振动与波动第3讲——机械波的一般概念 波动的描述 平面简谐波的表达式
- 格式:ppt
- 大小:560.00 KB
- 文档页数:25
振动方程和波动方程在物理学中,振动和波动是两个非常重要的概念。
振动是指物体在某个中心位置附近来回运动的现象,而波动则是一种能量传播的方式,它可以是机械波,也可以是电磁波。
振动方程和波动方程则是描述振动和波动现象的数学模型。
振动方程是描述振动现象的数学方程。
它通常采用简谐振动的形式来描述,即物体在平衡位置附近以固定频率和振幅进行振动。
简谐振动的振动方程可以表示为:x = A * sin(ωt + φ)其中,x是物体的位移,A是振幅,ω是角频率,t是时间,φ是相位常数。
这个方程描述了物体在时间t上的位移x。
振动方程不仅可以用来描述物体的机械振动,还可以用来描述其他类型的振动现象,比如电磁振荡和量子力学中的波函数振动等。
波动方程是描述波动现象的数学方程。
它可以用来描述波在介质中传播的行为。
最常见的波动方程是一维波动方程,它可以表示为:∂²u/∂t² = c²∂²u/∂x²其中,u是波的振幅,t是时间,x是空间坐标,c是波速。
这个方程描述了波在时间和空间上的变化。
波动方程可以用来描述各种类型的波动现象,比如声波、光波和电磁波等。
它是波动现象研究的重要工具,可以帮助我们理解波的传播规律和特性。
振动方程和波动方程是物理学中的重要概念和工具。
它们可以帮助我们理解和描述振动和波动现象的行为。
振动方程描述了物体在平衡位置附近的振动行为,而波动方程描述了波在介质中传播的行为。
通过研究和解决这些方程,我们可以深入了解振动和波动现象的本质,并应用于各个领域的研究和实际应用中。
总结起来,振动方程和波动方程是描述振动和波动现象的数学模型。
它们在物理学和工程学中发挥着重要的作用,帮助我们理解和应用振动和波动现象。
通过研究和解决这些方程,我们可以深入了解振动和波动现象的本质,并应用于各个领域的研究和实际应用中。
高中物理振动和波公式总结高中物理振动和波公式1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}3.受迫振动频率特点:f=f驱动力4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用5.机械波、横波、纵波:波就是振动的传播,通过介质传播。
在同种均匀介质中,振动的传播是匀速直线运动,这种运动,用波速V表征。
对于匀速直线运动,波速V不变(大小不变,方向不变),所以波速V是一个不变的量。
介质分子并没有随着波的传播而迁移,介质分子的永不停息的无规则的运动,是热运动,其平均速度为零。
6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}7.声波的波速(在空气中)0℃332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小}高中物理振动和波知识点1.简谐运动(1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动.(2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置.简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大.(3)描述简谐运动的物理量①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅.②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱.③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f.(4)简谐运动的图像①意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹.②特点:简谐运动的图像是正弦(或余弦)曲线.③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况.2.弹簧振子:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系.如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T.3.单摆:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点.单摆是一种理想化模型.(1)单摆的振动可看作简谐运动的条件是:最大摆角α<5°.