BP神经网络算法程序
- 格式:docx
- 大小:37.50 KB
- 文档页数:4
BP算法代码实现BP算法(Backpropagation Algorithm)是一种常用的神经网络训练算法,它主要用于监督式学习任务中的模型训练。
BP算法的核心思想是通过反向传播来更新神经网络的权重和偏差,以使得神经网络的输出逼近目标输出。
在反向传播的过程中,通过求解梯度来更新每个连接权重和偏置的值,从而最小化损失函数。
以下是BP算法的代码实现示例:```pythonimport numpy as npclass NeuralNetwork:def __init__(self, layers):yers = layersself.weights = []self.biases = []self.activations = []#初始化权重和偏置for i in range(1, len(layers)):self.weights.append(np.random.randn(layers[i], layers[i-1])) self.biases.append(np.random.randn(layers[i]))def sigmoid(self, z):return 1 / (1 + np.exp(-z))def sigmoid_derivative(self, z):return self.sigmoid(z) * (1 - self.sigmoid(z))def forward_propagate(self, X):self.activations = []activation = X#前向传播计算每一层的激活值for w, b in zip(self.weights, self.biases):z = np.dot(w, activation) + bactivation = self.sigmoid(z)self.activations.append(activation)return activationdef backward_propagate(self, X, y, output):deltas = [None] * len(yers)deltas[-1] = output - y#反向传播计算每一层的误差(梯度)for i in reversed(range(len(yers)-1)):delta = np.dot(self.weights[i].T, deltas[i+1]) * self.sigmoid_derivative(self.activations[i])deltas[i] = delta#更新权重和偏置for i in range(len(yers)-1):self.weights[i] -= 0.1 * np.dot(deltas[i+1],self.activations[i].T)self.biases[i] -= 0.1 * np.sum(deltas[i+1], axis=1)def train(self, X, y, epochs):for epoch in range(epochs):output = self.forward_propagate(X)self.backward_propagate(X, y, output)def predict(self, X):output = self.forward_propagate(X)return np.round(output)```上述代码使用numpy实现了一个简单的多层神经网络,支持任意层数和任意神经元个数的构建。
close allclearecho onclc% NEWFF——生成一个新的前向神经网络% TRAIN——对BP 神经网络进行训练% SIM——对BP 神经网络进行仿真pause% 敲任意键开始clc% 定义训练样本矢量% P 为输入矢量sqrs=[0.0000016420520 0.0000033513140 0.0000051272540 0.0000069694860 0.0000088776310 0.0000139339960 -0.0000594492310 -0.0001080022920 -0.0001476714860 ...0.0000112367340 0.0002021567880 0.0008695337800 -0.0001189929700 -0.0000912336690 0.0002160472130 0.0006358522040 0.0012365884200 0.0049930394010 ]./0.001657904949 ;sqjdcs=[0.0000399039272 0.0000805129702 0.0001218448339 0.0001639173001 0.0002067504102 0.0003172835720 0.0000421189848 0.0000870310694 0.0001350858140 ...0.0001866997652 0.0002423599348 0.0004033628719 0.0000394450224 0.0000830935373 0.0001317612004 0.0001864881262 0.0002486249700 0.0004497441812 ]./0.000533286;sqglmj=[0.0000068430669 0.0000147605347 0.0000240097285 0.0000349372747 0.0000480215187 0.0000954580176 0.0000005804238 0.0000011640375 0.0000017508228 ...0.0000023407605 0.0000029338317 0.0000044301058 0.0000030813582 0.0000071511410 0.0000126615618 0.0000203910217 0.0000318028637 0.0001118629438 ]./0.000034868299 ;s1=[0.0001773503110 0.0003553133430 0.0005338922010 0.0007130899610 0.0008929096590 0.00#### 0.0005747667510 0.0012111415700 0.0019195724060 ...0.0027130110200 0.0036077110840 0.0064386221260 0.0005056929850 0.0010189193420 0.00#### 0.0020685403470 0.0026052286500 0.0039828224110 ]./0.00275071;%s2=[25.9167875445 24.0718476818 22.2364947192 20.4105777318 18.5939487791 14.0920619223 990.2535888432 1040.4661104131 1096.3830297389 1159.029******* ...