小波分析及应用(附常用小波变换滤波器系数)
- 格式:doc
- 大小:1.08 MB
- 文档页数:33
小波分析及其应用小波分析是一种将信号分解成不同频率的方法,它具有时频局域性等优点,广泛应用于信号处理、模式识别、图像处理、生物医学工程等领域。
本文将从小波分析的概念、算法及其应用等方面进行详细介绍。
小波分析最早由法国数学家莫尔。
尼斯特雷(Morlet)于20世纪80年代初提出。
它可以将原始信号分解成不同频率的小波基函数,通过对小波基函数进行不同尺度的平移和伸缩来适配信号的不同频率成分。
与传统的傅里叶变换相比,小波分析可以提供更精确的时频信息,适用于非平稳信号的分析。
小波分析的算法主要有两种:连续小波变换(CWT)和离散小波变换(DWT)。
连续小波变换是将信号与连续的小波基函数进行卷积得到小波系数,然后通过小波系数的时频表示来分析信号。
离散小波变换则是通过对信号进行多级滤波和下采样得到不同频率的小波系数,然后通过小波系数的分解和重构来还原信号。
小波分析的应用非常广泛。
在信号处理领域,小波分析可用于信号的去噪、特征提取和模式分析等。
例如,在语音信号处理中,小波分析可以提取出语音信号的共振峰位置和共振器参数,从而实现语音识别和语音合成。
在图像处理领域,小波分析可用于图像的边缘检测、纹理分析和压缩等。
例如,在图像压缩中,小波变换可以将图像的低频和高频信息分开编码,从而实现更高的图像压缩比。
在模式识别领域,小波分析可以用于图案识别和模式分类。
例如,在人脸识别中,小波分析可以对人脸图像的尺度和方向进行多尺度和多方向的分析,从而提取出不同特征,进而实现人脸的识别。
在生物医学工程领域,小波分析可用于心电信号的分析和疾病检测等。
例如,在心电信号的分析中,小波分析可以提取出心电信号的不同频率成分,从而实现对心脏疾病的检测和分析。
总之,小波分析是一种重要的信号分析方法,具有时频局域性和多分辨率分析的特点,广泛应用于信号处理、模式识别、图像处理和生物医学工程等领域。
通过对小波基函数进行不同尺度的平移和伸缩,可以实现对信号不同频率成分的分解和分析,并提取出信号的时频特征,从而实现对信号的处理和分析。
小波分析的原理和应用1. 小波分析的基本概念小波分析是一种用于信号处理和数据分析的数学工具。
它的核心思想是将信号分解成不同频率的小波成分,以便更好地理解和处理信号。
小波是一种局部化的基函数,具有时频局部化的特点,因此可以更好地描述非平稳和非周期性信号。
2. 小波分析的原理小波分析的原理可以归结为两个关键步骤:小波变换和逆小波变换。
2.1 小波变换小波变换是将信号分解成不同尺度和频率的小波成分的过程。
它通过将信号与小波基函数进行内积运算来完成。
小波基函数可以用于描述信号中不同频率和时间域的特征。
小波变换的计算过程可以通过连续小波变换(CWT)或离散小波变换(DWT)来实现。
CWT适用于连续信号,DWT适用于离散信号。
2.2 逆小波变换逆小波变换是将小波表示的信号重构回原始信号的过程。
逆小波变换可以基于小波系数和小波基函数进行计算。
3. 小波分析的应用领域小波分析在各个领域都有广泛的应用,以下列举几个主要的应用领域。
3.1 信号处理小波分析在信号处理领域中被广泛应用。
它可以用于信号压缩、滤波器设计、特征提取等方面。
由于小波具有时频局部化的特点,因此可以更好地处理非平稳和非周期信号。
3.2 图像处理小波分析在图像处理中也有重要的应用。
它可以用于图像压缩、图像增强、纹理分析等方面。
小波变换可以提取图像中的局部特征,并通过逆小波变换将处理后的图像重构回原始图像。
3.3 生物医学信号处理小波分析在生物医学信号处理领域起着重要的作用。
例如,可以将小波分析应用于心电信号分析、脑电信号分析等方面。
通过对生物医学信号进行小波变换,可以提取信号中的特征,并用于疾病诊断和监测等应用。
3.4 金融数据分析小波分析在金融数据分析中也有广泛的应用。
它可以用于金融时间序列数据的分析和预测。
通过对金融数据进行小波变换,可以识别出数据中的周期性和趋势性成分,从而帮助分析师做出更准确的预测。
