数学40个考点总动员 考点01集合的概念与运算(教师版) 新课标
- 格式:doc
- 大小:872.50 KB
- 文档页数:12
集合的全部知识点总结集合是数学中的重要概念之一,广泛应用于各个领域。
在本篇文章中,将对集合的定义、运算、性质以及常见的集合类型进行总结和归纳。
一、集合的基本定义集合是由不同元素组成的整体。
通常用大写字母表示集合,用大括号{}表示,元素之间用逗号分隔。
例如,集合A可以表示为A={a, b, c}。
二、集合的运算1. 并集(Union)并集是指将两个或多个集合中的所有元素合并在一起形成的新集合。
记作A∪B,其中A和B是待操作的集合。
并集包含了A和B中的所有元素,不重复计数。
2. 交集(Intersection)交集是指两个或多个集合中共有的元素所组成的集合。
记作A∩B,其中A和B是待操作的集合。
交集只包含A和B中共有的元素,重复计数一次。
3. 差集(Difference)差集是指一个集合中除去与另一个集合共有的元素后所剩下的元素。
记作A-B,其中A和B是待操作的集合。
差集包含了属于A但不属于B的元素。
4. 补集(Complement)补集是指集合在某个全集中的补集合。
一般情况下,全集为给定环境中的所有元素。
记作A的补集为A'或A^c。
补集包含了全集中属于但不属于A的元素。
三、集合的性质1. 包含关系集合A包含集合B,当且仅当B中的每个元素都属于A。
记作A⊇B。
如果A包含B且B包含A,那么A和B是相等的集合,记作A=B。
2. 互斥关系集合A和集合B互斥,当且仅当两个集合没有共同的元素,即A∩B=∅。
3. 子集关系集合A是集合B的子集,当且仅当A中的每个元素都属于B。
记作A⊆B。
空集∅是任何集合的子集。
4. 幂集幂集是指一个集合的所有子集所组成的集合。
假设集合A={a, b},那么A的幂集为P(A)={{},{a},{b},{a,b}}。
四、常见的集合类型1. 自然数集合(N)自然数集合包含了从1开始的所有正整数。
即N={1, 2, 3, …}。
2. 整数集合(Z)整数集合包含了正整数、负整数和零。
《集合》知识点总结《集合》知识点总结一、概述集合是数学中的一个基本概念,用于表示具有共同特性或满足特定条件的元素的组合。
集合的概念广泛应用于数学、计算机科学和物理学等多个领域。
二、表示与描述1、集合的表示方法:通常使用大括号 {} 或 set() 函数来表示集合。
2、常见集合类型:空集({})、子集(A)、满足特定条件的集合(如自然数集、有理数集等)。
三、运算和操作1、交集:表示两个或多个集合的公共元素,用符号“∩”表示。
2、并集:表示两个或多个集合的所有元素,用符号“∪”表示。
3、差集:表示在某个集合中去除另一个集合的元素后得到的集合,用符号“-”表示。
4、补集:表示在某个集合的基础上添加另一个集合的元素后得到的集合,用符号“⊕”表示。
四、基本概念和理论1、集合的大小:用势(cardinality)来表示一个集合中元素的数量。
2、子集:一个集合的所有元素都是另一个集合的元素,则称该集合是另一个集合的子集。
3、包含关系:如果一个集合包含另一个集合的所有元素,则称该集合包含另一个集合。
4、空集:不包含任何元素的集合称为空集。
空集是任何集合的子集。
5、全集:在某些情况下,需要指定一个包含所有元素的集合为全集。
五、应用实例1、在数学中,集合的概念被广泛应用于排列组合、图论等领域。
例如,排列组合中的排列、组合都是基于集合的概念。
2、在计算机科学中,集合经常用于数据结构和算法设计中,如哈希表、二叉搜索树等。
3、在物理学中,集合的概念被用于描述具有共同特性的物体或现象,如力场、磁场等。
六、总结集合是数学中的一个基本概念,它用于表示具有共同特性或满足特定条件的元素的组合。
掌握集合的基本运算和操作,理解集合的基本概念和理论,对于数学、计算机科学和物理学等多个学科的学习都具有重要意义。
通过了解集合的应用实例,我们可以更好地理解这个概念的实际意义。
随着数学和相关领域的发展,集合论已经成为一个独立的分支学科,为研究无穷、极限等问题提供了基础。
数学集合的知识点总结一、集合与元素1. 集合的概念集合是指具有特定共同属性的对象的总体,这些对象可以是数字、字母、符号、图形等。
集合用大括号{}表示,其中的元素通过逗号分隔。
2. 元素的概念集合中的每一个对象称为元素,元素可以是数字、字母、符号等。
如果一个元素属于某个集合,则可以用“∈”表示。
3. 空集不包含任何元素的集合称为空集,用∅表示。
4. 全集包含一切可能的元素的集合称为全集,常用符号U表示。
二、集合的运算1. 并集设A和B是两个集合,A和B的并集是由所有属于A或属于B的元素所组成的集合,用符号“∪”表示。
2. 交集设A和B是两个集合,A和B的交集是由同时属于A和属于B的元素所组成的集合,用符号“∩”表示。
3. 补集设A是全集U的一个子集,U中所有不属于A的元素构成的集合称为A关于全集U的补集,用符号“-”或“\”表示。
4. 差集设A和B是两个集合,A和B的差集是由属于A但不属于B的元素所组成的集合,用符号“-”表示。
5. 互补设A和B是全集U的两个子集,如果A∪B=U且A∩B=∅,则称A与B互补。
三、集合的关系和运算律1. 相等关系两个集合A和B相等,当且仅当A包含B的所有元素,且B包含A的所有元素。
2. 包含关系集合A包含于集合B,当且仅当A的所有元素都是B的元素。
3. 空集的关系任何集合都包含于全集,且全集包含于任何集合,空集是任何集合的子集。
4. 并集的结合律和交集的结合律设A、B、C是集合,那么(A∪B)∪C=A∪(B∪C)和(A∩B)∩C=A∩(B∩C)。