% 1229.6925839338 1453.3788619676 164.1136642277 142.4834641073 121.6137611080 101.4436832756 81.9180522413 35.6044841634];glkyl=[1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3];glhyl=[2 4 6 8 10 15 2 4 6 8 10 15 2 4 6 8 10 15 ];P=[sqrs;sqjdcs;sqglmj;s1]; %输入数据矩阵T=[glkyl;glhyl]; %目标数据矩阵echo onclcpauseclc% 创建一个新的前向神经网络net=newff(minmax(P),[20,2],{'tansig','purelin'});pauseclcecho offclcdisp('1. L-M 优化算法TRAINLM'); disp('2. 贝叶斯正则化算法TRAINBR'); choice=input('请选择训练算法(1,2):');figure(gcf);if(choice==1)echo onclc% 采用L-M 优化算法TRAINLMnet.trainFcn='trainlm';pauseclc% 设置训练参数net.trainParam.epochs = 500;net.trainParam.goal = 1e-6;net=init(net);% 重新初始化pauseclcelseif(choice==2)echo onclc% 采用贝叶斯正则化算法TRAINBRnet.trainFcn='trainbr';pauseclc% 设置训练参数net.trainParam.epochs = 500;randn('seed',192736547);net = init(net);% 重新初始化pauseclcendnet.trainParam.epochs = 500; net.trainParam.goal = 1e-6; net.trainFcn='trainoss';% 调用相应算法训练BP 网络[net,tr]=train(net,P,T);pauseclc% 对BP 网络进行仿真A = sim(net,P);% 计算仿真误差E = T - A;MSE=mse(E)pauseclc。
人工神经网络是一种模仿人脑结构及其功能的信息处理系统,能提高人们对信息处理的智能化水平。
它是一门新兴的边缘和交叉学科,它在理论、模型、算法等方面比起以前有了较大的发展,但至今无根本性的突破,还有很多空白点需要努力探索和研究。
1人工神经网络研究背景神经网络的研究包括神经网络基本理论、网络学习算法、网络模型以及网络应用等方面。
其中比较热门的一个课题就是神经网络学习算法的研究。
近年来己研究出许多与神经网络模型相对应的神经网络学习算法,这些算法大致可以分为三类:有监督学习、无监督学习和增强学习。
在理论上和实际应用中都比较成熟的算法有以下三种:(1) 误差反向传播算法(Back Propagation,简称BP 算法);(2) 模拟退火算法;(3) 竞争学习算法。
目前为止,在训练多层前向神经网络的算法中,BP 算法是最有影响的算法之一。
但这种算法存在不少缺点,诸如收敛速度比较慢,或者只求得了局部极小点等等。
因此,近年来,国外许多专家对网络算法进行深入研究,提出了许多改进的方法。
主要有:(1) 增加动量法:在网络权值的调整公式中增加一动量项,该动量项对某一时刻的调整起阻尼作用。
它可以在误差曲面出现骤然起伏时,减小振荡的趋势,提高网络训练速度;(2) 自适应调节学习率:在训练中自适应地改变学习率,使其该大时增大,该小时减小。
使用动态学习率,从而加快算法的收敛速度;(3) 引入陡度因子:为了提高BP 算法的收敛速度,在权值调整进入误差曲面的平坦区时,引入陡度因子,设法压缩神经元的净输入,使权值调整脱离平坦区。
此外,很多国内的学者也做了不少有关网络算法改进方面的研究,并把改进的算法运用到实际中,取得了一定的成果:(1) 王晓敏等提出了一种基于改进的差分进化算法,利用差分进化算法的全局寻优能力,能够快速地得到BP 神经网络的权值,提高算法的速度;(2) 董国君等提出了一种基于随机退火机制的竞争层神经网络学习算法,该算法将竞争层神经网络的串行迭代模式改为随机优化模式,通过采用退火技术避免网络收敛到能量函数的局部极小点,从而得到全局最优值;(3) 赵青提出一种分层遗传算法与BP 算法相结合的前馈神经网络学习算法。
BP神经网络学习及算法1.前向传播:在BP神经网络中,前向传播用于将输入数据从输入层传递到输出层,其中包括两个主要步骤:输入层到隐藏层的传播和隐藏层到输出层的传播。
(1)输入层到隐藏层的传播:首先,输入数据通过输入层的神经元进行传递。
每个输入层神经元都与隐藏层神经元连接,并且每个连接都有一个对应的权值。
输入数据乘以对应的权值,并通过激活函数进行处理,得到隐藏层神经元的输出。
(2)隐藏层到输出层的传播:隐藏层的输出被传递到输出层的神经元。
同样,每个隐藏层神经元与输出层神经元连接,并有对应的权值。
隐藏层输出乘以对应的权值,并通过激活函数处理,得到输出层神经元的输出。
2.反向传播:在前向传播后,可以计算出网络的输出值。
接下来,需要计算输出和期望输出之间的误差,并将误差通过反向传播的方式传递回隐藏层和输入层,以更新权值。
(1)计算误差:使用误差函数(通常为均方差函数)计算网络输出与期望输出之间的误差。
误差函数的具体形式根据问题的特点而定。
(2)反向传播误差:从输出层开始,将误差通过反向传播的方式传递回隐藏层和输入层。
首先,计算输出层神经元的误差,然后将误差按照权值比例分配给连接到该神经元的隐藏层神经元,并计算隐藏层神经元的误差。
依此类推,直到计算出输入层神经元的误差。
(3)更新权值:利用误差和学习率来更新网络中的权值。
通过梯度下降法,沿着误差最速下降的方向对权值和阈值进行更新。
权值的更新公式为:Δwij = ηδjxi,其中η为学习率,δj为神经元的误差,xi为连接该神经元的输入。
