(优选)第二节平面简谐波的波动方程
- 格式:ppt
- 大小:1.51 MB
- 文档页数:27
§ 9.2 平面简谐波的波动方程一、平面简谐波波动方程简谐波:如果波源和介质中的各质点都持续地作简谐振动,这种波称为简谐波。
平面简谐波:波面为平面的简谐波。
平面简谐波也称为一维简谐波,其表达式也称波函数(wave function)沿+x 方向传播的一维简谐波 (波速u ,振动角频率为ω),假设媒质无吸收(质元振幅均为A )介质中任一质点(坐标为 x )相对其平衡位置的位移(坐标为 y )随时间的变化关系,即 称为波动方程。
设O 点处质点的振动方程为波线上坐标为x 的任意点P 处质点的振动方程振动从O 点传到P 点所需的时间为t 时刻点 P 的振动与 t-x/u 时刻点O 的振动状态相同,只是落后了Δt 点P 振动方程 式中称上式为沿x 轴正向传播的平面简谐波的波动方程(,)y x t cos O y A tω=(,)P y f x t ==?x t u∆=cos ()P xy A t uω=-2πων=u λν=xo任一点p参考点a波速u波方程的其它表示式讨论:(1)如果原点的初相位不为零设:点O振动方程则:波动方程为(2)如果平面简谐波沿x轴负方向传播则P点处质点相位比O点处质点的相位超前波动方程为二、波动方程的物理意义由从几方面讨论1 当x 一定时(设x =x0,即考察波线上某一点x0) 给出x =x0处质点的振动方程即x0处质元的振动表达式,表示x处的质点在各个不同的时刻位移随时间的变化情况,由它画出的曲线是x0处质元的振动曲线。
2 当t一定时(设t = t0,即在某一时刻t0),给出t= t0时刻各质点的位移y分布情况反映t0时刻各不同x处质元的位移状况,即同一时刻x轴上各个质点离开它们平c o s2π()xy A tνλ=-[]c o sOy A tωϕ=+c o s[2π()]xy A tνϕλ=-+c o s[2π()]xy A tνϕλ=++c o s[2π()]xy A tνϕλ=-+()y y t=()y y x=c o s[2π()]xy A tνϕλ=-+2c o s()y A t xπωλ=-c o s()xy A tuωϕ⎡⎤=-+⎢⎥⎣⎦c o s()xy A tuωϕ⎡⎤=++⎢⎥⎣⎦c o s()xy A tuωϕ⎡⎤=-+⎢⎥⎣⎦衡位置的位移分布,由它画出的曲线即t 0时刻的波形曲线。
简谐波的波动方程公式
平面简谐波的波动方程公式是y=Acos[w(t-x/u)+φ],x/u表示波以u的速度传了x的距离所用的时间。
φ表示初始的相位,就是余弦函数的初始的一个角度。
平面简谐波是最基本的波动形式。
平面传播时,若介质中体元均按余弦(或正弦)规律运动,就叫平面简谐波。
如果所传播的是谐振动,且波所到之处,媒质中各质点均做同频率、同振幅的谐振动,这样的波称为简谐波,也叫余弦波或正弦波。
如果简谐波的波面是平面,这样的简谐波称为平面简谐波。
§4-2平面简谐波的波动方程振动与波动最简单而又最基本的波动是简谐波! 简谐波:波源以及介质中各质点的振动都是简谐振动。
任何复杂的波都可看成是若干个简谐波的叠加。
对平面简谐波,各质点都在各自的平衡位置附近作简谐振动,但同一时刻各质点的振动状态不同。
需要定量地描述出每个质点的振动状态。
波线是一组垂直于波面的平行射线,可选用其中一根波线为代表来研究平面简谐波的传播规律。
一、平面简谐波的波动方程设平面简谐波在介质中沿 x 轴正向传播,在此波线上任取一参考点为坐标原点参考点原点的振动方程为()00cos y A t ωϕ=+任取一点 P ,其坐标为 x ,P 点如何振动? A 和 ω 与原点的振动相同,相位呢?沿着波的传播方向,各质点的相位依次落后,波每向前传播 λ 的距离,相位落后 2π现在,O 点的振动要传到 P 点,需要向前传播的距离为 x ,因而 P 点的相位比 O 点落后 22x x ππλλ=P 点的振动方程为区别联系振动研究一个质点的运动。
波动研究大量有联系的质点振动的集体表现。
振动是波动的根源。
波动是振动的传播。
x02c o s P y A t x πωϕλ⎛⎫=+- ⎪⎝⎭ 由于 P 点的任意性,上式给出了任意时刻任意位置的质点的振动情况,将下标去掉02c o s y A t x πωϕλ⎛⎫=+- ⎪⎝⎭就是沿 x 轴正向传播的平面简谐波的波动方程。
如果波沿 x 轴的负向传播,P 点的相位将比 O 点的振动相位超前2x πλ沿 x 轴负向传播的波动方程为02c o s y A t x πωϕλ⎛⎫=++⎪⎝⎭利用 2ωπν=, u λν=沿 x 轴正向传播的平面简谐波的波动方程又可写为02c o s y A t x πωϕλ⎛⎫=-+⎪⎝⎭02c o s A t x u πνωϕ⎛⎫=-+⎪⎝⎭0c o s x A t u ωϕ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦即 0c o s x y A t u ωϕ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦原点的振动状态传到 P 点所需要的时间 xt u∆=P 点在 t 时刻重复原点在 x t u ⎛⎫- ⎪⎝⎭时刻的振动状态波动方程也常写为x02c o s y A t x πωϕλ⎛⎫=-+⎪⎝⎭()0c o s A t k x ωϕ=-+ 其中 2k πλ=波数,物理意义为 2π 长度内所具有完整波的数目。