北京市昌平区2016届九年级上期末考试数学试题及答案
- 格式:doc
- 大小:507.00 KB
- 文档页数:17
昌平区2015-2016学年第一学期初三年级期末质量抽测 数 学 试 卷 2016.1学校 姓名 考试编号考生须知 1.本试卷共8页,共五道大题,29道小题,满分120分.考试时间120分钟. 2.在试卷和答题卡上认真填写学校名称、姓名和考试编号. 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.考试结束,请将本试卷和答题卡一并交回. 一、选择题(共10道小题,每小题3分,共30分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.在平面直角坐标系中,将点 A (﹣2,3)向右平移3个单位长度后得到的对应点 A ′的坐标是 A .(1,3) B .(﹣2,﹣3) C .(﹣2,6) D .(﹣2,1)2.下面四个几何体中,主视图是圆的是A B C D3.“双十二”期间,小冉的妈妈在网上商城给小冉买了一个书包,除了书包打八折外还随机赠送购买者1支笔(除颜色外其它都相同且数量有限).小冉的妈妈购买成功时,还有5支黑色,3支绿色,2支红色的笔.那么随机赠送的笔为绿色的概率为 A .110 B .15 C .310 D . 254. 已知⊙O 的半径长为5,若点P 在⊙O 内,那么下列结论正确的是 A. OP >5 B. OP =5 C. 0<OP <5 D. 0≤OP <55.如右图,在Rt △ABC 中,∠C=90°,AC =4,BC =3,则sin B 的值等于 A .43B .34C .45D .35CBA6.已知(2)2m y m x =-+是y 关于x 的二次函数,那么m 的值为 A .-2 B. 2 C. 2± D. 07.如右图,线段AB 是⊙O 的直径,弦CD 丄AB ,∠CAB =20°,则∠AOD 等于 A .120° B . 140° C .150° D . 160°8.二次函数223y x x =--的最小值为A. 5B. 0C. -3D. -49.如右图,将△ABC 绕着点C 顺时针旋转50°后得到△A 1B 1C .若∠A =40°, ∠B 1=110°,则∠BCA 1的度数是A . 90°B . 80°C . 50°D .30°10. 如右图,正方形ABCD 和正三角形AEF 都内接于⊙O ,EF 与BC ,CD 分别相交于点G ,H ,则EF GH的值为A. 2B. 32C.3 D. 2二、填空题(共6道小题,每小题3分,共18分) 11.如果3cos 2A =,那么锐角A 的度数为 .12.如右图,四边形ABCD 内接于⊙O ,E 是BC 延长线上一点,若∠BAD =105°, 则∠DCE 的度数是 .13.在一个不透明的口袋中装有5个除了标号外其余都完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号小于..4的概率为 .B 1BA C A 1ABC D OO EDBACBED C AOAB CDE O FG H14.如右图,AB 是⊙O 的直径,弦CD AB ⊥于点E ,3023CDB CD ∠==,, 则阴影部分的面积为 .15.如图1,将一个量角器与一张等边三角形(△ABC )纸片放置成轴对称图形,CD ⊥AB ,垂足为D ,半圆(量角器)的圆心与点D 重合,此时,测得顶点C 到量角器最高点的距离CE =2cm ,将量角器沿DC 方向平移1cm ,半圆(量角器)恰与△ABC 的边AC ,BC 相切,如图2,则AB 的长为 cm .图1CBAD EED ABC 图216. 如右图,我们把抛物线y =-x (x -3)(0≤x ≤3)记为C 1, 它与x 轴交于点O ,A 1;将C 1绕点A 1旋转180°得C 2, 交x 轴于另一点A 2;将C 2绕点A 2旋转180°得C 3,交x 轴于另一点A 3;……;如此进行下去,直至得C 2016.①C 1的对 称轴方程是 ;②若点P (6047,m )在抛物线C 2016 上, 则m = .三、解答题(共6道小题,每小题5分,共30分) 17.计算:2sin 60cos30(sin 45)tan 45⋅+-.18.如下图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点, △ABC 的顶点均在格点上.(1)画出将△ABC 向右平移2个单位后得到的△A 1B 1C 1,再画出将△A 1B 1C 1绕点B 1按逆时针方向旋转90°后所得到的△A 2B 1C 2;(2)求线段B 1C 1旋转到B 1C 2的过程中,点C 1所经过的路径长.…C 3A 3C 2A 2yxOA 1C 1ACB19.抛物线2(0)y ax bx c a =++≠上部分点的横坐标x ,纵坐标y 的对应值如下表:x … -2 -1 0 1 2 … y…4664…(1)求这个二次函数的表达式及顶点坐标; (2)直接写出当y <0时x 的取值范围.20. 如下图,在△ABC 中,∠A =30°,∠B =45°,AC =32,求AB 的长.BCA21.某小区为了促进生活垃圾的分类处理,将生活垃圾分为厨余、可回收和其他三类,分别记为a ,b ,c ,并且设置了相应的垃圾箱,“厨余垃圾”箱、“可回收物”箱和“其他垃圾”箱,分别记为A ,B ,C .(1)若小明将一袋分好类的生活垃圾随机投入一类垃圾箱,请画树状图或列表求垃圾投放正确的概率;(2)为调查居民生活垃圾分类投放情况,现随机抽取了该小区三类垃圾箱中总共100吨生活垃圾,数据统计如下表(单位:吨):垃圾箱 垃圾A B C a 40 10 10 b 3 24 3 c226试估计该小区居民“厨余垃圾”投放正确的概率约是多少.22. 如右图,二次函数2y x h k ()=-+的顶点坐标为M (1,-4).(1)求出该二次函数的图象与x 轴的交点A ,B 的坐标;(2)在二次函数的图象上是否存在点P (点P 与点M 不重合),使54PAB MAB S S =△△,若存在,求出P 点的坐标;若不存在,请说明理由.四、解答题(共4道小题,每小题5分,共20分)23.如右图,△ABC 内接于⊙O ,∠B =60°,CD 是⊙O 的直径,点P 是CD 延长线上的一点,且AP =AC . (1)求证:P A 是⊙O 的切线;(2)若43AB =+,23BC =,求⊙O 的半径.POD CB AxyO A BM24.某校九年级进行集体跳绳比赛.如下图所示,跳绳时,绳甩到最高处时的形状可看作是某抛物线的一部分,记作G ,绳子两端的距离AB 约为8米,两名甩绳同学拿绳的手到地面的距离AC 和BD 基本保持1米,当绳甩过最低点时刚好擦过地面,且与抛物线G 关于直线AB 对称.