以上就是BP神经网络的学习算法。
在实际应用中,还需要考虑一些其他的优化方法和技巧,比如动量法、自适应学习率和正则化等,以提高网络的性能和稳定性。
此外,BP神经网络也存在一些问题,比如容易陷入局部极小值、收敛速度慢等,这些问题需要根据实际情况进行调优和改进。
/************************************************ Back Propagation Algorithm************************************************/ #include "stdio.h"#include "stdlib.h"#include "math.h"/************************************************ The Definition of User Data************************************************/ #define MAXINPUT 1#define MAXHIDE 3#define MAXOUTPUT 1#define MAX 1#define MIN -1#define T 100#define CA 4double a=0.8;double b=0.05;double k=0;double error=0;int t=0;double sout[MAXOUTPUT];double shide[MAXHIDE];double m=2;double howchange[MAXHIDE][MAXOUTPUT];double ihwchange[MAXINPUT][MAXHIDE];double CatalogueOut[CA][MAXOUTPUT];double CatalogueIn[CA][MAXINPUT];/************************************************ The Definition of Data Structure************************************************/ struct theBP{double input[MAXINPUT];double hide[MAXHIDE];double output[MAXOUTPUT];double ihw[MAXINPUT][MAXHIDE];double how[MAXHIDE][MAXOUTPUT];};struct theBP bpa;/************************************************ Definition of Prototype************************************************/ void WeightInitial();void InitialError();void InPutCatalogue();void CalculateOut(int k);void CalculateError(int k);void ReverseHideError();void CalculateChange();void CalculateNewWeight();void Test();void TestCalculateOut();void camain();void main(){WeightInitial();// InitialError();InPutCatalogue();//doint m=0;while(1){printf("请选择要进行的操作\n");printf("0----------------学习\n");printf("1----------------测试\n");printf("2----------------退出\n");scanf("%d",&m);switch(m){case 0:camain();break;case 1:Test();break;case 2:exit(0);}//while((error)>k);;}}void camain(){for(t=0;t<T;t++){for(int k=0;k<CA;k++){CalculateOut(k);CalculateError(k);ReverseHideError();CalculateChange();CalculateNewWeight();}for(k=0;k<CA;k++){CalculateOut(k);}}}/************************************************Function:initial the weight************************************************/void WeightInitial(){//产生输入层到隐藏层的权值for(int i=0;i<MAXINPUT;i++){for(int j=0;j<MAXHIDE;j++){bpa.ihw[i][j]=0.3;//((double)rand()/(double)(RAND_MAX))*(MAX-MIN)+MIN;}}//产生从隐藏层到输出层的权值for(i=0;i<MAXHIDE;i++){for(int j=0;j<MAXOUTPUT;j++){bpa.how[i][j]=0.2;//((double)rand()/(double)(RAND_MAX))*(MAX-MIN)+MIN;}}}/************************************************Function:input the Catalogue************************************************/void InPutCatalogue(){for(int k=0;k<CA;k++){printf("请输入第%d个样本的输入值:\n",k);for(int i=0;i<MAXINPUT;i++){scanf("%lf",&bpa.input[i]);CatalogueIn[k][i]=bpa.input[i];}printf("请输入第%d个样本的输出值:\n",k);for(i=0;i<MAXOUTPUT;i++){scanf("%lf",&CatalogueOut[k][i]);}}}/************************************************Function:calculate