5. 并集与交集的分配律设A、B、C是集合,那么A∪(B∩C)=(A∪B)∩(A∪C)和A∩(B∪C)=(A∩B)∪(A∩C)。
四、集合的判定1. 属于一个集合如果某个元素属于一个集合,可以用“∈”表示。
2. 不属于一个集合如果某个元素不属于一个集合,可以用“∉”表示。
3. 集合的子集集合A是集合B的子集,当且仅当A中的所有元素都是B中的元素。
集合的全部知识点总结集合是数学中一个重要的概念,具有广泛的应用和深远的影响。
它是指具有某种特定性质的元素的整体。
在本文中,我们将对集合的定义、运算、关系、性质和应用等知识点进行总结。
一、集合的定义在数学中,集合是由一些确定的、互异的对象(称为元素)所组成的。
通常用大写字母表示集合,用小写字母表示集合中的元素。
例如,集合A={1,2,3,4,5},表示A是由元素1、2、3、4、5组成的集合。
二、集合的运算1. 并集:定义:对于给定的两个集合A和B,它们的并集表示包含所有属于A或者属于B(或者同时属于A和B)元素的集合,用符号∪表示。
例如,A={1,2,3},B={3,4,5},则A∪B={1,2,3,4,5}。
2. 交集:定义:对于给定的两个集合A和B,它们的交集表示包含所有同时属于A和B的元素的集合,用符号∩表示。
例如,A={1,2,3},B={3,4,5},则A∩B={3}。
3. 差集:定义:对于给定的两个集合A和B,它们的差集表示包含属于A但不属于B的元素的集合,用符号\表示。
例如,A={1,2,3},B={3,4,5},则A\B={1,2}。
三、集合的关系1. 子集:定义:对于给定的两个集合A和B,如果A的所有元素都属于B,则称A是B的子集,用符号⊆表示。
如果A是B的子集且A与B不相等,则称A是B的真子集,用符号⊂表示。
例如,A={1,2},B={1,2,3},则A⊆B。
2. 相等:定义:对于给定的两个集合A和B,如果A是B的子集且B是A 的子集,则称A和B相等,用符号=表示。
例如,A={1,2,3},B={1,2,3},则A=B。
四、集合的性质1. 交换律:对于任意的集合A和B,有A∪B=B∪A,A∩B=B∩A。
2. 结合律:对于任意的集合A、B和C,有(A∪B)∪C=A∪(B∪C),(A∩B)∩C=A∩(B∩C)。
3. 分配律:对于任意的集合A、B和C,有A∪(B∩C)=(A∪B)∩(A∪C),A∩(B∪C)=(A∩B)∪(A∩C)。
2021年高三数学考点总动员01 集合的概念与运算文(含解析)【考点分类】热点一集合的概念1.【xx·福建卷】已知集合{a,b,c}={0,1,2},且下列三个关系:①a≠2;②b=2;③c≠0有且只有一个正确,则100a+10b+c等于________.2.【xx年普通高等学校统一考试试题大纲全国】设集合则个数为( )(A)3 (B)4 (C)5 (D)63.【xx年普通高等学校招生全国统一考试(江西卷)文科】若集合中只有一个元素,则=()A.4 B. 2 C.0 D.0或4【答案】A【解析】试题分析:2集合中只有一个元素,或又当时集合中无元素,故选=40,0 4.0.∴∆-=∴==A a a a a A A考点:集合的表示法4.【xx年普通高等学校招生全国统一考试(福建卷)文科】若集合的子集个数为()A.2B.3C.4D.165.【xx年普通高等学校统一考试江苏数学试题】集合共有个子集.【方法规律】1.解决元素与集合的关系问题,首先要正确理解集合的有关概念,元素属不属于集合,关键就看这个元素是否符合集合中代表元素的特性.2.集合元素具有三个特征:确定性、互异性、无序性;确定性用来判断符合什么条件的研究对象可组成集合;互异性是相同元素只写一次,在解决集合的关系或运算时,要注意验证互异性;无序性,即只要元素完全相同的两个集合是相等集合,与元素的顺序无关,可考虑与数列的有序性相比较.3.子集与真子集的区别与联系:集合A的真子集一定是其子集,而集合A的子集不一定是其真子集;若集合A有n个元素,则其子集个数为2n,真子集个数为2n-1.【解题技巧】1.集合的基本概念问题,主要考查集合元素的互异性与元素与集合的关系,解题的关键搞清集合元素的属性.2.对于含有字母的集合,要注意对字母的求值进行讨论,以便检验集合是否满足互异性.【易错点睛】1.要注意空集的特殊性,空集不含任何元素,空集是任何集合的子集,是任何非空集合的真子集.例.若集合,,且,求实数m的值。
第1讲集合的概念和运算必记考点1.集合的基本概念(1)集合元素的三个特征:、、.(2)元素与集合的关系是属于或不属于关系,用符号或表示.(3)集合的表示法:列举法、描述法、图示法、区间法.(4)常用数集:N;N*(或N+);Z;Q;R.(5)集合的分类:按集合中元素个数划分,集合可以分为有限集、无限集、。
2.集合间的基本关系(1)子集:,则A ⊆B(或B⊇A).(2)真子集:则AB(或BA).若集合A中含有n个元素,则A的子集有2n个,A的真子集有2n-1个.(3)空集:空集是的子集,是的真子集.即∅⊆A,∅B(B≠∅).(4)集合相等:若,则A=B。
3.集合的基本运算及其性质(1)并集:A∪B=.(2)交集:A∩B=.(3)补集:∁U A=,U为全集,∁U A表示A相对于全集U的补集.(4)集合的运算性质①A∪B=A⇔B⊆A,A∩B=A⇔A⊆B;②A∩A=A,A∩∅=∅;③A∪A=A,A∪∅=A;④A∩∁U A=∅,A∪∁U A=U,∁U(∁U A)=A.考向一集合的基本概念【例1】►已知a∈R,b∈R,若={a2,a+b,0},则a2014+b2014=________.【训练1】集合中含有的元素个数为().考向二集合间的基本关系【例2】已知集合A={x|0<x≤4},B=(-∞,a),若A⊆B,则实数a的取值范围是________。