4. 小结小波分析是一种重要的信号处理和数据分析工具。
浅谈小波分析理论及其应用
小波分析是一种在时间上和频率上非常灵活的方法,它将函数分解为不同频率的小波,从而更好地理解信号特征。
小波分析对于信号和图像处理领域有着广泛的应用,它可以用于去噪、压缩、特征提取和模式识别等方面。
小波分析的基本原理是根据小波函数的特点进行信号的分解。
小波函数有时域和频域的双重特性,这使得小波分析可以在时间和频率上同时分析信号。
小波函数有许多种类,其中最著名的是Morlet小波函数和Haar小波函数。
不同类型的小波函数有着不同的特点,可以用于处理不同类型的信号。
小波分析的应用非常广泛,其中最重要的是信号的去噪。
小波去噪可以利用小波分解的多尺度分析特性,将信号分成多个不同的频率带,去除噪声后再进行重构。
由于小波函数的好处在于可以在不同的时间尺度和频率上描述函数的特征,因此可以避免传统傅里叶变换中产生的频域和时间域之间的不确定性问题。
小波分析还可以用于信号的压缩。
小波变换可以将信号表示为一组小波系数,这些小波系数可以提供基于特征的图像压缩,以适合数字传输。
此外,小波变换还可以使用不同的频带系数来减少压缩过程中所需的位数,从而减小数据存储和传输的成本。
除了去噪和压缩之外,小波分析还可以用于图像处理中的特征提取、形态学分析和模式识别。
小波分析可以提供对图像特征的多尺度分析和检测,以便更有效地检测和分类图像。
在医学图像处理和物体识别领域,小波分析成为了一种广泛使用的工具。
总之,小波分析是一种非常有用的信号和图像分析工具,它在不同领域中有着广泛的应用。
随着技术的进步,小波分析的应用还将不断发展和拓展,成为更有效的数学工具。
小波分析连续小波变换小波分析是一种用于信号处理和数据分析的强大工具,可以在时频域上对信号进行局部化分析。
连续小波变换是小波分析的一种常用方法,它将信号分解成不同频率和尺度的小波成分,从而揭示出信号的时间和频率特征。
在本文中,我们将介绍连续小波变换的原理、方法和应用,并对其进行详细分析。
连续小波变换的原理可以用数学公式表示为:CWT(a,b) = \int f(t)\psi_{a,b}(t)dt\]其中,\(CWT(a,b)\)表示连续小波变换的系数,\(f(t)\)表示原始信号,\(\psi_{a,b}(t)\)表示小波基函数。
小波基函数可以由母小波函数进行缩放和平移得到,其中缩放因子\(a\)控制小波的频率,平移因子\(b\)控制小波的相位。
连续小波变换有许多不同的小波基函数可供选择,常用的有Morlet 小波、Haar小波、Daubechies小波等。
每种小波基函数都有自己的频率和尺度特性,适用于不同类型的信号分析。
连续小波变换方法的基本步骤如下:1.选择合适的小波基函数和尺度范围。
2.将原始信号进行滤波和下采样,得到不同尺度的近似信号。
3.将原始信号与小波基函数进行卷积,得到不同频率和尺度的细节信号。
4.重复步骤2和步骤3,直到得到满足要求的小波系数。
连续小波变换的应用十分广泛,包括信号分析、图像处理、模式识别等领域。
下面我们将以信号分析为例,详细介绍连续小波变换的应用。
在信号分析中,连续小波变换可以用来检测信号中的瞬时特征、变化点和周期变化。
通过对信号进行小波变换,可以得到不同尺度的频谱信息,从而揭示出信号的时频特征。
例如,在生物医学信号分析中,连续小波变换可以用来检测心电图中的心跳和呼吸节律,从而帮助医生对心脏和呼吸系统的功能进行评估和诊断。
同时,连续小波变换还可以用于脑电图分析、肌电图分析等领域。
在工程领域,连续小波变换也有重要的应用。
例如,在机械故障诊断中,连续小波变换可以用来分析振动信号,从而检测机械设备中的故障和异常。
第6章 气象上常用小波及其应用实例(1)前面五章讲述了小波分析方法的由来和原理,这些基本知识为气象上实际应用奠定了基础。
本章将介绍气象上常用的几种小波,特别是Haar 小波和墨西哥帽(Mexihat )小波,以及小波分析的应用实例。
6.1 二进小波二进小波的产生基于第4章的“二分法”。