the out************************************************/void CalculateOut(int k){//计算隐藏层的输出for(int j=0;j<MAXHIDE;j++){double sum2=0;for(int i=0;i<MAXINPUT;i++){bpa.input[i]=CatalogueIn[k][i];sum2+=bpa.ihw[i][j]*bpa.input[i];//计算输入}bpa.hide[j]=1/(1+exp(-sum2));//计算输出}//计算每输出层个单元的输入和输出for(j=0;j<MAXOUTPUT;j++){double sum3=0;for(int i=0;i<MAXHIDE;i++){sum3+=bpa.how[i][j]*bpa.hide[i];//计算输入}bpa.output[j]=m*sum3;//计算输出bpa.output[j]=1/(1+exp(-sum3))printf("第%d个样本的最后输出%lf\n",k,bpa.output[j]);}}void TestCalculateOut(){//计算隐藏层的输出for(int j=0;j<MAXHIDE;j++){double sum1=0;for(int i=0;i<MAXINPUT;i++){sum1=sum1+bpa.ihw[i][j]*bpa.input[i];//计算输入}bpa.hide[j]=1/(1+exp(-sum1));//计算输出}//计算每输出层个单元的输入和输出for(j=0;j<MAXOUTPUT;j++){double sum2=0;for(int i=0;i<MAXHIDE;i++){sum2=sum2+bpa.how[i][j]*bpa.hide[i];//计算输入}bpa.output[j]=m*sum2;//计算输出bpa.output[j]=1/(1+exp(sum2))printf("最后输出%lf\n",bpa.output[j]);}}/************************************************Function:对输出层Calculate************************************************/void CalculateError(int k){double temp=0;error=0;for(int i=0;i<MAXOUTPUT;i++){temp=(CatalogueOut[k][i]-bpa.output[i])*(CatalogueOut[k][i]-bpa.output[i]);error=(0.5)*temp+error;}for(i=0;i<MAXOUTPUT;i++){sout[i]=(CatalogueOut[k][i]-bpa.output[i])*bpa.output[i]*(1-bpa.output[i]);}}/************************************************Function: 从后向前对隐藏层************************************************/void ReverseHideError(){for(int i=0;i<MAXHIDE;i++){double sum=0;for(int j=0;j<MAXOUTPUT;j++){sum+=sout[j]*bpa.how[i][j];}shide[i]=(bpa.hide[i])*(1-bpa.hide[i])*sum;}}/************************************************Function:Calculate the 权值的变化量************************************************/void CalculateChange(){int j=0;//隐藏层到输出层for(int i=0;i<MAXHIDE;i++){for(j=0;j<MAXOUTPUT;j++){howchange[i][j]=a*(howchange[i][j])+b*(sout[i])*(bpa.hide[i]);// }}//对输入层到隐藏层for(i=0;i<MAXINPUT;i++){for(j=0;j<MAXHIDE;j++){ihwchange[i][j]=a*(ihwchange[i][j])+b*(shide[i])*(bpa.input[i]);// }}}/************************************************Function:Calculate the 新的权值************************************************/void CalculateNewWeight(){int j=0;//隐藏层到输出层for(int i=0;i<MAXHIDE;i++){for(j=0;j<MAXOUTPUT;j++){bpa.how[i][j]=bpa.how[i][j]+howchange[i][j];}}//对输入层到隐藏层for(i=0;i<MAXINPUT;i++){for(j=0;j<MAXHIDE;j++){bpa.ihw[i][j]=bpa.ihw[i][j]+ihwchange[i][j];}}}void Test(){printf("请输入测试数据的输入值:\n");for(int i=0;i<MAXINPUT;i++){scanf("%lf",&bpa.input[i]);}TestCalculateOut();}。
基于BP神经网络PID整定原理和算法步骤BP神经网络是一种常用的非线性拟合和模式识别方法,可以在一定程度上应用于PID整定中,提高调节器的自适应性。
下面将详细介绍基于BP神经网络的PID整定原理和算法步骤。
一、基本原理:BP神经网络是一种具有反馈连接的前向人工神经网络,通过训练样本的输入和输出数据,通过调整神经元之间的连接权重来模拟输入和输出之间的映射关系。
在PID整定中,可以将PID控制器的参数作为网络的输入,将控制效果指标作为网络的输出,通过训练网络来获取最优的PID参数。
二、算法步骤:1.确定训练数据集:选择一组适当的PID参数和相应的控制效果指标作为训练数据集,包括输入和输出数据。
2.构建BP神经网络模型:确定输入层、隐藏层和输出层的神经元数量,并随机初始化神经元之间的连接权重。