【训练2】已知集合A={x|-2≤x≤7},B={x|m+1〈x<2m-1},若B⊆A,求实数m的取值范围.考向三集合的基本运算【例3】►(1)(2012·安徽)设集合A={x|-3≤2x-1≤3},集合B为函数y=lg(x-1)的定义域,则A∩B=().A.(1,2) B.[1,2]C.[1,2)D.(1,2](2)(2012·山东)已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁U A)∪B为().A.{1,2,4} B.{2,3,4}C.{0,2,4} D.{0,2,3,4}(3)设全集U={1,2,3,4,5,6},集合A={1,2,4},B={3,4,5},则图中的阴影部分表示的集合为().A.{5}B.{4}C.{1,2}D.{3,5} 基础演练1.已知集合A={x|x2-x-2<0},B={x|-1<x<1},则().A.A B B.B AC.A=B D.A∩B=∅2.设全集U={1,2,3,4,5,6},集合P={1,2,3,4},Q={3,4,5},则P∩(∁U Q)=().A.{1,2,3,4,6}B.{1,2,3,4,5}C.{1,2,5}D.{1,2}3.设集合U={x|x〈5,x∈N*},M={x|x2-5x+6=0},则∁U M=().A.{1,4} B.{1,5}C.{2,3} D.{3,4}4。
新高考数学复习考点知识与题型专题讲解1 集合的概念考点知识讲解1 元素与集合1.元素与集合的概念(1)元素:一般地,把统称为元素.元素常用小写的拉丁字母a,b,c,…表示.(2)集合:把一些元素组成的叫做集合(简称为__).集合通常用大写的拉丁字母A,B,C,…表示.(3)集合相等:只要构成两个集合的是一样的,就称这两个集合是相等的.(4)元素的特性:、、.答案:(1)研究对象(2)总体集(3)元素(4)确定性无序性互异性2.元素与集合的关系答案:∈∈NN*或N+ZQR考点知识讲解2 集合的表示方法1.列举法把集合的元素出来,并用花括号“{}”括起来表示集合的方法叫做列举法.温馨提示:运用列举法表示集合,应注意:(1)元素间用“,”分隔,不能用其它符号代替;(2)元素不重复;(3)元素间无顺序;(4)“{}”表示“所有”、“整体”的含义,不能省略2.描述法(1)定义:用集合所含元素的表示集合的方法称为描述法.(2)书写形式:,其中x代表集合中的元素,p(x)为集合中元素所具备的共同特征.要注意竖线不能省略,同时表达要力求简练、明确.答案:一一列举共同特征{x|p(x)}题型一对集合含义的理解1.考察下列每组对象,能构成集合的是()①中国各地最美的乡村;②直角坐标系中横、纵坐标相等的点;③不小于3的自然数;④2018年第23届冬季奥运会金牌获得者.A.③④B.②③④C.②③D.②④【答案】B【解析】①中“最美”标准不明确,不符合确定性,②③④中的元素标准明确,均可构成集合.故选:B.2.下列每组对象能构成一个集合是________(填序号).(1)某校2019年在校的所有高个子同学;(2)不超过20的非负数;(3)帅哥;(4)平面直角坐标系内第一象限的一些点;(5.【答案】(2)【解析】(1)“高个子”没有明确的标准,因此(1)不能构成集合. (2)任给一个实数x,可以明确地判断是不是“不超过20的非负数”,故“不超过20的非负数”能构成集合;(3)“帅哥”没有一个明确的标准,因此不能构成集合;(4)“一些点”无明确的标准,因此不能构成集合;(5)”不明确精确到什么程度,所以不能构成集合.故答案为:(2)题型二元素与集合的关系3.下面有四个语句:①集合N*中最小的数是0;②-a∉N,则a∈N;③a∈N,b∈N,则a+b的最小值是2;④x2+1=2x的解集中含有两个元素.其中说法正确的个数是()A.0B.1C.2D.3【答案】A【解析】因为N*是不含0的自然数,所以①错误;取a∉N,∉N,所以②错误;对于③,当a =b =0时,a +b 取得最小值是0,而不是2,所以③错误; 对于④,解集中只含有元素1,故④错误. 故选:A4.下列各组中集合P 与Q ,表示同一个集合的是( )A .P 是由元素1π构成的集合,Q 是由元素π,1,|构成的集合B .P 是由π构成的集合,Q 是由3.141 59构成的集合C .P 是由2,3构成的集合,Q 是由有序数对(2,3)构成的集合D .P 是由满足不等式-1≤x ≤1的整数构成的集合,Q 是由方程x ()()1-1x x +=0的解构成的集合 【答案】AD【解析】由于A ,D 中P ,Q 的元素完全相同,所以P 与Q 表示同一个集合,而B ,C 中P ,Q 的元素不相同,所以P 与Q 不能表示同一个集合.故选:AD. 题型三 元素的特性的应用5.已知集合A ={x ∈Z|2x -4x -5<0},B ={x|4x >2m },若A∩B 有三个元素,则实数m 的取值范围是( )A .[3,6)B .[1,2)C .[2,4)D .(2,4] 【答案】C【解析】∵A ={x ∈Z|-1<x<5}={0,1,2,3,4},B ={x|x>},A∩B 有三个元素,∴1≤<2,即2≤m<4. 故答案为C6.设a ,b ∈R ,集合A 中含有0,b ,ba三个元素,集合B 中含有1,a ,a +b 三个元素,且集合A 与集合B 相等,则a +2b =( )A .1B .0C .﹣1D .不确定 【答案】A【解析】由题意可知a ≠0,则只能a +b =0,则有以下对应关系:01a b b a a b +=⎧⎪⎪=⎨⎪=⎪⎩①或01a b b a b a⎧⎪+=⎪=⎨⎪⎪=⎩②; 由①得a =﹣1,b =1,符合题意; ②无解;则a +2b =﹣1+2=1. 