它的基本思路是把连续型函数)(t f 及其连续小波变换),(b a W f 离散化,以便于实际应用。
作为一种方便和常用的形式,是对小波参数中的放(伸)缩因子a 进行二进制离散。
若小波函数系的表达式{}Zm,n n t am∈-- ),(ψ(••) 中的放缩因子)(2Z j a j ∈=,则称)(t ψ为二进小波。
把经过这种离散化后的二进小波的变换,称为二进小波变换。
强调说明:在应用时所用的小波函数系(式(••))与前面第4章第3节的式(•)有所不同。
比照这两式:),()(),2(2)(,2/,b at a t k t t b a jj kj -=-=ψψψψ或(•)),()(,n t at mn m -=-ψψ(••) 可以看出,二者主要的不同点是t 的系数a 指数正负号恰好相反。
所以,用式(•)的小波作变换时,随着a (或者j )的增大,W 曲线变窄;而用式(••)的小波作变换时,随着a (或者j )的增大,W 曲线变宽。
定义6.1 函数)()(2R L t ∈ψ被称为二进小波,若存在两个常数∞<≤<B A 0,使得:∑∈-≤≤Zj j B A .)2(ˆ2ωψ(6.1)上述条件式(6.1)称为稳定性条件;若A =B ,则称最稳定条件。
而函数序列{}Zj j f W ∈2称为二进小波变换,其中,,d 2)(21)()(22b b t t f t f t f W Rjjjj ⎰⎪⎭⎫⎝⎛-=*=ψψ(6.2)这里j a 2=是放缩因子,b 是平移因子。
由卷积定理知:)2(ˆ)(ˆ)(ˆ2ωψωωj f f W j ⋅= (6.3) 据此,稳定性条件等价于:对任意)()(2R L t f ∈,有:∑∈≤≤Zj fB fW fA j 2020220(6.4)下面定理说明,二进小波一定是允许小波。
小波滤波方法及应用一、本文概述本文旨在深入探讨小波滤波方法的理论基础、实现技术及其在信号处理、图像处理、数据压缩等多个领域的应用。
小波滤波作为一种新兴的信号处理技术,通过利用小波变换的多分辨率分析特性,能够在不同尺度上有效提取信号中的有用信息,实现对信号的高效滤波和去噪。
本文首先介绍小波滤波的基本概念、发展历程和主要特点,然后详细阐述小波滤波的数学原理和实现方法,包括小波变换的基本原理、小波基函数的选择、小波滤波器的设计等。
在此基础上,本文将重点分析小波滤波在信号处理、图像处理、数据压缩等领域的应用实例,探讨其在实际应用中的优势和局限性。
本文还将对小波滤波的未来发展趋势进行展望,以期为该领域的进一步研究提供参考和借鉴。
二、小波理论基础知识小波理论,作为一种现代数学工具,自20世纪80年代以来,已在信号处理、图像处理、数据压缩等众多领域展现出强大的应用潜力。
其核心思想是通过一组被称为“小波”的函数来分解和分析信号或数据。
与傅里叶变换等传统方法相比,小波变换提供了时频局部化的分析能力,意味着它可以在不同的时间和频率上同时提供信号的信息。
小波变换的基础是小波函数,也称为母小波。
这些函数具有有限的持续时间并且振荡,可以在时间和频率两个维度上进行局部化。
通过伸缩和平移操作,母小波可以生成一系列的小波基函数,这些函数能够匹配并适应不同频率的信号部分。
小波变换可以分为连续小波变换(CWT)和离散小波变换(DWT)两种类型。
连续小波变换在时间和频率上都是连续的,能够提供非常精细的分析结果,但计算复杂度较高。
而离散小波变换则对时间和频率进行了离散化,计算效率更高,更适用于实际应用。
小波变换的一个重要特性是多分辨率分析,它允许我们在不同尺度上观察信号。
通过逐层分解信号,我们可以得到从粗糙到精细的一系列逼近和细节分量。
这种特性使得小波变换在信号去噪、图像增强等应用中表现出色。
小波理论还涉及小波包、尺度函数、小波框架等概念,这些构成了小波分析的基础框架。
小波分析及其应用小波分析是一种时间-频率分析方法,是对时域信号在时间和频率上的特征进行分析的一种数学工具。
它不仅具有频域分析方法的优点,如傅立叶变换,可以提供信号的频率成分,而且还能提供信号的时间信息,即信号的局部特征。