3.设置训练参数:设置学习速率、误差收敛条件和训练迭代次数等训练参数。
4.前向传播计算输出:将训练数据集的输入作为网络的输入,通过前向传播计算得到网络的输出。
5.反向传播更新权重:根据输出与期望输出之间的误差,利用误差反向传播算法来调整网络的连接权重,使误差逐渐减小。
6.判断是否达到收敛条件:判断网络的训练误差是否满足收敛条件,如果满足则跳转到第8步,否则继续迭代。
7.更新训练参数:根据训练误差的变化情况,动态调整学习速率等训练参数。
8.输出最优PID参数:将BP神经网络训练得到的最优权重作为PID 控制器的参数。
9.测试PID控制器:将最优PID参数应用于实际控制系统中,观察控制效果并进行评估。
10.调整PID参数:根据实际控制效果,对PID参数进行微调,以进一步优化控制性能。
三、应用注意事项:1.训练数据集的选择应尽量全面、充分,覆盖各种不同工况和负载情况。
2.隐藏层神经元数量的选择应根据实际情况进行合理调整,避免过拟合或欠拟合现象。
3.学习速率和训练迭代次数的设置应根据系统复杂度和训练误差的变化情况进行调整。
bp算法原理BP算法原理BP算法是神经网络中应用最广泛的一种学习算法,它的全称是“反向传播算法”,用于训练多层前馈神经网络。
BP算法基于误差反向传播原理,即先通过前向传播计算网络输出值,再通过反向传播来调整各个神经元的权重,使误差函数最小化。
BP算法的步骤如下:1. 初始化:随机初始化网络每个神经元的权重,包括输入层、隐藏层和输出层的神经元的权重。
2. 前向传播:将训练样本输送到输入层,通过乘积和运算得到每个隐藏层神经元的输出,再通过激活函数得到隐藏层神经元的实际输出值。
然后,将隐藏层的输出值输送到输出层,按照同样的方法计算输出层神经元的输出值。
3. 反向传播:通过误差函数计算输出层神经元的误差值,然后反向传播计算隐藏层神经元的误差值。
4. 权值调整:按照梯度下降法,计算误差对每个神经元的权重的偏导数,根据偏导数的大小来调整各个神经元的权重,使误差逐渐减小。
5. 重复步骤2~4,直到误差小到一定程度或者训练次数达到预定值。
其中,误差函数可以选择MSE(Mean Squared Error)函数,也可以选择交叉熵函数等其他函数,不同的函数对应不同的优化目标。
BP算法原理的理解需要理解以下几个方面:1. 神经元的输入和输出:神经元的输入是由上一层神经元的输出和它们之间的权重乘积的和,加上神经元的偏置值(常数)。
神经元的输出是通过激活函数把输入值转化为输出值。
2. 前向传播和反向传播:前向传播是按照输入层到输出层的顺序计算神经元的输出值。
反向传播是一种误差反向传播的过程,它把误差从输出层往回传递,计算出每个神经元的误差,然后调整各个神经元的权重来使误差逐渐减小。
3. 梯度下降法:梯度下降法是一种优化算法,根据误差函数的梯度方向来寻找误差最小的点。
BP算法就是基于梯度下降法来优化误差函数的值,使神经网络的输出结果逼近实际值。
综上所述,BP算法是一种常用的神经网络学习算法,它利用前向传播和反向传播的过程来调整神经元的权重,不断优化误差函数的值,从而使神经网络的输出结果更加准确。
完整word版,bp神经网络算法BP 神经网络算法三层BP 神经网络如图:设网络的输入模式为Tn x x x x ),...,(21=,隐含层有h 个单元,隐含层的输出为T h y y y y ),...,(21=,输出层有m 个单元,他们的输出为T m z z z z ),...,(21=,目标输出为T m t t t t ),...,,(21=设隐含层到输出层的传递函数为f ,输出层的传递函数为g于是:)()(1∑∑===-=ni i ij ni iij j x w f xw f y θ:隐含层第j 个神经元的输出;其中1,00=-=x w j θ)(0∑==hj j jk k y w g z :输出层第k 个神经元的输出此时网络输出与目标输出的误差为∑=-=m k k k z t 12)(21ε,显然,它是jk ij w w 和的函数。
下面的步骤就是想办法调整权值,使ε减小。
由高等数学的知识知道:负梯度方向是函数值减小最快的方向因此,可以设定一个步长η,每次沿负梯度方向调整η个单位,即每次权值的调整为:1x 3x 2x n x隐含层,隐含层输出向量ij w传递函数输入层,输入向量目标输出向量pqpq w w ??-=?εη,η在神经网络中称为学习速率可以证明:按这个方法调整,误差会逐渐减小。
BP 神经网络(反向传播)的调整顺序为: 1)先调整隐含层到输出层的权值设k v 为输出层第k 个神经元的输入∑== hj j jkk y wv 0j k k k jkk k k k m k k k jk m k k k jk y v g z t w v v z z z t w z t w )(')()(21)(211212--=-=?-=??∑∑==ε -------复合函数偏导公式若取x e x f x g -+==11)()(,则)1()111(11)1()('2k k v v v v k z z ee e e u g kk k k -=+-+=+=---- 于是隐含层到输出层的权值调整迭代公式为:j k k jk jk y z z t w t w )1()()1(-+=+η2)从输入层到隐含层的权值调整迭代公式为:其中j u 为隐含层第j 个神经元的输入:∑==ni iij j xw u 0注意:隐含层第j 个神经元与输出层的各个神经元都有连接,即jy ??ε涉及所有的权值ij w ,因此∑∑==--=-?=??m k jk k k k j k k k m k k k k j w u f z t y u u z z z t y 002)(')()(ε于是:因此从输入层到隐含层的权值调整迭代为公式为:i j ij ij x t w t w ηδ+=+)()1(ijj j j j m k k k ij m k k k ij w u u y y z t w z t w -=?-=??∑∑==1212)(21)(21εi j i j m k jk k k k ij mk k k ij x x u f w u f z t w z t w δε-=--=?