故选:A题型四 用列举法表示集合 7.集合M ={61aN a ∈+,且a Z ∈},用列举法表示集合M =______________ 【答案】{}0,1,2,5 【解析】61N a ∈+016a ∴<+≤,即15a -<≤ 又a Z ∈0a ∴=时,661N a =∈+;1a =时,631N a =∈+;2a =时,621N a =∈+; 3a =时,6312N a =∉+;4a =时,6615N a =∉+;5a =时,611N a =∈+ {}0,1,2,5M ∴=本题正确结果:{}0,1,2,5 8.根据要求写出下列集合.(1)已知{}25|50x x ax -∈--=,用列举法表示集合{}2|40x x x a --=. (2)已知集合16|8A N x N x ⎧⎫=∈∈⎨⎬-⎩⎭,用列举法表示集合A .(3)已知方程组10240x y x y -+=⎧⎨+-=⎩,分别用描述法、列举法表示该集合.(4)已知集合B ={(x ,y )|2x +y -5=0,x ∈N ,y ∈N },用列举法表示该集合. (5)用适当的方法表示坐标平面内坐标轴上的点集.【答案】(1){2};(2){2,4,8,16};(3){(x ,y )|x =1,y =2},{(1,2)};(4){(0,5),(1,3),(2,1)};(5){(x ,y )|xy =0}. 【解析】(1){}25|50x x ax -∈--=,()()25550a ∴--⨯--=,解得4a =-,2440x x -+=的解为2x =,∴用列举法表示集合{}2|40x x x a --=为{}2;(2)168N x∈-,则8x -可取的值有1,2,4,8,16,x 的可能值有7,6,4,0,8-, x N ∈,7,6,4,0x ∴=,162,4,8,168x∴=-, {}2,4,8,16A ∴=;(3)方程组10240x y x y -+=⎧⎨+-=⎩的解为12x y =⎧⎨=⎩,∴用描述法表示该集合为(){},1,2x y x y ==,列举法表示该集合为(){}1,2;(4)当0x =时,5y =;当1x =时,3y =;当2x =时,1y =,∴用列举法表示该集合为()()(){}0,5,1,3,2,1;(5)坐标轴上的点满足0x =或0y =,即0xy =, 则该集合可表示为(){},0x y xy =.题型五 用描述法表示集合9.用列举法表示集合**{(,)|5,,}A x y x y x y =+=∈∈N N 是_____________________;用描述法表示“所有被4除余1的整数组成的集合”是_____________________. 【答案】()()()(){}1,42,33,24,1,,,{}41z x z x k k ∈=+∈,【解析】由题意{(1,4),(2,3),(3,2),(4,1)}A =,所有被4除余1的整数组成的集合为{|41,}x Z x k k Z ∈=+∈.故答案为:{(1,4),(2,3),(3,2),(4,1)};{|41,}x Z x k k Z ∈=+∈ 题型六 集合表示方法的综合应用10. (1)用列举法表示集合A =⎩⎨⎧⎭⎬⎫x|x ∈Z ,且86-x ∈N =________.(2)集合A ={x ∈R |kx 2-8x +16=0},若集合A 中只有一个元素,试求实数k 的值,并用列举法表示集合A .(1)解析 ∵x ∈Z 且86-x ∈N ,∴1≤6-x ≤8,-2≤x ≤5.当x =-2时,1∈N ;当x =-1时,87∉N ;当x=0时,43∉N ;当x =1时,85∉N ;当x =2时,2∈N ;当x =3时,83∉N ;当x =4时,4∈N ;当x =5时,8∈N .综上可知A ={-2,2,4,5}. 答案 {-2,2,4,5} 1.下列集合中,结果是空集的是( ) A .{x ∈R |x 2-1=0}B .{x |x >6或x <1} C .{(x ,y )|x 2+y 2=0}D .{x |x >6且x <1} 【答案】D【解析】A 选项:21{|10}x R x ±∈∈-=,不是空集;B 选项:7∃∈{x |x >6或x <1},不是空集;C 选项:(0,0)∈{(x ,y )|x 2+y 2=0},不是空集;D 选项:不存在既大于6又小于1的数, 即:{x |x >6且x <1}=∅. 故选:D2.下面有四个语句:①集合N*中最小的数是0;②-a∉N,则a∈N;③a∈N,b∈N,则a+b的最小值是2;④x2+1=2x的解集中含有两个元素.其中说法正确的个数是()A.0B.1C.2D.3【答案】A【解析】因为N*是不含0的自然数,所以①错误;取a∉N,∉N,所以②错误;对于③,当a=b=0时,a+b取得最小值是0,而不是2,所以③错误;对于④,解集中只含有元素1,故④错误.故选:A3.下列各组对象:①接近于0的数的全体;②比较小的正整数全体;③平面上到点O的距离等于1的点的全体;④正三角形的全体;.其中能构成集合的组数有()A.2组B.3组C.4组D.5组【答案】A【解析】①“接近于0的数的全体”的对象不确定,不能构成集合;②“比较小的正整数全体”的对象不确定,不能构成集合;③“平面上到点O的距离等于1的点的全体”的对象是确定的,能构成集合;④“正三角形的全体”的对象是确定的,能构成集合;⑤的近似值的全体的对象”不确定,不能构成集合;故③④正确.故选:A.4.