小波分析在信号处理、图像处理、语音识别等领域有着广泛的应用。
小波分析的基本原理是通过对信号进行分解和重构,将信号转化为不同尺度和频率的小波基函数的叠加,然后通过分析小波系数的大小和位置,得到信号的频率和局部时间信息。
在信号处理领域,小波分析常用于信号压缩、去噪和特征提取。
由于小波函数具有时频局部化特性,可以更准确地描述信号的局部特征,所以在信号压缩方面有很好的应用。
小波压缩将信号分解为不同频率分量,然后根据各个频率分量的重要程度进行压缩,以达到减小数据量的目的。
在信号去噪方面,小波分析可以通过滤除小波系数的低能量分量来抑制信号中的噪声。
此外,小波变换还可应用于语音识别和图像处理中的特征提取,提取信号的频率特征和时间特征,以实现对语音和图像的处理和识别。
在图像处理领域,小波分析有着广泛的应用。
小波变换可以将图像分解为不同尺度和方向的频域信号,从而提供了更加精细的图像特征信息。
基于小波变换的图像处理技术包括图像压缩、边缘检测、纹理分析等。
通过对图像进行小波分解和重构,可以实现图像的压缩和去噪。
同时,小波变换还具有多尺度分析的优势,能够更好地捕捉图像中的局部细节和全局结构。
在金融领域,小波分析被用于金融时间序列的特征提取和预测。
金融市场的价格序列通常具有非线性、非平稳和非高斯分布的特点,传统的统计方法常常无法处理。
而小波分析可以更好地揭示金融时间序列的时间和频率特征,提供更准确的数据分析和预测。
通过分析小波系数的大小和位置,可以提取金融时间序列中的主要特征和周期,为金融决策提供参考。
此外,小波分析还在医学影像处理、地震信号处理、生物信号处理等领域有广泛的应用。
在医学影像处理中,小波分析能够提取出图像中的不同频率和方向的特征,从而实现对病变的检测和分析。
小波分析及其应用研究引言小波分析是一种近年来逐渐被广泛应用的数学工具,它在信号处理、图像处理等领域具有广泛的应用价值。
小波分析能够将一个信号或图像分解成多个小波系数,从而方便地对信号或图像进行频域和时域的分析。
本文旨在探讨小波分析的基本原理及其在信号处理和图像处理领域的应用研究,以期读者能够更好地理解小波分析的应用价值。
小波分析基本原理小波分析的基本原理主要包括小波基函数的选取、小波分解的过程以及小波重构的过程。
小波基函数具有尺度性和移位性,通过这些性质,可以将一个信号或图像从小波基函数展开,得到一系列的小波系数。
小波分解是将信号或图像分解成多个小波系数的过程,从而方便对信号或图像进行频域和时域的分析。
小波重构则是从小波系数出发,恢复原信号或图像的过程。
小波分析在信号处理中的应用小波分析在信号处理领域具有广泛的应用,主要包括信号压缩、去噪以及分类等方面。
小波分析能够将信号分解成多个小波系数,对于那些幅值较小的系数,可以将其置零或近似为零,从而实现信号压缩。
同时,小波分析在信号去噪方面也有着重要的应用,通过将信号分解成多个小波系数,可以有效地去除噪声,提高信号的信噪比。
此外,小波分析还可以应用于信号分类,例如基于小波包的分类方法可以有效地对信号进行分类。
小波分析在图像处理中的应用小波分析在图像处理领域同样具有广泛的应用,主要包括图像压缩、去噪以及分类等方面。
在图像压缩方面,小波分析可以通过将图像分解成多个小波系数,实现图像的压缩,从而减少存储空间的需求。
同时,小波分析在图像去噪方面也有着重要的应用,能够有效地去除图像中的噪声。
此外,小波分析还可以应用于图像分类,例如基于小波包的分类方法可以有效地对图像进行分类。
小波分析作为一种数学工具,在信号处理和图像处理领域具有广泛的应用价值。
通过将信号或图像分解成多个小波系数,可以方便地对信号或图像进行频域和时域的分析。
本文介绍了小波分析的基本原理及其在信号处理和图像处理领域的应用研究,希望读者能够更好地理解小波分析的应用价值。
小波分析及其在图像处理中的应用小波分析是一种新兴的数学分析方法,它能够对非平稳信号进行分析。
与傅里叶分析相比,小波分析具有更好的局部性和多分辨率性,可以有效地处理噪声、边缘、纹理等图像特征。
因此,在图像处理中,小波分析被广泛应用。