(1)求抛物线G 的表达式并写出自变量的取值范围;(2)如果身高为1.5米的小华站在CD 之间,且距点C 的水平距离为m 米,绳子甩过最高处时超过她的头顶,直接写出m 的取值范围.地面GCABD25.如图,⊙O 的半径为20,A 是⊙O 上一点,以OA 为对角线作矩形OBAC ,且OC =12. 直线BC 与⊙O 交于D ,E 两点,求CE -BD 的值.OA C BD E26. 【问题学习】小芸在小组学习时问小娟这样一个问题:已知α为锐角,且sin α=13,求sin2α的值.小娟是这样给小芸讲解的:如图1,在⊙O 中,AB 是直径,点C 在⊙O 上,所以∠ACB =90°. 设∠BAC =α, 则sin α=BC AB=13.易得∠BOC =2α.设BC =x ,则AB =3x ,则AC =22x .作CD ⊥AB 于D ,求出CD =(用含x 的式子表示),可求得sin2α=CD OC= .【问题解决】已知,如图2,点M ,N ,P 为⊙O 上的三点,且∠P =β,sin β =35,求sin2β的值.ON MP图2OBCAD图1五、解答题(共3道小题,第27,28小题各7分,第29小题8分,共22分) 27.阅读下列材料:春节回家是中国人的一大情结,春运车票难买早已是不争的事实. 春节回家一般都要给父母、亲戚带点年货,坐车回去不好携带,加上普通小客车中签率低以及重大节假日高速公路小客车免费通行等因素,所以选择春节租车回家的人越来越多. 这都对汽车租赁市场起到明显的拉动作用,出现了很多的租赁公司.某租赁公司拥有20辆小型汽车,公司平均每日的各项支出共6250元. 当每辆车的日租金为500元时,可全部租出;当每辆车的日租金每增加50元,未租出的车将增加1辆.根据以上材料解答下列问题:设公司每日租出x 辆车时,日收益为y 元(日收益=日租金收入-平均每日各项支出) . (1)公司每日租出x 辆车时,每辆车的日租金收入为 元(用含x 的代数式表示); (2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元? (3)当每日租出多少辆时,租赁公司的日收益才能盈利?28. 已知,点O 是等边△ABC 内的任一点,连接OA ,OB ,OC .(1) 如图1,已知∠AOB =150°,∠BOC =120°,将△BOC 绕点C 按顺时针方向旋转60°得△ADC . ①∠DAO 的度数是 ;②用等式表示线段OA ,OB ,OC 之间的数量关系,并证明; (2) 设∠AOB =α,∠BOC =β.①当α,β满足什么关系时,OA+OB+OC 有最小值?请在图2中画出符合条件的图形,并说明理由;②若等边△ABC 的边长为1,直接写出OA+OB+OC 的最小值.ABCDABCO 图1图229. 在平面直角坐标系xOy 中,已知两点A (0,3),B (1,0),现将线段AB 绕点B 按顺时针方向旋转90°得到线段BC ,抛物线y =ax 2+bx +c (a ≠0)经过点C . (1)如图1,若该抛物线经过原点O ,且14a. ①求点C 的坐标及该抛物线的表达式;②在抛物线上是否存在点P ,使得∠POB =∠BAO . 若存在,请求出所有满足条件的点P 的坐标,若不存在,请说明理由;(2)如图2,若该抛物线y =ax 2+bx +c (a ≠0)经过点D (2,1),点Q 在抛物线上,且满足∠QOB =∠BAO .若符合条件的Q 点的个数是4个,请直接写出a 的取值范围.CBAO yx12-14432-1图2图1-12344-121xyOABC昌平区2015-2016学年第一学期初三年级期末质量抽测数学参考答案及评分标准 2016. 1一、选择题(共10道小题,每小题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案ABCDCABDBC二、填空题(共6道小题,每小题3分,共18分) 题号111213141516答案 30° 105°3523π 23 32x =,- 2 三、解答题(共6道小题,每小题5分,共30分) 17.解: 2sin 60cos30(sin 45)tan 45⋅+-23321222=⨯+-⎛⎫⎪⎝⎭………………………………………………………… 4分31142=+-14=. ………………………………………………………………… 5分18.解:(1)如图所示. ………………………………………………………… 4分A 2C 2C 1ACB 1BA 1(2)∵点C 1所经过的路径为一段弧, ∴点C 1所经过的路径长为90π42π.180l ⨯==………………………………… 5分 19.解:(1)由表得,抛物线2y ax bx c =++过点(0,6),∴c = 6.…………………………………………………………………………… 1分∵抛物线26=++y ax bx 过点(-1,4)和(1,6), ∴46,6 6.a b a b =-+=++⎧⎨⎩ …………………………………………………………………… 2分解得,1,1.a b =-=⎧⎨⎩∴二次函数的表达式为26y x x =-++.…………………………………………………… 3分 ∵抛物线2y ax bx c =++过点(0,6)和(1,6), ∴抛物线的对称轴方程为12x =.∵当12x =时,254y =,∴抛物线的顶点坐标为125,24⎛⎫ ⎪⎝⎭. …………………………………………………………4分 (2)当y <0时x 的取值范围是x <-2或x >3. …………………………………………………… 5分20.解: 过点C 作CD ⊥AB 于点D . …………………………………………………………………1分 在Rt △ADC 中,30,23A AC ∠=︒=, ∴132CD AC ==,………………………2分3cos 2332AD AC A =⋅=⨯=. ………………3分在Rt △CDB 中,∠B=45°, ∴∠DCB=∠B=45°.∴3BD CD ==. …………………………………………………………………4分 ∴33AB AD BD =+=+. …………………………………………………… 5分 21.解:(1)画树状图或列表为CB a b ca b c c b aA垃圾 垃圾箱A B C a (A ,a ) (B ,a ) (C ,a ) b (A ,b ) (B ,b ) (C ,b ) c(A ,c )(B ,c )(C ,c )∴ P (垃圾投放正确)=13. ………………………………………………………………… 4分 (2)∵4024010103=++,∴估计该小区“厨余垃圾”投放正确的概率约为23. …………………………… 5分DBCA22.