下列各组中集合P 与Q ,表示同一个集合的是( )A .P 是由元素1π构成的集合,Q 是由元素π,1,|构成的集合B .P 是由π构成的集合,Q 是由3.141 59构成的集合C .P 是由2,3构成的集合,Q 是由有序数对(2,3)构成的集合D .P 是由满足不等式-1≤x ≤1的整数构成的集合,Q 是由方程x ()()1-1x x +=0的解构成的集合 【答案】AD【解析】由于A ,D 中P ,Q 的元素完全相同,所以P 与Q 表示同一个集合,而B ,C 中P ,Q 的元素不相同,所以P 与Q 不能表示同一个集合.故选:AD. 5.下列各组中的M ,P 表示同一集合的是( ) A .M ={3,-1},P ={(3,-1)} B .M ={(3,1)},P ={(1,3)} C .M ={y |y =x -1},P ={t |t =x -1}D .集合M ={m |m +1≥5},P ={y |y =x 2+2x +5,x ∈R } 【答案】CD【解析】在A 中,M ={3,-1}是数集,P ={(3,-1)}是点集,二者不是同一集合,故错误;在B 中,M ={(3,1)},P ={(1,3)}表示的不是同一个点的集合,二者不是同一集合,故错误;在C 中,M ={y |y =x -1}={y |y ≥-1},P ={t |t =x -1}={t |t ≥-1},二者表示同一集合,故正确;在D 中,M ={m |m ≥4,m ∈R },即M 中元素为大于或等于4的所有实数,P ={y |y =(x +1)2+4},y =(x +1)2+4≥4,所以P 中元素也为大于或等于4的所有实数,故M ,P 表示同一集合,故正确. 故选:CD 6.定义集合运算(){}|,,AB z z xy x y x A y B ==+∈∈,集合{}{}0,1,2,3A B ==,则集合A B 所有元素之和为________【答案】18【解析】当0,2,0==∴=x y z 当1,2,6==∴=x y z 当0,3,0==∴=x y z 当1,3,12==∴=x y z 和为0+6+12=18 故答案为:187.下列命题正确的个数__ (1)很小的实数可以构成集合;(2)集合{y |y =x 2﹣1}与集合{(x ,y )|y =x 2﹣1}是同一个集合; (3)1,361,,||,0.5242-,这些数组成的集合有5个元素; (4)集合{(x ,y )|xy ≤0,x ,y ∈R }是指第二和第四象限内的点集. 【答案】0【解析】解:对于(1)很小的实数不满足集合中元素的确定性,所以(1)不正确.对于(2)集合{y |y =x 2﹣1}表示的是函数y =x 2﹣1的值域,而集合{(x ,y )|y =x 2﹣1}表示的是y =x 2﹣1图象上的点,故(2)不正确;对于(3):因为3624=,10.52-=,不满足集合中的元素是互异的,故(3)不正确; 对于(4)集合{(x ,y )|xy ≤0,x ,y ∈R }是指第二和第四象限内的点集及两个坐标轴上的点,故(4)不正确, 故答案为:0.8.设A 是由一些实数构成的集合,若a ∈A ,则11a - ∈A ,且1∉A , (1)若3∈A ,求A .(2)证明:若a ∈A ,则11A a -∈. 【答案】(1)123,,23A ⎧⎫=-⎨⎬⎩⎭;(2)证明见解析. 【解析】(1)因为3∈A , 所以11132A =-∈-, 所以12131()2A =∈--, 所以13213A =∈-, 所以123,,23A ⎧⎫=-⎨⎬⎩⎭. (2)因为a ∈A , 所以11A a∈-, 所以1111111a A a a a -==-∈---. 9.已知集合{}2320,,A x ax x x R a R =-+=∈∈.(1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值,并求集合A ;(3)若A 中至多有一个元素,求a 的取值范围 【答案】(1)9,8⎛⎫+∞ ⎪⎝⎭;(2)当0a =时,23A ⎧⎫=⎨⎬⎩⎭;当98a =时,43A ⎧⎫=⎨⎬⎩⎭;(3){}90,8⎡⎫⋃+∞⎪⎢⎣⎭. 【解析】(1)若A 是空集,则方程ax 2﹣3x +2=0无解此时0,a ≠∆=9-8a <0即a 98> 所以a 的取值范围为9,8⎛⎫+∞ ⎪⎝⎭(2)若A 中只有一个元素则方程ax 2﹣3x +2=0有且只有一个实根当a =0时方程为一元一次方程,满足条件当a ≠0,此时∆=9﹣8a =0,解得:a 98=∴a =0或a 98= 当0a =时,23A ⎧⎫=⎨⎬⎩⎭;当98a =时,43A ⎧⎫=⎨⎬⎩⎭(3)若A 中至多只有一个元素,则A 为空集,或有且只有一个元素 由(1),(2)得满足条件的a 的取值范围是{}90,8⎡⎫⋃+∞⎪⎢⎣⎭.。
集合必背知识点总结一、集合的基本概念集合是指具有某种特定性质的对象的总体,这些对象叫做集合的元素。
在数学中,我们常用大写字母表示集合,用{}表示集合,例如A={a,b,c,d,e}表示由元素a,b,c,d,e组成的集合。
集合中不同元素的个数称为该集合的基数(或基数)。
二、集合的运算1. 并集设A和B是两个集合,所有属于集合A或属于集合B的元素所组成的集合叫做集合A和B的并集,记作A∪B。
表示如下:A∪B={x|x∈A或者x∈B}并集的性质:交换律:A∪B=B∪A结合律:A∪(B∪C)=(A∪B)∪C分配律:A∪(B∩C)=(A∪B)∩(A∪C)2. 交集设A和B是两个集合,所有既属于集合A又属于集合B的元素所组成的集合叫做集合A 和B的交集,记作A∩B。
表示如下:A∩B={x|x∈A并且x∈B}交集的性质:交换律:A∩B=B∩A结合律:A∩(B∩C)=(A∩B)∩C分配律:A∩(B∪C)=(A∩B)∪(A∩C)3. 补集设U是一个集合,A是U的一个子集,所有属于U而不属于A的元素组成的集合叫做集合A对于集合U的补集,记作A' 或者Ac4. 差集设A和B是两个集合,所有属于A而不属于B的元素所组成的集合叫做集合A和B的差集,记作A-B。