一、小波分析原理小波分析是一种在时间和频率两个方面都具有局部性的信号分析方法。
它使用小波基函数对非平稳信号进行分解,然后把分解出来的不同频率部分表示为对应的小波系数。
通过对这些小波系数进行处理,可以还原出原始的信号。
小波基函数是一组具有局部性、正交且可变性的函数,其中比较常用的有哈尔小波、Daubechies小波、db小波等。
小波基函数在时间和频率上都是有限的,因此可以有效地处理非平稳信号。
二、小波分析在图像处理中的应用小波分析在图像处理中的应用广泛,以下为几个常见的应用:1.图像压缩小波分析可以对图像进行离散小波变换,得到图像的小波系数。
通过对这些系数进行阈值处理,可以实现图像压缩。
由于小波系数在频域上呈现出分布不均匀的特点,因此可以通过适当的阈值处理来实现图像的有损压缩。
2.图像去噪图像常常包含许多噪声,这些噪声会干扰到图像的质量。
小波分析可以对图像进行小波变换,得到图像的小波系数。
通过对这些系数进行滤波,可以去除噪声。
在滤波的过程中,可以通过设置不同的阈值来实现不同程度的去噪效果。
3.图像边缘检测小波变换可以将图像在不同频率、不同尺度上进行分解,因此可以很好地提取图像中的特征。
在边缘检测中,可以通过对图像进行小波变换,得到不同频率的小波系数,然后根据边缘提取的原理,选取合适的小波系数进行边缘检测。
4.图像增强小波分析可以把图像分解为不同尺度的频域信息,由于不同尺度的频域信息对应着图像中的不同特征,因此可以通过增强不同尺度的频域信息来实现图像增强的效果。
三、总结小波分析作为一种新兴的数学分析方法,在图像处理中有着广泛的应用。
通过对图像进行小波变换,可以得到不同频率的小波系数,使得图像的局部特征得到了更加精细的描述,并且可以用于图像压缩、去噪、边缘检测和图像增强等方面。
小波分析的原理及应用什么是小波分析?小波分析是一种在时频领域中分析和处理信号的数学工具。
它通过将信号分解成一组不同频率的小波基函数来描述信号的时频特性,并能够提供更细致的时频信息。
相比于傅里叶变换,小波分析能够更好地适应非平稳信号。
小波分析的原理小波分析基于一组小波基函数,这些基函数是用来描述信号局部特征的。
小波基函数是由一个母小波函数通过平移和缩放得到的。
小波基函数可以在时域和频域之间进行转换,因此可以提供更为准确的时频分析。
以下是小波分析的基本原理:1.小波基函数的选择:在进行小波分析之前,需要选择适合信号特征的小波基函数。
不同的小波基函数适用于不同类型的信号,如哈尔小波、Daubechies小波和Morlet小波等。
2.小波变换:小波变换是将信号分解成一系列尺度和平移后的小波基函数的过程。
这样可以提供信号在不同频率和时间尺度上的信息。
3.尺度和平移参数的选择:小波分析中的关键问题之一是如何选择合适的尺度和平移参数。
不同的尺度和平移参数可以提供不同粒度的时频信息。
4.小波系数的计算:对于给定的信号,小波分析将其分解为一系列的小波系数。
这些小波系数表示信号在不同尺度和频率上的能量分布。
5.小波重构:通过将小波系数与小波基函数进行线性组合,可以将信号从小波域重新构建回时域。
小波分析的应用小波分析在许多领域中有着广泛的应用,包括:1. 信号处理小波分析在信号处理中被广泛应用。
通过小波变换,可以对非平稳信号进行时频分析,并能够提供更详细的时频特性。
小波分析可以用于音频处理、图像处理以及语音识别等领域。
2. 压缩与编码小波变换可以对信号进行压缩和编码。
通过选择合适的小波基函数和尺度参数,可以在保持较高的信号质量的同时,减小信号的数据量。
3. 金融分析小波分析在金融分析中也有应用。
通过小波变换,可以对不同频率的金融时间序列进行分析,揭示出不同周期的市场行情。
4. 医学图像处理小波分析在医学图像处理中也扮演重要的角色。
Matlab中的小波分析与小波变换方法引言在数字信号处理领域中,小波分析和小波变换方法是一种重要的技术,被广泛应用于图像处理、语音识别、生物医学工程等领域。
Matlab作为一种强大的数值计算和数据分析工具,提供了丰富的小波函数和工具箱,使得小波分析和小波变换方法可以轻松地在Matlab环境中实现。
