的动摩擦因数为μ.起始时,传送带与煤块都是静止的.现让传送带以恒定的加速度a 0开始运动,当其速度达到v 0后,便以此速度匀速运动.经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动.求此黑色痕迹的长度.二、倾斜放置运行的传送带1.如图所示,传送带与地面倾角θ=37°,从AB 长度为16m ,传送带以10m/s 的速率逆时针转动.在传送带上端A 无初速度地放一个质量为0.5kg 的物体,它与传送带之间的动摩擦因数为0.5.求物体从A 运动到B 需时间是多少?(sin37°=0.6,cos37°=0.8)2.如图3-2-24所示,传送带两轮A 、B 的距离L =11 m ,皮带以恒定速度v =2 m/s 运动,现将一质量为m 的物块无初速度地放在A 端,若物体与传送带间的动摩擦因数为μ=0.8,传送带的倾角为α=37°,那么物块m 从A 端运到B 端所需的时间是多少?(g 取10m/s 2,cos37°=0.8)图17图18/rad/s一、水平放置运行的传送带1.D 提示:物体从滑槽滑至末端时,速度是一定的.若传送带不动,物体受摩擦力方向水平向左,做匀减速直线运动.若传送带逆时针转动,物体受摩擦力方向水平向左,做匀减速直线运动.两次在传送带都做匀减速运动,对地位移相同,加速度相同,所以末速度相同,时间相同,故D .2.B3.B 提示:传送带静止时,物块能通过传送带落到地面上,说明滑块在传送带上一直做匀减速运动.当传送带逆时针转动,物块在传送带上运动的加速度不变,由2202t v v as =+可知,滑块滑离传送带时的速度v t 不变,而下落高度决定了平抛运动的时间t 不变,因此,平抛的水平位移不变,即落点仍在Q 点.4.【答案】(1)4N ,a =lm/s 2;(2)1s ;(3)2m/s解析:(1)滑动摩擦力F =μmg ①以题给数值代入,得F =4N ②由牛顿第二定律得F =ma ③代入数值,得a =lm/s 2 ④(2)设行李做匀加速运动的时间为t ,行李加速运动的末速度v=1m /s .则v =at ⑤代入数值,得t =1s ⑥(3)行李从A 匀加速运动到B 时,传送时间最短.则2min 12l at = ⑦代入数值,得min 2s t =⑧ 传送带对应的运行速率V min =at min⑨ 代人数据解得V min =2m/s ⑩5.解:(1)物体的水平位移相同,说明物体离开B 点的速度相同,物体的速度大于皮带的速度,一直做匀减速运动。
(2)当ω=10rad/s 时,物体经过B 点的速度为1/B v R m s ω==. 平抛运动:212B s v t h gt ==.解得:t =1s ,h =5m. (3)当ω>30rad/s 时,水平位移不变,说明物体在AB 之间一直加速,其末速度3/B s v m s t'==. 根据2202t v v as -= 当0≤ω≤10rad/s 时,2202BgL v v μ=- 当ω≥30rad/s 时,2202B gL v v μ=-,解得:0/v s =6.【答案】20002v a g a gμμ-() 解析:根据“传送带上有黑色痕迹”可知,煤块与传送带之间发生了相对滑动,煤块的加速度a 小于传送带的加速度a 0.根据牛顿第二定律,可得a =μg设经历时间t ,传送带由静止开始加速到速度等于v 0,煤块则由静止加速到v ,有v 0=a 0t ,v =at由于a <a 0,故v <v 0,煤块继续受到滑动摩擦力的作用.再经过时间t ',煤块的速度由v 增加到v 0,有v 0=v +at '此后,煤块与传送带运动速度相同,相对于传送带不再滑动,不再产生新的痕迹.设在煤块的速度从0增加到v 0的整个过程中,传送带和煤块移动的距离分别为s 0和s ,有200012s a t v t '=+,202v s a= 传送带上留下的黑色痕迹的长度l =s 0-s 由以上各式得20002v a g l a gμμ-=() 二、倾斜放置运行的传送带1.【答案】2s解析:物体的运动分为两个过程,一个过程在物体速度等于传送带速度之前,物体做匀加速直线运动;第二个过程是物体速度等于传送带速度以后的运动情况,其中速度相同点是一个转折点,此后的运动情况要看mgsinθ与所受的最大静摩擦力,若μ<tanθ,则继续向下加速.若μ≥tanθ,则将随传送带一起匀速运动,分析清楚了受力情况与运动情况,再利用相应规律求解即可.本题中最大静摩擦力等于滑动摩擦力大小.物体放在传送带上后,开始的阶段,由于传送带的速度大于物体的速度,传送带给物体一沿传送带向下的滑动摩擦力F ,物体受力情况如图所示.物体由静止加速,由牛顿第二定律得a 1=10×(0.6+0.5×0.8)m/s 2=10m/s 2 物体加速至与传送带速度相等需要的时间1110s=1s 10v t a ==,t 1时间内位移21115m 2s a t ==.由于μ<tanθ,物体在重力情况下将继续加速运动,当物体速度大于传送带速度时,传送带给物体一沿传送带向上的滑动摩擦力F .此时物体受力情况如图所示,由牛顿第二定律得:222sin cos ,2m/s mg mg ma a θμθ-==. 设后一阶段物体滑至底端所用的时间为t 2,由 222212L s v t a t -=+,解得t 2=1s ,t 2=-11s (舍去).所以物体由A→B 的时间t=t 1+t 2=2s .2.解析:将物体放在传送带上的最初一段时间内物体沿传送带向上做匀加速运动由牛顿第二定律得μmg cos37°-mg sin37°=ma则a =μg cos37°-g sin37°=0.4 m/s 2物体加速至2 m/s 所需位移s 0=v 22a =222×0.4m =5 m<L 经分析可知物体先加速5 m再匀速运动s =L -s 0=6 m.匀加速运动时间t 1=v a =20.4 s =5 s.匀速运动的时间t 2=s v =62 s =3 s.则总时间t =t 1+t 2=(5+3) s =8 s.答案:8 s。