解:(1)∵二次函数2()y x h k =-+的顶点坐标为M (1,-4),∴抛物线的表达式为214y x ()=--.令y =0,得1213x x =-=,.∴抛物线与x 轴的交点坐标为A (-1,0),B (3,0). ………………………………… 2分 (2)∵A (-1,0), B (3,0), M (1,-4), ∴AB =4.∴8MAB S =△. ……………………………………………………………………… 3分 ∵AB =4,∴点P 到AB 的距离为5时,54PAB MAB S S =△△.即点P 的纵坐标为5±.∵点P 在二次函数的图象上,且顶点坐标为M (1,-4),∴点P 的纵坐标为5. …………………………………………………………………… 4分 ∴()2514x =--.∴ x 1=-2,x 2=4.∴点P 的坐标为(4,5)或(-2,5). ……………………………………………………… 5分 四、解答题(共4道小题,每小题5分,共20分)23.(1)证明:连接OA . ∵∠B =60°, ∴∠AOC =2∠B =120°. 又∵OA =OC ,∴∠OAC =∠OCA =30°.……………………1分 又∵AP =AC ,∴∠P =∠ACP =30°.∴∠OAP =∠AOC ﹣∠P =90°. ∴OA ⊥PA .又∵点A 在⊙O 上,∴PA 是⊙O 的切线.………………………………………………………………2分 (2)解:过点C 作CE ⊥AB 于点E . 在Rt △BCE 中,∠B =60°,23BC =, ∴132BE BC ==,CE =3.…………………………………………………3分∵43AB =+,∴4AE AB BE =-=.P OD CBA E∴在Rt △ACE 中,225AC AE CE =+=.………………………………4分∴AP =AC =5.∴在Rt △PAO 中,533OA =.∴⊙O 的半径为533. …………………………………………………………… 5分24.解:(1)如图所示建立平面直角坐标系.地面xOyGCABDE由题意可知:(4,0)A -,(4,0)B ,顶点(0,1)E .设抛物线G 的表达式为21y ax =+. ……………………………………………… 2分 ∵(4,0)A -在抛物线G 上, ∴1610a +=,求得116a =-.∴21116y x =-+. ……………………………………………………………………… 3分自变量的取值范围为-4≤x ≤4. ……………………………………………………… 4分(2)424+222m -<<. ………………………………………………… 5分 25.解:过点O 作OF DE ⊥于点F .∴DF EF =. …………………………………… 1分 在矩形ABOC 中,OA=20,∴20BC OA ==,90BOC ∠=︒. ……………………… 2分 在Rt △BOC 中,OC=20 , ∴cos ∠123205OC OCB BC===.在Rt △OCF 中,cos ∠12CF CF OCF OC==,∴3125CF =.∴365CF =. ………………………………………………………………………………3分FOAC BD E645BF BC CF =-=. …………………………………………………………………4分∴28()()5CE BD EF CF DF BF BF CF -=---=-=. ……………………………… 5分26.解:223x CD =. (1)分 sin2α=CD OC=429. ……………………………………………………………… 2分如图,连接NO ,并延长交⊙O 于点Q ,连接MQ ,MO ,过点M 作MR NO ⊥于点R . 在⊙O 中,∠NMQ =90°. ∵ ∠Q =∠P =β,∴ ∠MON =2∠Q =2β. ………………………………………… 3分 在Rt △QMN 中, ∵ sin β =35MN NQ =, ∴ 设MN =3k ,则NQ =5k ,易得OM=21NQ=52k .∴ MQ =224QN MN k -=.∵ Δ1122NMQ S MN MQ NQ MR =⋅=⋅,∴ 345k k k MR ⋅=⋅ . ∴ MR =125k . ………………………………………………………………………… 4分 在Rt △MRO 中,sin2β=sin ∠MON =122455252kMRk OM ==. …………………………… 5分 五、解答题(共3道小题,第27,28小题各7分,第29小题8分,共22分)27.解:(1)1500-50x (0≤x ≤20, x 为整数). …………………………………………………… 1分(2)∵日租金收入=每辆车的日租金×日租出车辆的数量,∴日租金收入=x (1500-50x ). …………………………………………………………… 2分 又∵日收益=日租金收入-平均每日各项支出, ∴y =x (1500-50x )-6250=-50x 2+1500x -6250=-50(x -15)2+5000. …………………………………… 3分QRO N MP 图2∵租赁公司拥有20辆小型汽车, ∴ 0≤x ≤20.∴当x =15时,y 有最大值5000.∴当日租出15辆时, 租赁公司的日收益最大,最大值为5000元. ………………… 4分 (3)当租赁公司的日收益不盈也不亏时,即y =0.∴-50(x -15)2 + 5000=0,解得x 1=25,x 2=5. …………………………………… 5分∴当5<x <25时,y >0. ……………………………………………………………… 6分 ∵租赁公司拥有20辆小型汽车,∴当每日租出5<x ≤20(x 为整数)辆时,租赁公司的日收益才能盈利.…………… 7分 28.解:(1)①90°. …………………………………………………………………………………… 1分②线段OA ,OB ,OC 之间的数量关系是222OA OB OC +=. 如图1,连接OD .∵△BOC 绕点C 按顺时针方向旋转60°得△ADC , ∴△ADC ≌△BOC ,∠OCD =60°.∴CD = OC ,∠ADC =∠BOC =120°, AD= OB . ∴△OCD 是等边三角形.∴OC =OD =CD ,∠COD =∠CDO =60°. ∵∠AOB =150°,∠BOC =120°, ∴∠AOC =90°.∴∠AOD =30°,∠ADO =60°. ∴∠DAO =90°.在Rt △ADO 中,∠DAO =90°, ∴222OA AD OD +=.