表示如下:A-B={x|x∈A并且x∉B}三、集合的表示方法1. 列举法直接将集合中的元素一一列举出来,用大括号括起来,中间用逗号隔开。
例如:A={1,2,3,4,5}2. 描述法把确定集合中元素的某种性质加以说明,用x∈U,x满足某种性质P来描述集合,大括号中的元素x都具有性质P。
例如:B={x|x是偶数,x∈Z}四、集合的基本定理1. 并集与交集之间的关系设A,B是集合,那么有如下的基本定理:A∪B = A∪(A∩B)A∩B = A∩(A∪B)2. 对于任意集合A,B和C有如下关系:交换律:A∪B = B∪A,A∩B = B∩A结合律:A∪(B∪C) = (A∪B)∪C,A∩(B∩C) = (A∩B)∩C分配律:A∪(B∩C) = (A∪B)∩(A∪C),A∩(B∪C) = (A∩B)∪(A∩C)五、集合的应用集合常用于解决排列组合、概率统计等问题,在实际生活中也有广泛的应用。
数学集合的必备知识点一、集合的概念。
1. 定义。
- 集合是把一些确定的、不同的对象汇集在一起组成的一个整体。
这些对象称为集合的元素。
例如,一个班级里的所有学生可以组成一个集合,每个学生就是这个集合的元素。
- 通常用大写字母如A、B、C等来表示集合,用小写字母如a、b、c等来表示集合中的元素。
2. 元素与集合的关系。
- 属于(∈):如果a是集合A的元素,就说a∈ A。
例如,若A = {1,2,3},那么1∈ A。
- 不属于(∉):如果a不是集合A的元素,就说a∉ A。
对于集合A={xx是正整数},0∉ A。
3. 集合中元素的特性。
- 确定性:集合中的元素必须是确定的,不能模棱两可。
例如,“身材较高的人”不能构成一个集合,因为“身材较高”没有明确的标准;而“身高超过180cm的人”可以构成一个集合。
- 互异性:集合中的元素是互不相同的。
例如,集合A = {1,2,2,3}不符合集合元素的互异性,应写成A={1,2,3}。
- 无序性:集合中的元素没有顺序之分。
例如,{1,2,3}和{3,1,2}是同一个集合。
二、集合的表示方法。
1. 列举法。
- 把集合中的元素一一列举出来,写在大括号内。
例如,A={1,2,3},B = {a,b,c}。
- 对于有限集,当元素个数较少时,列举法比较方便。
对于一些有规律的无限集,也可以用列举法表示一部分元素,然后用省略号表示其余元素。
例如,自然数集N={0,1,2,3,·s}。
2. 描述法。
- 用集合所含元素的共同特征来表示集合。
一般形式为{xp(x)},其中x表示集合中的元素,p(x)是描述这些元素特征的条件。
例如,A={xx是大于2小于10的整数},B={xx = 2n,n∈ Z}(表示所有偶数组成的集合)。
三、集合的分类。
1. 有限集。
- 含有有限个元素的集合。
例如,A={1,2,3}是有限集,它有3个元素。
2. 无限集。
- 含有无限个元素的集合。
如自然数集N、实数集R都是无限集。
集合(知识点)1、集合的概念(1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,都可以称作对象.(2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合.(3)元素:集合中每个对象叫做这个集合的元素.集合通常用大写的拉丁字母表示,如A、B、C、……元素通常用小写的拉丁字母表示,如a、b、c、……2、元素与集合的关系(1)属于:如果a是集合A的元素,就说a属于A,记作a∈Aa(2)不属于:如果a不是集合A的元素,就说a不属于A,记作A要注意“∈”的方向,不能把a∈A颠倒过来写.3、集合中元素的特性(1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了.(2)互异性:集合中的元素一定是不同的.(3)无序性:集合中的元素没有固定的顺序.4、集合分类根据集合所含元素个属不同,可把集合分为如下几类:(1)把不含任何元素的集合叫做空集Ф(2)含有有限个元素的集合叫做有限集(3)含有无穷个元素的集合叫做无限集注:应区分Φ,}{Φ,}0{,0等符号的含义 5、常用数集(1)非负整数集(自然数集):全体非负整数的集合.记作N (2)正整数集:非负整数集内排除0的集.记作N *或N + (3)整数集:全体整数的集合.记作Z (4)有理数集:全体有理数的集合.记作Q (5)实数集:全体实数的集合.记作R 注:(1)自然数集包括数0.(2)非负整数集内排除0的集.记作N *或N +,Q 、Z 、R 等其它数集内排除0的集,也这样表示,例如,整数集内排除0的集,表示成Z *6.集合的表示方法1、列举法:把集合中的元素一一列举出来,写在大括号内表示集合的方法. 例如,24所有正约数构成的集合可以表示为{1,2,3,4,6,8,12,24} 注:(1)大括号不能缺失.(2)有些集合种元素个数较多,元素又呈现出一定的规律,在不至于发生误解的情况下,亦可如下表示:从1到100的所有整数组成的集合:{1,2,3, (100)自然数集N :{1,2,3,4,…,n ,…}(3)区分a 与{a }:{a }表示一个集合,该集合只有一个元素.a 表示这个集合的一个元素. (4)用列举法表示集合时不必考虑元素的前后次序.相同的元素不能出现两次.2、特征性质描述法: 在集合I 中,属于集合A 的任意元素x 都具有性质p(x),而不属于集合A 的元素都不具有性质p(x),则性质p(x)叫做集合A 的一个特征性质,于是集合A 可以表示如下:{x ∈I | p (x ) }例如,不等式232>-x x 的解集可以表示为:}23|{2>-∈x x R x 或}23|{2>-x x x ,所有直角三角形的集合可以表示为:}|{是直角三角形x x注:(1)在不致混淆的情况下,也可以写成:{直角三角形};{大于104的实数} (2)注意区别:实数集,{实数集}.二、集合间的基本关系1.“包含”关系—子集注意:B A ⊆有两种可能(1)A 是B 的一部分,;(2)A 与B 是同一集合。