(2)单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力.(3)作简谐运动的单摆的周期公式为:①在振幅很小的条件下,单摆的振动周期跟振幅无关.②单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关.③摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g'等于摆球静止在平衡位置时摆线的张力与摆球质量的比值).4.受迫振动(1)受迫振动:振动系统在周期性驱动力作用下的振动叫受迫振动.(2)受迫振动的特点:受迫振动稳定时,系统振动的频率等于驱动力的频率,跟系统的固有频率无关.(3)共振:当驱动力的频率等于振动系统的固有频率时,振动物体的振幅最大,这种现象叫做共振.共振的条件:驱动力的频率等于振动系统的固有频率. .5.机械波:机械振动在介质中的传播形成机械波.(1)机械波产生的条件:①波源;②介质(2)机械波的分类①横波:质点振动方向与波的传播方向垂直的波叫横波.横波有凸部(波峰)和凹部(波谷).②纵波:质点振动方向与波的传播方向在同一直线上的波叫纵波.纵波有密部和疏部.[注意]气体、液体、固体都能传播纵波,但气体、液体不能传播横波.(3)机械波的特点①机械波传播的是振动形式和能量.质点只在各自的平衡位置附近振动,并不随波迁移.②介质中各质点的振动周期和频率都与波源的振动周期和频率相同.③离波源近的质点带动离波源远的质点依次振动.6.波长、波速和频率及其关系(1)波长:两个相邻的且在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长.振动在一个周期里在介质中传播的距离等于一个波长.(2)波速:波的传播速率.机械波的传播速率由介质决定,与波源无关.(3)频率:波的频率始终等于波源的振动频率,与介质无关.(4)三者关系:v=λf7. ★波动图像:表示波的传播方向上,介质中的各个质点在同一时刻相对平衡位置的位移.当波源作简谐运动时,它在介质中形成简谐波,其波动图像为正弦或余弦曲线.由波的图像可获取的信息①从图像可以直接读出振幅(注意单位)②从图像可以直接读出波长(注意单位).③可求任一点在该时刻相对平衡位置的位移(包括大小和方向)④在波速方向已知(或已知波源方位)时可确定各质点在该时刻的振动方向.⑤可以确定各质点振动的加速度方向(加速度总是指向平衡位置)高中物理学习方法听得懂高中生要积极主动地去听讲,把老师所说的每一句话都用心来听,熟记高中物理概念定义,这是“知其然”,老师讲解的过程就是“知其所以然”,听懂,才会运用。
平面简谐波的表达式机械振动在弹性介质中的传播叫做机械波。
简谐振动在线弹性介质中的传播叫做简谐波。
简谐波中振动相位相同的点构成的面叫做波面。
波面为平面的波叫做平面简谐波。
本文先用振动状态传播的观点建立平面简谐波的表达式,然后用动力学的观点分析决定波速的因素,最后讨论描述平面简谐波表达式的物理意义。
一、平面简谐波的表达式设x =0处质元的振动表达式为O 0cos()y A ωt φ=+,波以传播速度u 沿O x 轴正方向传播。
x 处质元滞后于O 处质元振动的时间为x u ,x 处质元实际振动的时间为x t u -。
因此,平面简谐波的表达式为0cos ()]x y A ωt φu =-+[。
如果波以传播速度u 沿O x 轴负方向传播,则平面简谐波的表达式为0cos (+)]x y A ωt φu=+[。
波的周期等于波源的振动周期,2πT ω=。
波在一个周期内传播的距离叫做波长,即λuT =。
据此,波的表达式又可以写成0cos 2()]t x y A πφT λ=+ [。
平面简谐波的周期是描述波的时间周期性的物理量,平面简谐波的波长是描述波的空间周期性的物理量。
二、波动方程 以弹性杆中纵波为例。
弹性杆的杨氏弹性模量定义为/Δ/F S Y l l=。
ΔΔ)x x y F x x YS x +∂+=∂(,)x y F x YS x ∂=∂(,根据牛顿运动定律,22ΔΔx xx y y y YS YS ρS x x x t +∂∂∂-=∂∂∂,2222Y y y ρx t ∂∂=∂∂,这是由动力学分析得到的波动(微分)方程。
由平面简谐波表达式得到22222y y u x t ∂∂=∂∂,代入波动(微分)方程得u u 是由介质的弹性和惯性决定的。
波的周期是由波源决定的,而波长λuT =则是由波源和介质的性质共同决定的。
三、平面简谐波表达式的物理意义 平面简谐波的表达式0cos ()]x y A ωt φu =-+[,当x =常数时成为x 处质元的振动表达式;当t =常数时表示t 时刻质元位移的空间分布,是t 时刻的波形表达式;当x 和t 都变化时描述了波形的前行图像,这种波也称为行波。