∴222OA OB OC +=. ……………………………………………………………… 3分(2)①如图2,当α=β=120°时,OA +OB +OC 有最小值.作图如图2的实线部分. ……………………………………………………… 4分 如图2,将△AOC 绕点C 按顺时针方向旋转60°得△A ’O ’C ,连接OO ’. ∴△A ’O ’C ≌△AOC ,∠OCO ’=∠ACA ’=60°. ∴O ’C = OC , O ’A ’ = OA ,A ’C = BC , ∠A ’O ’C =∠AOC . ∴△OC O ’是等边三角形.∴OC = O ’C = OO ’,∠COO ’=∠CO ’O =60°.DABCO 图1O O /A /4321ABC图2∵∠AOB =∠BOC =120°, ∴∠AOC =∠A ’O ’C =120°. ∴∠BOO ’=∠OO ’A ’=180°. ∴四点B ,O ,O ’,A ’共线.∴OA +OB +OC = O ’A ’ +OB +OO ’ =BA ’ 时值最小. …………………………………… 6分②当等边△ABC 的边长为1时,OA +OB +OC 的最小值A ’B =3. ………………… 7分 29.解:(1)①如图1,过点C 作CD ⊥x 轴于点D . ∴90CDB AOB ∠=∠=︒. ∵∠ABC =90º,∴90ABO CBD ∠+∠=︒. 又∵90O AB ABO ∠+∠=︒, ∴OAB CBD ∠=∠. ∵AB =BC , ∴△AOB ≌△BDC . ∴BD =OA ,CD =OB . ∵A (0,3),B (1,0),∴C (4,1). ………………………………1分∵抛物线y=ax 2+bx+c 经过原点O ,且14a =,∴214y x bx =+. ……………………………………………………………………2分又∵抛物线经过点C (4,1), ∴34b =-. ∴该抛物线的表达式为21344y x x =-. ……………………………………………… 3分 ② 当点P 在第一象限时,过点P 作PG ⊥x 轴于点G ,连接OP .∵∠POB =∠BAO ,∴1tan tan 3POB BAO ∠=∠=.设P (3m ,m ),m >0. ……………………………………………………………………… 4分∵点P 在21344y x x =-上,∴29944m m m -=. 解得:139m =,0m =(舍去).∴1313()39P ,.…………………………………………………………………………… 5分当点P 在第四象限时,同理可求得55()39P ,-. ………………………………… 6分GP D 图1-1234-121xyO ABC当点P在第二、三象限时,∠POB为钝角,不符合题意.综上所述,在抛物线上存在使得∠POB=∠BAO的点P,点P的坐标为1313()39,或55()39,-.(2)a的取值范围为18a<-或6356a+>. …………………………………………………8分。
昌平区2012—2013年第一学期初三年级期末质量抽测数 学 试 卷 2013.1一、选择题(共8道小题,每小题4分,共32分)的.下列各题均有四个选项,其中只有一个..是符合题意1.在Rt △ABC 中,90C= o ,3AC=,4BC=,则sin A 的值为 A .43B .45C .34D .352.如图,⊙O 是△ABC 的外接圆,∠A = 50°,则∠BOC 的度数为A .40°B .50°C .80°D .100°3.在不透明的布袋中装有1个红球,2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是红球..的概率是 A .16B. 14C. 13D. 124.⊙O 1和⊙O 2的半径分别为3cm 和5cm ,若O 1O 2= 8cm ,则⊙O 1和⊙O 2的位置关系是 A .外切B. 相交C. 内切D. 内含5.若一个三角形三边之比为3:5:7,与它相似的三角形的最长边的长为21,则最CBA短边的长为A. 15B. 10C. 9D. 3 6.将二次函数241y x x =--化为2()y x h k =-+的形式,结果为A .2(2)5y x =++B .2(2)5y x =+-C .2(2)5y x =-+D .2(2)5y x =-- 7.如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射到圆桌后在地面上形成圆形的示意图. 已知桌面直径为 1.2m ,桌面离地面1m. 若灯泡离地面3m ,则地面上阴影部分的面积为A.0.36πm 2B.0.81πm 2C.2πm 2D.3.24πm 28.如图,在边长为2的等边三角形ABC 中,以B 为圆心,AB 为半径作»AC , 在扇形BAC 内作⊙O 与AB 、BC 、»AC都相切,则⊙OA. 49π B. 23π C. 43π二、填空题(共4道小题,每小题4分,共16分)9.已知圆锥的底面半径为3,母线长为4,则圆锥的侧面积为 . 值.10.当x = 时,二次函数222y x x =+-有最小11.如图,在△ABC 中,∠ACB =∠ADC= 90°,若sin A =35,则cos∠BCD 的值为 .12.如图,已知正方形ABCD 的边长为8cm ,点E 、F 分别在边BC 、CD 上,∠EAF =45°. 当EF =8cm 时,△AEF 的面积是cm 2;DCBAFED CBA当EF =7cm 时,△EFC 的面积是 cm 2.三、解答题(共6道小题,第13、14题各4分,第15 -18题各5分,共28分) 13.计算:︒-︒+︒60tan 45sin 230cos 2.14.如图,小聪用一块有一个锐角为30︒的直角三角板测量树高,已知小聪和树都与地面垂直,且相距小聪身高AB 为1.7米,求这棵树的高度.交点,15.已知二次函数2(+1)63y k x x =-+的图象与x 轴有求k 的取值范围.16. 如图,△ABC 的顶点在格点上,且点A (-5,-1),点C (-1,-2). (1)以原点O 为旋转中心,将△ABC绕点O 逆时针旋转90°得到△A B C '''. 请在图中画出△A B C ''',并写出点A 的对称点A '的坐标;(2)以原点O 为位似中心,位似比为2,在第一象限内将△ABC 放大,画出放大后的图形△A B C ''''''.17.如图,甲、乙用4张扑克牌玩游戏,他俩将扑克牌洗匀后背面朝上,放置在桌面上,每人抽一张,甲先抽,乙后抽,抽出的牌不放回....甲、乙约定:只有..甲抽到的牌面数字比乙大时甲胜;否则乙胜. 请你用树状图或列表法说明甲、乙获胜的机会是否相同 .18. 