2013年数学40个考点总动员 考点01 集合的概念与运算(教师版)新课标【高考再现】热点一 集合的概念1 .(2012年高考(新课标))已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈, 则B 中所含元素的个数为( ) A .3 B .6C .8D .103.(2012年高考(广东))设集合{}1,2,3,4,5,6U =,{}1,2,4M =,则U C M =( )A .UB .{}1,3,5C .{}3,5,6D .{}2,4,6热点二 集合间的关系和运算4.(2012年高考(陕西))集合{|lg 0}M x x =>,2{|4}N x x =≤,则MN =( )A .(1,2)B .[1,2)C .(1,2]D .[1,2]【答案】C【解析】{|lg 0}{|1}M x x x x =>=>,{|22}N x x =-≤≤,{12}M N x x =<≤,故选C.5.(2012年高考(山东))已知全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则U C A B ()为( )A .{}1,2,4B .{}2,3,4C .{}0,2,4D .{}0,2,3,4【答案】C【解析】因}4,0{=A C U ,所以}42,0{,)(=B A C U ,选C.6 .(2012年高考(辽宁))已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集 合B={2,4,5,6,8},则)()(B C A C U U 为 ( ) A .{5,8}B .{7,9}C .{0,1,3}D .{2,4,6}热点三 与集合为背景探求参数取值7.(2012年高考(大纲))已知集合{{},1,,A B m A B A ==⋃=,则m = ( )A .0B .0或3C .1D .1或38.(2012年高考(天津理))已知集合={||+2|<3}A x R x ∈,集合={|()(2)<0}B x R x m x ∈--,且=(1,)AB n -,则=m _____,=n _______.【答案】1-,1【解析】∵={||+2|<3}A x R x ∈={||5<<1}x x -,又∵=(1,)AB n -,画数轴可知=1m -,=1n .9.(2012年高考(上海春))已知集合[1,2,},{2,5}.A k B ==若{1,2,3,5},A B =则k =______.【考点剖析】 一.明确要求1.了解集合的含义、元素与集合的“属于”关系.2.能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.3.理解集合之间包含与相等的含义,能识别给定集合的子集.4.在具体情境中,了解全集与空集的含义.5.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.6.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.7.能使用韦恩(Venn )图表达集合的关系及运算. 二.命题方向三.规律总结 1.一个性质要注意应用A ⊆B 、A ∩B =A 、A ∪B =B 、∁U A ⊇∁U B 、A ∩(∁U B )=∅这五个关系式的等价性. 2.两种方法韦恩图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法要特别注意端点是实心还是空心. 3.三个防范(1)空集在解题时有特殊地位,它是任何集合的子集,是任何非空集合的真子集,时刻关注对空集的讨论,防止漏解.(2)认清集合元素的属性(是点集、数集或其他情形).(3)在解决含参数的集合问题时,要检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致结论错误.【基础练习】1.(教材习题改编)设全集U ={1,2,3,4,5},集合M ={1,4},N ={1,3,5},则N ∩(∁U M )= ( )A .{1,3}B .{1,5}C .{3,5}D .{4,5} 【答案】C【解析】先求出M 的补集∁U M ={2,3,5},N ={1,3,5},则N ∩(∁U M )={1,3,5}∩{2,3,5}={3,5}.2. (教材习题改编)设集合A ={x |2≤x <4},B ={x |3x -7≥8-2x },则A ∪B 等于( ). A .{x |3≤x <4}B .{x |x ≥3}C .{x |x >2}D .{x |x ≥2}4. (人教A 版教材习题改编)已知集合A ={1,3,m },B ={3,4},A ∪B ={1,2,3,4},则m =________. 【答案】2【解析】A ∪B ={1,3,m }∪{3,4}={1,2,3,4},∴2∈{1,3,m },∴m =2.【名校模拟】一.扎实基础1.(湖北省黄冈中学2012届高三五月模拟考试理)设集合}1,0,1{-=M ,},{2a a N =则使M ∩N =N 成立的a 的值是A .1B .0C .-1D .1或-1答案:C 解析:由MN N =,根据集合元素的互异性,则1a =-,故选C 。