-===∑∑)('})('){()(21012例:下表给出了某地区公路运力的历史统计数据,请建立相应的预测模型,并对给出的2010和73.3900 3.9635 0.98802011 75.5500 4.0975 1.0268function main()clc % 清屏clear all; %清除内存以便加快运算速度close all; %关闭当前所有figure图像SamNum=20; %输入样本数量为20TestSamNum=20; %测试样本数量也是20ForcastSamNum=2; %预测样本数量为2HiddenUnitNum=8; %中间层隐节点数量取8,比工具箱程序多了1个InDim=3; %网络输入维度为3OutDim=2; %网络输出维度为2%原始数据%人数(单位:万人)sqrs=[20.55 22.44 25.37 27.13 29.45 30.10 30.96 34.06 36.42 38.09 39.13 39.99 ...41.93 44.59 47.30 52.89 55.73 56.76 59.17 60.63];%机动车数(单位:万辆)sqjdcs=[0.6 0.75 0.85 0.9 1.05 1.35 1.45 1.6 1.7 1.85 2.15 2.2 2.25 2.35 2.5 2.6...2.7 2.85 2.953.1];%公路面积(单位:万平方公里)sqglmj=[0.09 0.11 0.11 0.14 0.20 0.23 0.23 0.32 0.32 0.34 0.36 0.36 0.38 0.49 ...0.56 0.59 0.59 0.67 0.69 0.79];%公路客运量(单位:万人)glkyl=[5126 6217 7730 9145 10460 11387 12353 15750 18304 19836 21024 19490 20433 ...22598 25107 33442 36836 40548 42927 43462];%公路货运量(单位:万吨)glhyl=[1237 1379 1385 1399 1663 1714 1834 4322 8132 8936 11099 11203 10524 11115 ...13320 16762 18673 20724 20803 21804];p=[sqrs;sqjdcs;sqglmj]; %输入数据矩阵t=[glkyl;glhyl]; %目标数据矩阵[SamIn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %原始样本对(输入和输出)初始化rand('state',sum(100*clock)) %依据系统时钟种子产生随机数rand是产生0到1的均匀分布,randn是产生均值为0,方差为1的正态分布rand(n)或randn(n)产生n*n阶矩阵,rand(m,n)或randn(n)产生m*n的随机数矩阵NoiseVar=0.01; %噪声强度为0.01(添加噪声的目的是为了防止网络过度拟合)Noise=NoiseVar*randn(2,SamNum); %生成噪声SamOut=tn + Noise; %将噪声添加到输出样本上TestSamIn=SamIn; %这里取输入样本与测试样本相同因为样本容量偏少TestSamOut=SamOut; %也取输出样本与测试样本相同MaxEpochs=50000; %最多训练次数为50000lr=0.035; %学习速率为0.035E0=0.65*10^(-3); %目标误差为0.65*10^(-3)W1=0.5*rand(HiddenUnitNum,InDim)-0.1; %初始化输入层与隐含层之间的权值B1=0.5*rand(HiddenUnitNum,1)-0.1; %初始化输入层与隐含层之间的阈值W2=0.5*rand(OutDim,HiddenUnitNum)-0.1; %初始化输出层与隐含层之间的权值B2=0.5*rand(OutDim,1)-0.1; %初始化输出层与隐含层之间的阈值ErrHistory=[]; %给中间变量预先占据内存for i=1:MaxEpochsHiddenOut=logsig(W1*SamIn+repmat(B1,1,SamNum)); % 隐含层网络输出NetworkOut=W2*HiddenOut+repmat(B2,1,SamNum); % 输出层网络输出Error=SamOut-NetworkOut; % 实际输出与网络输出之差SSE=sumsqr(Error) %能量函数(误差平方和)ErrHistory=[ErrHistory SSE];if SSE<="" end="" p="">% 以下六行是BP网络最核心的程序% 他们是权值(阈值)依据能量函数负梯度下降原理所作的每一步动态调整量Delta2=Error;Delta1=W2'*Delta2.*HiddenOut.*(1-HiddenOut);dW2=Delta2*HiddenOut';dB2=Delta2*ones(SamNum,1);dW1=Delta1*SamIn';dB1=Delta1*ones(SamNum,1);%对输出层与隐含层之间的权值和阈值进行修正W2=W2+lr*dW2;B2=B2+lr*dB2;%对输入层与隐含层之间的权值和阈值进行修正W1=W1+lr*dW1;B1=B1+lr*dB1;endHiddenOut=logsig(W1*SamIn+repmat(B1,1,TestSamNum)); % 隐含层输出最终结果NetworkOut=W2*HiddenOut+repmat(B2,1,TestSamNum); % 输出层输出最终结果a=postmnmx(NetworkOut,mint,maxt); % 还原网络输出层的结果x=1990:2009; % 时间轴刻度newk=a(1,:); % 网络输出客运量newh=a(2,:); % 网络输出货运量figure ;subplot(2,1,1);plot(x,newk,'r-o',x,glkyl,'b--+') %绘值公路客运量对比图;legend('网络输出客运量','实际客运量');xlabel('年份');ylabel('客运量/万人');subplot(2,1,2);plot(x,newh,'r-o',x,glhyl,'b--+') %绘制公路货运量对比图;legend('网络输出货运量','实际货运量');xlabel('年份');ylabel('货运量/万吨');% 利用训练好的网络进行预测% 当用训练好的网络对新数据pnew进行预测时,也应作相应的处理pnew=[73.39 75.553.96354.09750.9880 1.0268]; %2010年和2011年的相关数据;pnewn=tramnmx(pnew,minp,maxp); %利用原始输入数据的归一化参数对新数据进行归一化;HiddenOut=logsig(W1*pnewn+repmat(B1,1,ForcastSamNu m)); % 隐含层输出预测结果anewn=W2*HiddenOut+repmat(B2,1,ForcastSamNum); % 输出层输出预测结果%把网络预测得到的数据还原为原始的数量级;anew=postmnmx(anewn,mint,maxt)。