二次函数22y x x m =-++的图象与x 轴的一个交点为A ()3,0,另一个交点为B ,与y 轴交于点C .ABCD E(1)求m 的值及点B 、点C 的坐标; (2)直接写出当0y >时,x 的取值范围; (3)直接写出当12x -≤≤时,y的取值范围. 四、解答题(共4道小题,每小题5分,共20分) 19. 如图,AB 为⊙O 的直径,直线DT 切⊙O 于T ,AD ⊥DT 于D ,交⊙O 于点C , AC =2,DT ,求∠ABT 的度数20. 如图,在Rt △ABC 中,∠CAB =90°,AD 是∠CAB 的平分线,tan B =21,求CD BD的值.21. 在矩形ABCD 中,点O 在对角线BD 上,以OD 为半径的⊙O 与AD 、BD 分别交于点E 、F ,且∠ABE =∠DBC .(1)求证:BE 与⊙O 相切;(2)若13sin ABE ∠=,CD =2,求⊙O 的半径.22. 阅读下面材料:小伟遇到这样一个问题:如图1,在正三角形ABC 内有一点P ,且PA =3 ,PB =4,PC =5,求∠APB 的度数.小伟是这样思考的:如图2,利用旋转和全等的知识构造△AP C ',连接PP ',得到两个特殊的三角形,从而将问题解决.的度数等于 .参考小伟同学思考问题的方法,解决下列问题:(1)如图3,在正方形ABCD 内有一点P ,且PA =PB =1,PD 则∠APB的度数等于,正方形的边长为;(2)如图4,在正六边形ABCDEF内有一点P,且PA=2,PB=1,PF则∠APB的度数等于,正六边形的边长为.五、解答题(共3道小题,第23题7分,第24题8分,第25题9分,共24分)23.如图,小明在一次高尔夫球训练中,从山坡下P点打出一球向球洞A点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大高度BD为12米时,球移动的水平距离PD为9米.已知山坡PA与水平方向PC的夹角为30o,AC⊥PC于点C, P、A两点相距请你建立适当的平面直角坐标系解决下列问题.(1)求水平距离PC的长;(2)求出球的飞行路线所在抛物线的解析式;(3)判断小明这一杆能否把高尔夫球从P点直接打入球洞A.24.如图,菱形ABCD 的边长为48cm ,∠A =60°,动点P 从点A 出发,沿着线路AB —BD 做匀速运动,动点Q 从点D 同时出发,沿着线路DC —CB —BA 做匀速运动.(1)求BD 的长;(2)已知动点P 、Q 运动的速度分别为8cm/s 、10cm/s. 经过12秒后,P 、Q 分别到达M 、N 两点,若按角的大小进行分类,请问△AMN 是哪一类三角形,并说明理由;(3)设问题(2)中的动点P 、Q 分别从M 、N 同时沿原路返回,动点P 的速度不变,动点Q 的速度改变为a cm/s ,经过3秒后,P 、Q 分别到达E 、F 两点,若△BEF 与问题(2)中的△AMN 相似,试求a 的值.25. 如图,在平面直角坐标系xOy 中,二次函数图象的顶点坐标为C (- 4),且在x 轴上截得的线段AB 的长为6. (1)求二次函数的解析式;(2)在y 轴上确定一点M ,使MA +MC 的值最小,求出点M 的坐标;(3)在x 轴下方的抛物线上,是否存在点N ,使得以N 、A 、B 三点为顶点的三角形与△ABC 相似?如果存在,求出点N 的坐标;如果不存在,请说明理由.昌平区2012—2013学年第一学期初三年级期末质量抽测数学试卷参考答案及评分标准 2013.1 一、选择题(共8个小题,每小题4分,共32分)二、填空题(共4个小题,每小题4分,共16分)三、解答题(共6道小题,第13、14题各4分,第15-18题各5分,共28分)13.解:原式=22-……………… 3分 =1. …………………………… 4分 14.解:由题意,易知30,90,CAD CDA ∠=︒∠=︒,,1.7AD CE BE DE AB =⊥==. ………………………… 1分∴tan CD CAD AD∠=, …………………… 2分∴33CD ==. ………………………… 3分∴3 1.7 4.7CE =+=. ………………………… 4分答:这棵树的高度为4.7米. 15.解:依题意,得210,(6)43(1)0.k k +≠⎧⎨∆=--⨯+≥⎩ ……………… 2分解之,得 1,2.k k ≠-⎧⎨≤⎩……………………… 4分 ∴ 2k ≤且1k ≠-. ………………………… 5分 16.解:(1)点A '坐标为 (1,-5) . ……………………… 1分如图所示. ………………………3分 (2)如图所示. ……………………………………5分 17.解:2 4 52 4 52 5 5554甲乙 4 5 52. …………… 3分∴57,1212P P ==(甲胜)(乙胜). …………………………… 4分 ∴甲、乙获胜的机会不相同. ………………… 5分 18.解:(1)依题意得:0 = - 9 + 6 + m , ∴m = 3. …………………… 1分 ∴223y x x =-++.∴ 抛物线与x 轴的另一交点B (-1,0), ………… 2分 与y 轴交点C (0,3). ………………………… 3分(2)当y ﹥0 时,-1 < x < 3. …………………… 4分(3)当-1≤x ≤2时,0≤y ≤4. ……………………………………5分 四、解答题(共4道小题,每小题5分,共20分) 19. 解:连接OT 、BC ,相交于点E .∵直线DT 切⊙O于T ,∴∠OTD = 90°.…………………………… 1分∵AD ⊥DT 于D , ∴∠ADT = 90°. ∵AB 为⊙O 的直径,∴∠ACB = 90°. ……………………………… 2分 ∴∠DCB = 90°.∴四边形CDTE 是矩形. ……………………… 3分 ∴∠CET = 90°,CE DT ==.∴2BC CE ==∵tan ABC AC BC ∠== ∴∠ABC = 30°. …………………………………… 4分 ∴∠BOT = 60°. ∵OB = OT ,∴△OBT 为等边三角形.∴∠ABT = 60°. …………………………………… 5分20.解:过点D 作DE AB E ⊥于点.∵∠BAC =90°,AD 平分∠CAB ,∴∠1=12∠CAB=45°.