本文将介绍Matlab中的小波分析与小波变换方法,并探讨其在实际应用中的一些技巧和注意事项。
1. 小波分析基础小波分析是一种时频分析方法,可以将信号分解成不同频率、不同时间尺度的小波基函数。
在Matlab中,可以利用小波函数如Mexh、Mexh3、Morl等来生成小波基函数,并通过调整参数来控制其频率和时间尺度。
小波分析的核心思想是将信号分解成一组尺度和位置不同的小波基函数,然后对每个小波基函数进行相关运算,从而得到信号在不同频率和时间尺度上的分量。
2. 小波变换方法Matlab提供了多种小波变换方法,包括连续小波变换(CWT)、离散小波变换(DWT)和小波包变换(WPT)。
连续小波变换是将信号与连续小波基函数进行卷积,从而得到信号在不同频率和时间尺度上的系数。
离散小波变换是将信号分解为不同尺度的近似系数和细节系数,通过迭代的方式对信号进行多尺度分解。
小波包变换是对信号进行一种更细致的分解,可以提取更多频率信息。
3. Matlab中的小波工具箱Matlab提供了丰富的小波工具箱,包括Wavelet Toolbox和Wavelet Multiresolution Analysis Toolbox等。
这些工具箱提供了小波函数、小波变换方法以及相关的工具函数,方便用户进行小波分析和小波变换的实现。
用户可以根据自己的需求选择适合的小波函数和变换方法,并借助工具箱中的函数进行信号处理和结果展示。
4. 实际应用中的技巧和注意事项在实际应用中,小波分析和小波变换方法的选择非常重要。
用户需要根据信号的特点和需求选择适合的小波函数和变换方法。
第八章小波分析及应用8.1 引言把函数分解成一系列简单基函数的表示,无论是在理论上,还是实际应用中都有重要意义。
1822年法国数学家傅里叶(J. Fourier 1768-1830)发表的研究热传导理论的“热的力学分析”,提出并证明了将周期函数展开为正弦级数的原理,奠定了傅里叶级数理论的基础[1]。
傅里叶级数理论研究的是把函数在三角函数系下的展开,使得对信号和系统的研究归结为对简单的三角函数的研究。
傅里叶级数与傅里叶变换共同组成了平常所说的傅里叶分析[2]。
傅里叶级数用于分析周期性的函数或分布,理论分析时经常假定周期是π2,定义如式(8.1-1)、(8.1-2)()()π2,02L x f ∈∀,()∑∞-∞==k ikxkec x f (8.1-1)其中 ()dx e x f c ikx k -⎰=ππ2021 (8.1-2) 然而,被分析函数的性质并不能完整地由傅里叶系数来刻划,这里有一个例子来说明[3]:从任一个平方可和的函数)(x f 出发,为了得到一个连续函数)(x g ,只需或者增大f(x)的傅里叶系数的模,或者保持它不变并适当地改变系数的位相。
因此,不可能仅根据傅里叶系数大小的阶就预知函数的性质(如大小、正则性)。
傅里叶变换的定义如式(8.1-3)、(8.1-4)()()dx e x f F x j ωω⎰∞∞-= (8.1-3)()()ωωπωd e F x f x j -∞∞-⎰=21 (8.1-4) 通过引入广义函数或分布的概念,可获得奇异函数(如冲击函数)的傅里叶变换的存在。
对于时域的常量函数,在频域将表现为冲击函数,表明具有很好的频域局部化性质。
由式(8.1-3)可知,为了得到()ωF ,必须有关于f(x)的过去和未来的所有知识,而且f(x)在时域局部值的变化会扩散到整个频域,也就是()ωF 的任意有限区域的信息都不足以确定任意小区域的f(x)。
在时域,哈尔(Haar)基是一组具有最好的时域分辨能力的正交基,它在时域上是完全局部化的,但在频域的局部化却很不好,这是由于哈尔系的两个缺点:缺乏正则性与缺乏振动性。
研究者们希望寻找关于空间变量(或时间变量)与频域变量都同时好的希尔伯特(Hilbert)基,R. Balian 认为:“在通讯理论中,人们对于在完全给定的时间内,把一个振动信号表示成由其中每一个都拥有足够确定的位置与有一个频率的小波的叠加这件事感兴趣。