BP神经网络算法的C语言实现代码以下是一个BP神经网络的C语言实现代码,代码的详细说明可以帮助理解代码逻辑:```c#include <stdio.h>#include <stdlib.h>#include <math.h>#define INPUT_SIZE 2#define HIDDEN_SIZE 2#define OUTPUT_SIZE 1#define LEARNING_RATE 0.1//定义神经网络结构体typedef structdouble input[INPUT_SIZE];double hidden[HIDDEN_SIZE];double output[OUTPUT_SIZE];double weights_ih[INPUT_SIZE][HIDDEN_SIZE];double weights_ho[HIDDEN_SIZE][OUTPUT_SIZE];} NeuralNetwork;//激活函数double sigmoid(double x)return 1 / (1 + exp(-x));//创建神经网络NeuralNetwork* create_neural_networNeuralNetwork* nn =(NeuralNetwork*)malloc(sizeof(NeuralNetwork));//初始化权重for (int i = 0; i < INPUT_SIZE; i++)for (int j = 0; j < HIDDEN_SIZE; j++)nn->weights_ih[i][j] = (double)rand( / RAND_MAX * 2 - 1;}}for (int i = 0; i < HIDDEN_SIZE; i++)for (int j = 0; j < OUTPUT_SIZE; j++)nn->weights_ho[i][j] = (double)rand( / RAND_MAX * 2 - 1;}}return nn;//前向传播void forward(NeuralNetwork* nn)//计算隐藏层输出for (int i = 0; i < HIDDEN_SIZE; i++)double sum = 0;for (int j = 0; j < INPUT_SIZE; j++)sum += nn->input[j] * nn->weights_ih[j][i];}nn->hidden[i] = sigmoid(sum);}//计算输出层输出for (int i = 0; i < OUTPUT_SIZE; i++)double sum = 0;for (int j = 0; j < HIDDEN_SIZE; j++)sum += nn->hidden[j] * nn->weights_ho[j][i];}nn->output[i] = sigmoid(sum);}void backpropagation(NeuralNetwork* nn, double target)//计算输出层误差double output_error[OUTPUT_SIZE];for (int i = 0; i < OUTPUT_SIZE; i++)double delta = target - nn->output[i];output_error[i] = nn->output[i] * (1 - nn->output[i]) * delta;}//更新隐藏层到输出层权重for (int i = 0; i < HIDDEN_SIZE; i++)for (int j = 0; j < OUTPUT_SIZE; j++)nn->weights_ho[i][j] += LEARNING_RATE * nn->hidden[i] * output_error[j];}}//计算隐藏层误差double hidden_error[HIDDEN_SIZE];for (int i = 0; i < HIDDEN_SIZE; i++)double delta = 0;for (int j = 0; j < OUTPUT_SIZE; j++)delta += output_error[j] * nn->weights_ho[i][j];}hidden_error[i] = nn->hidden[i] * (1 - nn->hidden[i]) * delta;}//更新输入层到隐藏层权重for (int i = 0; i < INPUT_SIZE; i++)for (int j = 0; j < HIDDEN_SIZE; j++)nn->weights_ih[i][j] += LEARNING_RATE * nn->input[i] * hidden_error[j];}}void train(NeuralNetwork* nn, double input[][2], double target[], int num_examples)int iteration = 0;while (iteration < MAX_ITERATIONS)double error = 0;for (int i = 0; i < num_examples; i++)for (int j = 0; j < INPUT_SIZE; j++)nn->input[j] = input[i][j];}forward(nn);backpropagation(nn, target[i]);error += fabs(target[i] - nn->output[0]);}//判断误差是否已达到允许范围if (error < 0.01)break;}iteration++;}if (iteration == MAX_ITERATIONS)printf("Training failed! Error: %.8lf\n", error); }void predict(NeuralNetwork* nn, double input[]) for (int i = 0; i < INPUT_SIZE; i++)nn->input[i] = input[i];}forward(nn);printf("Prediction: %.8lf\n", nn->output[0]); int maiNeuralNetwork* nn = create_neural_network(; double input[4][2] ={0,0},{0,1},{1,0},{1,1}};double target[4] =0,1,1,};train(nn, input, target, 4);predict(nn, input[0]);predict(nn, input[1]);predict(nn, input[2]);predict(nn, input[3]);free(nn);return 0;```以上代码实现了一个简单的BP神经网络,该神经网络包含一个输入层、一个隐藏层和一个输出层。