∵DE AB ⊥,∴DE∥AC ,∠2=45° . ∴DE=AE ,AE CD BEBD=. …………………………… 2分∵1tan 2B =, ∴12DE BE=. ………………………………………… 3分∴12AE BE = . …………………………………… 4分 ∴12CD BD=. …………………………… 5分21. (1)证明:连接OE . ………………………………… 1分∵四边形ABC D 是矩形, ∴AD∥BC , ∠C =∠A = 90°. ∴∠3 =∠DBC ,∠A BE +∠1 = 90°. ∵OD =OE ,∠ABE =∠DBC,21EA BCD∴∠2=∠3=∠ABE . ∴∠2 +∠1 = 90°. ∴∠BEO =90° . ∵点E 在⊙O 上,∴BE 与⊙O 相切. ………………………… 2分(2)解:∵∠ABE =∠DBC , ∴13sin sin DBC ABE ∠=∠=.∵DC =2 ,∠C = 90°,∴DB = 6. ………………… 3分 ∵∠A = 90°, ∴BE =3AE . ∵AB = CD =2 ,利用勾股定理,得2AE =,AD =∴2DE =.连接EF . ∵DF 是⊙O 的直径, ∴∠DEF =∠A = 90°. ∴AB∥EF .∴DEF ∆∽DAB ∆. …………………… 4分∴DE DFAD BD = .6DF =.∴214DF =. ∴⊙O 的半径为218. …………………………………5分 22.解:150︒ . …………………………………………… 1分 (1)135°,……………………………………… 3分 (2)120°,五、解答题(共3道小题,第23题7分,第24题8分,第25题各9分,共24分) 23.解:(1)依题意得:90,30,ACP APC PA ∠=︒∠=︒=∵cos OCAPC OA∠=, ………………………………… 1分∴cos 3012PC =︒= . ………………………… 2分 ∴PC 的长为12m .(2)以P 为原点,PC 所在直线为x 轴建立如图所示的平面直角坐标系,可知:顶点B (9,12), 抛物线经过原点. …………………… 3分 ∴设抛物线的解析式为2(9)12y a x =-+. …4分∴20(09)12a =-+,求得427a =-.∴24= 9+1227y x -(-). …………… 5分 (3)由(1)知C (12 , 0) ,易求得AC =∴ 12A (. ……………………………… 6分 当x =12时,2432(129)12=273y =--+≠ ……………… 7分∴小明不能一杆把高尔夫球从P 点直接打入球洞A .24.解:(1)∵ 四边形ABCD 是菱形,∴AB =BC =CD =AD =48 . ………………………………… 1分又∵60A ∠=o , ∴△ABD 是等边三角形. ∴BD =AB =48.∴BD 的长为48cm . ………………………… 2分(2)如图1,12秒后,点P 走过的路程为8×12=96,∴12秒后点P 到达点D (M ).又∵ 12秒后,点Q 走过的路程为10×12=120, ∴12秒后点Q 到达AB 的中点N . …………… 3分 连结MN ,由(1)知△ABD (M )是等边三角形, ∴MN ⊥AB 于点N . ∴90ANM ∠=︒.∴△AMN 是直角三角形. ……………………………4分(3)依题意得,3秒时点P 走过的路程为24cm ,点Q 走过的路程为3a cm.∴ 点E 是BD 的中点.∴ DE = BE = 24. ……………………………5分 ① 当点Q 在NB 上时(如图1),13NF a =, ∴1243BF a =-.∵点E 是BD 的中点,若EF 1⊥DB ,则点F 1与点A 重合,这种情况不成立.图1∴EF 1⊥AB 时,∠EF 1B =∠ANM = 90°. 由(1)知∠ABD =∠A = 60°, ∴△EF 1B ∽△MAN. ∴1BF BE ANAM =. ∴243242448a -=.∴4a =,112BF =. ………………………… 6分② 如图2,由菱形的轴对称性,当点Q 在BC 上时,212BF =. ∴点Q 走过的路程为36cm. ∴36123a ==. …………… 7分③ 如图3,当点Q 与点C 重合时,即点F 与点C 重合.由(1)知,△BCD 是等边三角形, ∴EF 3⊥BD 于点E ,∠E B F 3 =∠A = 60°. ∴△F 3EB ∽△MNA . 此时,BF 3 = 48,∴点Q 走过的路程为72cm. ∴ 72243a ==. …………………………… 8分综上所述,若△BEF ∽△ANM ,则a 的值为4cm/s 或12cm/s 或24cm/s.25.解:(1)∵抛物线的顶点坐标为4C-(, ∴抛物线的对称轴为直线4x =-.∵抛物线在x 轴上截得的线段AB 的长为6,图23)图3∴ A (-1 , 0 ),B ( -7 , 0 ) . ………………………1分 设抛物线解析式为()24y a x =+ ∴()2014a =-+解得,9a =-. ∴ 二次函数的解析式为)249y x =-++……………2分 (2)作点A 关于y 轴的对称点A ',可得 A '(1.0). 连接A 'C 交y 轴于一点即点M ,此时MC + MA 的值最小.由作法可知,MA = M A '.∴MC + MA = MC + M A '=A 'C .∴当点M 在线段A 'C 上时,MA + MC 取得最小值. ……………3分 ∴线段A 'C 与y 轴的交点即为所求点M .设直线C A '的解析式为y kx b =+(k≠0),∴40k b,k b.=-+=+⎪⎩∴55k ,b =-=. ……………4分 ∴直线C A '的解析式为y x =∴点M 的坐标为( 0分 (3)由(1)可知,C (-4,设对称轴交x 轴于点D ,∴AD = 3.∴在Rt△ADC 中,3tan CAD ∠=.∴∠CAD = 30o,∵AC = BC ,∴∠ABC = ∠CAB = 30o .∴∠ACB = 120°. …………………………………6分 ①如果AB = A N 1= 6,过N 1作E N 1⊥x 轴于E . 由△ABC ∽△BA N 1得∠BA N 1 = 120o , 则∠EA N 1 = 60o . ∴N 1E = 33,AE =3.∵A (-1 , 0 ), ∴OE = 2.∵点N 在x 轴下方,∴点N 2(2,-7分②如果AB = B N 2,由对称性可知N 2(-10,-8分 ③如果N 3A = N 3B ,那么点N 必在线段AB 的中垂线即抛物线的对称轴上,在x 轴下方的抛物线上不存在这样的点N .经检验,点N 1 (2,-与N 2 (-10,-都在抛物线上 . …………9分综上所述,存在这样的点N ,使△NAB ∽△ABC ,点N 的坐标为(2,-或(-10,-。