事实上,有用的信息常常同时被发射信号的频率与信号的时间结构(如音乐)所传递。
当把一个信号表达成时间的函数时,其中的频谱表现并不好;相反地,信号的傅里分析却显示不了信号每一分量发射信号的瞬时与持续时间。
一个适当的表示应结合这两者互补描述的优点,并用一个离散的刻划来表示,以适应通讯理论[3]。
”为此,人们提出了短时傅里叶变换(STFT )的概念:定义8.1-1若()R L W 2∈选择得使W 与它的傅里叶变换Wˆ满足: ()()()()R L WR L t tW 22ˆ,∈∈ωω 那么使用W 作为窗函数,在式(8.1-5)中引入的窗口傅里叶变换称为“短时傅里叶变换”(STFT):()()()()()()dt b t W t f e f g t j b -=⎰∞∞--ωω~ (8.1-5)当窗函数选择为高斯(Gaussian)函数时,则为Gabor 变换[2]。
STFT 的缺点是分析窗的大小和形状是恒定的。
因为频率与周期成反比,所以反映信号的高频成份需要窄的时间窗,而反映信号的低频成份需要宽的时间窗,STFT 无法满足要求,此外,STFT 的冗余很大,增加了不必要的计算量。
小波变换作为能随频率的变化自动调整分析窗大小的分析工具,自八十处代中期以来得到了迅猛的发展,并在信号处理、计算机视觉、图像处理、语音分析与合成等众多的领域得到应用。
小波分析方法的出现可以追溯到1910年Haar 提出Haar 规范正交基,以及1938年Littlewood-Paley 对傅里叶级数建立的L-P 理论。
为克服传统傅里叶分析的不足,在八十年代初,便有科学家使用“小波”的概念来进行数据处理,比较著名的是1984年法国地球物理学家Morlet 引入小波的概念对石油勘探中的地震信号进行存贮和表示。
在数学方面所做的探索主要是R. Coifman 和G . Weiss 创立的“原子”和“分子”学说,这些“原子”和“分子”构成了不同函数空间的基的组成部分。
L. Carleron 使用了非常象“小波”的函数构造了Stein 和Weiss 的空间1H 的无条件基。
直到1986年,法国数学家Meyer 成功地构造出了具有一定衰减性的光滑函数ψ,它的二进伸缩与平移()(){}Z k j k t t j j k j ∈-=--,:222/,ψψ构成()R L 2的规范正交基。
此前,人们普遍认为这是不可能的,如Daubechies,Grossman 和Meyer 都退而研究函数系()002/0kb t a a jj ---ψ构成()R L 2的框架的条件去了。
Lemarie 和Battle 继Meyer 之后也分别独立地给出了具有指数衰减的小波函数。
1987年,Mallat 利用多分辨分析的概念,统一了这之前的各种具体小波的构造,并提出了现今广泛应用的Mallat 快速小波分解和重构算法。
1988年Daubechies 构造了具有紧支集的正交小波基。
Coifman, Meyer 等人在1989年引入了小波包的概念。
基于样条函数的单正交小波基由崔锦泰和王建忠在1990年构造出来。
1992年A. Cohen, I. Daubechhies 等人构造出了紧支撑双正交小波基。
同一时期,有关小波变换与滤波器组之间的关系也得到了深入研究。
小波分析的理论基础基本建立起来。
近年来,一种简明有效的构造小波基的方法--提升方案(Lifting Scheme)得到很大的发展和重视[4,5]。
利用提升方案可把现存的所有紧支撑小波分解成更为基本的步骤[6],另外,它还为构造非线性小波提供了一种有力的手段,所以,利用提升方案构造的小波被认为是第二代小波[5]。
小波理论及其应用仍然处在发展中,其未来将在非线性多尺度方法、非规则集上的小波构造以及非平稳、非均匀、时变信号处理等方面等到更深入的研究。
8.2 小波变换及其基本性质 8.2.1 连续小波变换()()R L t f 2∈∀,()t f 的连续小波变换(有时也称为积分小波变换)定义为:()()0,,2/1≠⎪⎭⎫ ⎝⎛-=⎰∞∞--a dt a b t t f ab a WT f ψ (8.2-1)或用内积形式:()b a f f b a WT ,,,ψ=(8.2-2)式中()⎪⎭⎫⎝⎛-=-a b t at b a ψψ2/1, 要使逆变换存在,()t ψ要满足允许性条件:()∞<=⎰∞∞-ωωωψψd C 2ˆ (8.2-3)式中()ωψˆ是()t ψ的傅里叶变换。