BP神经网络算法步骤
1.初始化神经网络参数
-设置网络的输入层、隐藏层和输出层的神经元数目。
-初始化权重和偏置参数,通常使用随机小值进行初始化。
2.前向传播计算输出
-将输入样本数据传入输入层神经元。
-根据权重和偏置参数,计算隐藏层和输出层神经元的输出。
- 使用激活函数(如Sigmoid函数)将输出映射到0到1之间。
3.计算误差
4.反向传播更新权重和偏置
-根据误差函数的值,逆向计算梯度,并将梯度传播回网络中。
-使用链式法则计算隐藏层和输出层的梯度。
-根据梯度和学习率参数,更新权重和偏置值。
5.重复迭代训练
-重复执行2-4步,直到网络输出误差满足预定的停止条件。
-在每次迭代中,使用不同的训练样本对网络进行训练,以提高泛化性能。
-可以设置训练轮数和学习率等参数来控制训练过程。
6.测试和应用网络
-使用测试集或新样本对训练好的网络进行测试。
-将测试样本输入网络,获取网络的输出结果。
-根据输出结果进行分类、回归等任务,评估网络的性能。
7.对网络进行优化
-根据网络在训练和测试中的性能,调整网络的结构和参数。
-可以增加隐藏层的数目,改变激活函数,调整学习率等参数,以提高网络的性能。
以上是BP神经网络算法的基本步骤。
在实际应用中,还可以对算法进行改进和扩展,如引入正则化技术、批量更新权重等。
同时,数据的预处理和特征选择也对网络的性能有着重要的影响。
在使用BP神经网络算法时,需要根据实际问题对网络参数和训练策略进行适当调整,以获得更好的结果。
BP神经网络算法程序
一、BP神经网络算法原理
BP神经网络算法包括输入层、隐藏层和输出层三个层次。
每个层次的神经元节点与下一层次的神经元节点之间存在权重系数。
神经元节点通过输入信号经过激活函数的处理得到输出信号,并将输出信号传递给下一层次的神经元节点。
反向传播过程中,首先根据误差评估结果计算输出层的误差信号,再根据该误差信号分别计算隐藏层和输入层的误差信号。
然后根据误差信号的计算结果,逐层更新网络的权重系数。
二、BP神经网络算法步骤
1.初始化网络权重:随机初始化网络各层次之间的权重系数。
2.设置学习率和最大迭代次数。
3.迭代训练网络:重复以下步骤直到满足停止条件为止。
a)根据当前样本的输入信号,通过前向传播算法计算输出结果。
c)根据误差信号,通过反向传播算法更新网络的权重系数。
4.测试网络:使用独立的测试数据集,通过前向传播算法计算网络的输出结果,评估网络的泛化能力。
三、BP神经网络算法示例程序
下面给出一个简单的使用Python编写的BP神经网络算法示例程序。
```python
import numpy as np
class BPNeuralNetwork:
def __init__(self, input_dim, hidden_dim, output_dim): self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.output_dim = output_dim
self.W1 = np.random.randn(input_dim, hidden_dim)
self.W2 = np.random.randn(hidden_dim, output_dim)
def sigmoid(self, x):
return 1 / (1 + np.exp(-x))
def sigmoid_derivative(self, x):
return x * (1 - x)
def forward_propagation(self, X):
self.z2 = np.dot(X, self.W1)
self.a2 = self.sigmoid(self.z2)
self.z3 = np.dot(self.a2, self.W2)
self.y_hat = self.sigmoid(self.z3)
return self.y_hat
def backward_propagation(self, X, y, lr):
self.loss = y - self.y_hat
delta3 = self.loss * self.sigmoid_derivative(self.y_hat) dW2 = np.dot(self.a2.T, delta3)
delta2 = np.dot(delta3, self.W2.T) *
self.sigmoid_derivative(self.a2)
dW1 = np.dot(X.T, delta2)
self.W2 += lr * dW2
self.W1 += lr * dW1
def train(self, X, y, lr=0.1, epochs=1000):
for i in range(epochs):
y_hat = self.forward_propagation(X)
self.backward_propagation(X, y, lr)
def predict(self, X):
return np.round(self.forward_propagation(X))
#示例用法
X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
y = np.array([[0], [1], [1], [0]])
nn = BPNeuralNetwork(2, 2, 1)
print("预测结果:")
print(nn.predict(X))
```
以上是一个简单的BP神经网络算法示例程序,用于训练一个XOR逻辑门的分类模型。
程序首先定义了BPNeuralNetwork类,包括初始化网络权重、sigmoid函数、正向传播、反向传播等方法。
然后使用示例数据集对神经网络进行训练,并输出预测结果。
通过以上示例程序的学习,相信读者已经对BP神经网络算法有了初步的理解和掌握。
在实际应用中,可以根据具体的问题情况和数据集,进行网络的参数调优和训练过程的优化,进一步提高模型的性能。