北京市昌平区九年级数学上册期末试卷(含答案)(时间:120分钟满分:100分)一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.如果3x=4y(y≠0),那么下列比例式中正确的是()A.B.C.D.2.在Rt△ABC中,∠C=90°,,AC=2,则tanA的值为()A.B.2 C.D.3.如图,AB是⊙O的直径,点C、D在⊙O上.若∠ACD=25°,则∠BOD的度数为()A.100°B.120°C.130°D.150°4.如图,在⊙O中,弦AB垂直平分半径OC.若⊙O的半径为4,则弦AB的长为()A.B.C.D.5.如果在二次函数的表达式y=ax2+bx+c中,a>0,b<0,c<0,那么这个二次函数的图象可能是()A.B.C.D.6.若二次函数y=x2+2x+m的图象与坐标轴有3个交点,则m的取值范围是()A.m>1 B.m<1 C.m>1且m≠0 D.m<1且m≠0 7.如图,将函数的图象沿y轴向上平移得到新函数图象,其中原函数图象上的两点A(1,m)、B(4,n)平移后对应新函数图象上的点分别为点A′、B′.若阴影部分的面积为6,则新函数的表达式为()A.B.C.D.8.如图,点M为▱ABCD的边AB上一动点,过点M作直线l垂直于AB,且直线l与▱ABCD的另一边交于点N.当点M从A→B匀速运动时,设点M的运动时间为t,△AMN的面积为S,能大致反映S与t函数关系的图象是()A.B.C.D.二、填空题(本题共16分,每小题2分)9.如果两个相似三角形的周长比为2:3,那么这两个相似三角形的面积比为.10.如图,在△ABC中,点D、E分别在边AB、AC上.若∠ADE=∠C,AB=6,AC=4,AD=2,则EC= .11.如图,扇形的圆心角∠AOB=60°,半径为3cm.若点C、D是的三等分点,则图中所有阴影部分的面积之和是cm2.12.“平改坡”是指在建筑结构许可条件下,将多层住宅的平屋顶改建成坡屋顶,并对外立面进行整修粉饰,达到改善住宅性能和建筑物外观视觉效果的房屋修缮行为.如图是某小区对楼顶进行“平改坡”改造的示意图.根据图中的数据,如果要使坡面BC的坡度达到1:1.2,那么立柱AC的长为米.13.如图,一次函数y1=kx+b的图象与反比例函数y2=的图象相交于点A和点B.当y1>y2>0时,x的取值范围是.14.如图,在Rt△ABC中,∠C=90°,AB=10,若以点C为圆心,CB 长为半径的圆恰好经过AB的中点D,则AC的长等于.15.如图,在平面直角坐标系xOy中,△ABC经过若干次图形的变化(平移、轴对称、旋转)得到△DEF,写出一种由△ABC得到△DEF 的过程:.16.北京昌平区有一块三角形空地(如图1)准备绿化,拟从点A出发,将△ABC分成面积相等的三个三角形,栽种三种不同的花草.下面是小美的设计(如图2).作法:(1)作射线BM;(2)在射线BM上顺次截取BB1=B1B2=B2B3;(3)连接B3C,分别过B1、B2作B1C1∥B2C2∥B3C,交BC于点C1、C2;(4)连接AC1、AC2.则.请回答,成立的理由是:①;②.三、解答题(共68分)17.(5分)计算:tan30°﹣2cos60°+cos45°+π0.18.(5分)如图,△ABC中,∠ABC=60°,AB=2,BC=3,AD⊥BC垂足为D.求AC长.19.(5分)如图,BO是△ABC的角平分线,延长BO至D使得BC=CD.(1)求证:△AOB∽△COD.(2)若AB=2,BC=4,OA=1,求OC长.20.(5分)已知二次函数y=x2+bx+c图象上部分点的横坐标x、纵坐标y的对应值如下表:x …0 1 2 3 …y … 3 0 ﹣1 0 …(1)求二次函数的表达式.(2)画出二次函数的示意图,结合函数图象,直接写出y<0 时自变量x 的取值范围.21.(5分)如图,AB是⊙O的弦,⊙O的半径OD⊥AB 垂足为C.若AB=2,CD=1,求⊙O的半径长.22.(5分)点P(1,4),Q(2,m)是双曲线y=图象上一点.(1)求k值和m值.(2)O为坐标原点.过x轴上的动点R作x轴的垂线,交双曲线于点S,交直线OQ于点T,且点S在点T的上方.结合函数图象,直接写出R的横坐标n的取值范围.23.(5分)小明同学要测量学校的国旗杆BD的高度.如图,学校的国旗杆与教学楼之间的距AB=20m.小明在教学楼三层的窗口C测得国旗杆顶点D的仰角为14°,旗杆底部B的俯角为22°.(1)求∠BCD的大小.(2)求国旗杆BD的高度(结果精确到1m.参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin14°≈0.24,cos14°≈0.97,tan14°≈0.25)24.(5分)如图,AB是⊙O的直径,C、D是⊙O上两点, =.过点B作⊙O的切线,连接AC并延长交于点E,连接AD并延长交于点F.(1)求证:AC=CE.(2)若AE=8,sin∠BAF=求DF长.25.(5分)如图,Rt△ABC中,∠C=90°,AC=BC,AB=4cm.动点D 沿着A→C→B的方向从A点运动到B点.DE⊥AB,垂足为E.设AE 长为xcm,BD长为ycm(当D与A重合时,y=4;当D与B重合时y=0).小云根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小云的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm 0 0.5 1 1.5 2 2.5 3 3.5 4y/cm 4 3.5 3.2 2.8 2.1 1.4 0.7 0补全上面表格,要求结果保留一位小数.则t≈.(2)在下面的网格中建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当DB=AE时,AE的长度约为cm.26.(7分)已知抛物线:y=mx2﹣2mx+m+1(m≠0).(1)求抛物线的顶点坐标.(2)若直线l1经过(2,0)点且与x轴垂直,直线l2经过抛物线的顶点与坐标原点,且l1与l2的交点P在抛物线上.求抛物线的表达式.(3)已知点A(0,2),点A关于x轴的对称点为点B.抛物线与线段AB恰有一个公共点,结合函数图象写出m的取值范围.27.(8分)如图,已知Rt△ABC中,∠ACB=90°,AC=BC,D是线段AB上的一点(不与A、B重合).过点B作BE⊥CD,垂足为E.将线段CE绕点C顺时针旋转90°,得到线段CF,连结EF.设∠BCE度数为α.(1)①补全图形.②试用含α的代数式表示∠CDA.(2)若=,求α的大小.(3)直接写出线段AB、BE、CF之间的数量关系.28.(8分)已知在平面直角坐标系xOy中的点P和图形G,给出如下的定义:若在图形G上存在一点Q,使得P、Q之间的距离等于1,则称P为图形G的关联点.(1)当⊙O的半径为1时,①点P1(,0),P2(1,),P3(0,3)中,⊙O的关联点有.