这时,逆变换为()()()2,1,ada dbb a WT t C t f f b a ⎰⎰∞∞-∞∞--=ψψ(8.2-4)ψC 这个常数限制了能作为“基小波(或母小波)”的属于()R L 2的函数ψ的类,尤其是若还要求ψ是一个窗函数,那么ψ还必须属于()R L 1,即()∞<⎰∞∞-dt t ψ故()ωψˆ是R 中的一个连续函数。
由式(8.2-3)可得ψˆ在原点必定为零,即 ()()00ˆ==⎰∞∞-dt t ψψ(8.2-5) 从式(8.2-5)可以发现小波函数必然具有振荡性。
连续小波变换具有如下性质: 性质1(线性):设()()()t h t g t f βα+=,则()()()b a W T b a W T b a W T h g f ,,,βα+=性质2(平移不变性):若()()b a W T t f f ,↔,则()()ττ-↔-b a W T t f f ,。
平移不变性是一个很能好的性质,在实际应用中,尽管离散小波变换要用得广泛一些,但在需要有平移不变性的情况下,离散小波变换是不能直接使用的。
性质3(伸缩共变性):若()()b a W T t f f ,↔,则()()cb ca WT cct f f ,1↔,其中c>0。
性质4(冗余性):连续小波变换中存在信息表述的冗余度。
其表现是由连续小波变换恢复原信号的重构公式不是唯一的,小波变换的核函数()t b a ,ψ存在许多可能的选择。
尽管冗余的存在可以提高信号重建时计算的稳定性,但增加了分析和解释小波变换的结果的困难。
8.2.2连续小波变换的离散化由于连续小波变换存在冗余,因而有必要搞清楚,为了重构信号,需针对变换域的变量 a ,b 进行何种离散化,以消除变换中的冗余,在实际中,常取Z k j a k b jj ∈==,;21,2,这时 ()()()k t t t j j kb a jj -==222/2,21,ψψψ常简写为:()t k j ,ψ。
变换形式为:k j j j f f k WT ,,2,21ψ=⎪⎭⎫⎝⎛为了能重构信号()t f ,要求{}Zk j kj ∈,,ψ是()R L 2的Riesz 基。
定义8.2-1一个函数()R L 2∈ψ称为一个R 函数,如果{}Zk j kj ∈,,ψ在下述意义上是一个Risez基:Z k j k j ∈,,,ψ的线性张成在()R L 2中是稠密的,并且存在正常数A 与B ,∞<≤<B A 0,使{}{}2,22,,2,22lk j j k kj k j l k j c B c c A ≤≤∑∑∞-∞=∞-∞=ψ对所有二重双无限平方可和序列{}k j c ,成立,即对于{}∞<=∑∑∞-∞=∞-∞=2,2,2j k kj l k j cc 的{}k j c ,成立。
假定ψ是一个R 函数,那么存在()R L 2的一个唯一的Riesz 基{}Zk j kj ∈,,ψ,它在意义Z m l k j m k l j m l k j ∈=,,,,,,,,,δδψψ上与{}k j ,ψ对偶。
这时,每个()()R L t f 2∈有如式(8.2-6)的唯一级数表示:()()∑∑∞-∞=∞-∞==j k kj k j t f t f ,,,ψψ (8.2-6)特别地,若{}Zk j k j ∈,,ψ构成()R L 2的规范正交基时,有kj k j ,,ψψ= 重构公式为:()()t f t f j k j k k j ∑∑∞-∞=∞-∞==,,,ψψ (8.2-7)8.3 多分辨分析与Mallat 算法 8.3.1 多分辨分析Mallat 使用多分辨分析的概念统一了各种具体小波基的构造方法,并由此提出了现今广泛使用的Mallat 快速小波分解和重构算法,它在小波分析中的地位与快速傅里叶变换在傅里叶分析中的地位相当[7]。