2.(2011—2012学年度北京第二学期高三综合练习(二)文)若集合{}0A x x =≥,且A B B =,则集合B 可能是( )A .{}1,2B .{}1x x ≤ C .{}1,0,1- D .R 【答案】A【解析】∵AB B =∴B A ⊆ 故选A3.(北京市朝阳区2012届高三年级第二次综合练习文科)设集合{0,1234,5}{12}U A ==,,,,,,{}2540B x x x =∈-+<Z ,则()U AB =ðA .{0,1,2,3}B .{5}C .{124},,D .{0,4,5}5.(2012东城区普通高中示范校高三综合练习(二)理)设全集2,{|30},{|1}U A x x x B x x ==-->=<-R ,则图中阴影部分表示的集合为 ( ) A.}0|{>x x B.}13|{-<<-x xC.}03|{<<-x x .D.}1|{-<x x 【答案】B【解析】集合(3,0)A =-,所求的即AB ,所以结果为(3,1)--。
6.(东城区普通高中示范校高三综合练习(二))已知集合A ={}2,xx x ≤∈R ,B ={}240,x x x x ->∈Z ,则A B 等于A .(1,2)B .[1,2]C .(1,2]D .{1,2}【答案】D【解析】{}[2,2],1,2,3A B =-=,故{}1,2AB =7.(湖北省八校2012届高三第一次联考理)设{|20},{|},{|},()U U x N x A x N x B x N x C A B =∈≤=∈=∈是偶数是质数则=( )A .∅B .{1}C .{1,9,15}D .{3,5,7,11,13,17,19}8.(江西省2012届十所重点中学第二次联考文)若集合{}2,M y y x x Z==∈,3109x N x R x ⎧-⎫=∈≤⎨⎬-⎩⎭,则MN 的子集的个数是 ( )A.3B.4C.7D.810.(2012年长春市高中毕业班第二次调研测试文)已知全集{}1,2,3,4U =,集合{}1,2A =,{}2,3B =,则()U A B =ð( )A.{1}B.{2,3}C.{1,2,4}D.{2,3,4}12. (2012河南豫东豫北十所名校毕业班阶段性测试(三)文)已知集合,则等于 (A) (B)(C) (D)【答案】B【解析】 由122x >得1x >-,因此{}13MN x x =-<<,选 B.13.(河南省郑州市2012届高三第二次质量预测)已知全集,集合,则A. {1,2}B. {5}C. {1,2,3}D. {3,4,6}15.(湖北钟祥一中2012高三五月适应性考试理) 集合M={|x 函数y=221xx -+有意义},N={x ||x+1|>2}则M NA 、(—1,3).B 、(1,2)C 、(—1,2)D 、R答案:B解析:由题意得,不等式22012x x x +->⇒-<<,即{|12}M x x =-<<, 又1213x x x +>⇒><-或,即{|13}N x x x =><-或,则{|12}M N x x =<<,故选B 。
16(浙江省杭州学军中学2012届高三第二次月考理)已知集合M = {|ln(1)}x y x =-,集合{}R x e y y N x ∈==,| (e 为自然对数的底数),则N M =( ) A .}1|{<x xB .}1|{>x xC .}10|{<<x xD .∅17.(北京市朝阳区2012届高三年级第二次综合练习)已知全集R U =,集合{}21x A x =>,{}2340B x x x =-->,则U A B ð=( )A .{}04x x ≤< B .{}04x x <≤C .{}10x x -≤≤D .{}14x x -≤≤【答案】B【解析】{|0}A x x =>,{|41}B x x x =><-或∴{|14}U C B x x =-≤≤∴{|04}U AC B x x =<≤,故选B18.(北京市西城区2012届高三下学期二模试卷理)已知集合2{|log 1}A x x =<,{|0B x x c =<<,其中0}c >.若A B B =,则c 的取值范围是( )(A )(0,1](B )[1,)+∞(C )(0,2](D )[2,)+∞ 【答案】D【解析】2{|log 1}{|02},A x x x x =<=<<,,AB B A B =∴⊆∴ 2.c ≥19.(海南省洋浦中学2012届高三第一次月考数学理)已知集合{}2,R A x x x =≤∈,{}4,Z B x =≤∈,则A B =( )A .()0,2B .[]0,2C .{}0,2D .{}0,1,220..(2012年大连沈阳联合考试第二次模拟试题理)已知集合{}2320A x x x =-+=,{}log 42x B x ==,则A B =( )A .{}2,1,2-B .{}1,2C .{}2,2-D .{}221.(2012年石家庄市高中毕业班教学质量检测(二) 理)已知全集U N =,集合P ={1,2,3,4,5},Q ={1,2,3,6,8},则U (C Q)P=A .{1,2,3}B .{4,5}C .{6,8}D .{1,2,3,4,5}22.(湖北省八校2012届高三第一次联考文)已知i 为虚数单位,若{|(),},{|cos ,},n M x x i n Z N x x k k R M N π==-∈==∈⋂=则( )A .[-1,1]B .{-1,0,1}C .{-1,1}D .{1}答案:C解析:由题意得,{1,1,,},{1,1}M i i N =--=-,所以{}1,1M N ⋂=-,故选C 。