②直线经过(0,1)点,且与y轴垂直,点P在直线上.若P是⊙O的关联点,求点P的横坐标x的取值范围.(2)已知正方形ABCD的边长为4,中心为原点,正方形各边都与坐标轴垂直.若正方形各边上的点都是某个圆的关联点,求圆的半径r的取值范围.答案一、选择题(本题共16分,每小题2分)1.如果3x=4y(y≠0),那么下列比例式中正确的是()A.B.C.D.【分析】根据比例的性质,可得答案.【解答】解:A、由比例的性质,得4x=3y与3x=4y不一致,故A不符合题意;B、由比例的性质,得xy=12与3x=4y不一致,故B不符合题意;C、由比例的性质,得4x=3y与3x=4y不一致,故C不符合题意;D、由比例的性质,得3x=4y与3x=4y一致,故D符合题意;故选:D.【点评】本题考查了比例的性质,利用比例的性质是解题关键.2.在Rt△ABC中,∠C=90°,,AC=2,则tanA的值为()A.B.2 C.D.【分析】本题需先根据已知条件,得出BC的长,再根据正切公式即可求出答案.【解答】解:∵∠C=90°,AB=,AC=2,∴BC=1,∴tanA==.故选:A.【点评】本题主要考查了锐角三角函数的定义,在解题时要根据在直角三角形中,正切等于对边比邻边这个公式计算是本题的关键.3.如图,AB是⊙O的直径,点C、D在⊙O上.若∠ACD=25°,则∠BOD的度数为()A.100°B.120°C.130°D.150°【分析】根据圆周角定理求出∠AOD即可解决问题.【解答】解:∵∠AOD=2∠ACD,∠ACD=25°,∴∠AOD=50°,∴∠BOD=180°﹣∠AOD=180°﹣50°=130°,故选:C.【点评】本题考查圆周角定理,邻补角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4.如图,在⊙O中,弦AB垂直平分半径OC.若⊙O的半径为4,则弦AB的长为()A.B.C.D.【分析】连接OA,由AB垂直平分OC,求出OD的长,再利用垂径定理得到D为AB的中点,在直角三角形AOD中,利用垂径定理求出AD 的长,即可确定出AB的长.【解答】解:连接OA,由AB垂直平分OC,得到OD=OC=2,∵OC⊥AB,∴D为AB的中点,则AB=2AD=2=2=4.故选:B.【点评】此题考查了垂径定理,以及勾股定理,根据题意作出辅助线,构造出直角三角形是解本题的关键.5.如果在二次函数的表达式y=ax2+bx+c中,a>0,b<0,c<0,那么这个二次函数的图象可能是()A.B.C.D.【分析】由a>0,b<0,c<0,推出﹣>0,可知抛物线的图象开口向上,对称轴在y轴的右边,交y轴于负半轴,由此即可判断.【解答】解:∵a>0,b<0,c<0,∴﹣>0,∴抛物线的图象开口向上,对称轴在y轴的右边,交y轴于负半轴,故选:C.【点评】本题考查二次函数的图象,解题的关键是熟练掌握基本知识,灵活运用所学知识解决问题,属于中考常考题型.6.若二次函数y=x2+2x+m的图象与坐标轴有3个交点,则m的取值范围是()A.m>1 B.m<1 C.m>1且m≠0 D.m<1且m≠0 【分析】由抛物线与坐标轴有三个交点可得出:方程x2+2x+m=0有两个不相等的实数根,且m≠0,利用根的判别式△>0可求出m的取值范围,此题得解.【解答】解:∵二次函数y=x2+2x+m的图象与坐标轴有3个交点,∴方程x2+2x+m=0有两个不相等的实数根,且m≠0,∴△=22﹣4m>0,∴m<1.∴m<1且m≠0.故选:D.【点评】本题考查了抛物线与x轴的交点以及根的判别式,利用根的判别式△>0找出关于m的一元一次不等式是解题的关键.7.如图,将函数的图象沿y轴向上平移得到新函数图象,其中原函数图象上的两点A(1,m)、B(4,n)平移后对应新函数图象上的点分别为点A′、B′.若阴影部分的面积为6,则新函数的表达式为()A.B.C.D.【分析】先根据二次函数图象上点的坐标特征求出A、B两点的坐标,再过A作AC∥x轴,交B′B的延长线于点C,则C(4,1),AC=4﹣1=3,根据平移的性质以及曲线段AB扫过的面积为6(图中的阴影部分),得出AA′=2,然后根据平移规律即可求解.【解答】解:∵函数y=(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=2,∴A(1,1),B(4,2),过A作AC∥x轴,交B′B的延长线于点C,则C(4,1),∴AC=4﹣1=3,∵曲线段AB扫过的面积为6(图中的阴影部分),∴AC•AA′=3AA′=6,∴AA′=2,即将函数y=(x﹣2)2+1的图象沿y轴向上平移2个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=(x﹣2)2+3.故选:B.【点评】此题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识,根据已知得出AA′是解题关键.8.如图,点M为▱ABCD的边AB上一动点,过点M作直线l垂直于AB,且直线l与▱ABCD的另一边交于点N.当点M从A→B匀速运动时,设点M的运动时间为t,△AMN的面积为S,能大致反映S与t函数关系的图象是()A.B.C.D.【分析】当点N在AD上时,可得前半段函数图象为开口向上的抛物线的一部分;当点N在DC上时,MN长度不变,可得后半段函数图象为一条线段.【解答】解:设∠A=α,点M运动的速度为a,则AM=at,当点N在AD上时,MN=tanα×AM=tanα•at,此时S=×at×tanα•at=tanα×a2t2,∴前半段函数图象为开口向上的抛物线的一部分,当点N在DC上时,MN长度不变,此时S=×at×MN=a×MN×t,∴后半段函数图象为一条线段,故选:C.【点评】本题主要考查了动点问题的函数图象,用图象解决问题时,要理清图象的含义即会识图.函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.二、填空题(本题共16分,每小题2分)9.如果两个相似三角形的周长比为2:3,那么这两个相似三角形的面积比为4:9 .【分析】根据相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方解答.【解答】解:因为两个相似三角形的周长比为2:3,所以这两个相似三角形的相似比为2:3,所以这两个相似三角形的面积比为4:9;故答案为:4:9.【点评】本题考查的是相似三角形的性质,相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.10.如图,在△ABC中,点D、E分别在边AB、AC上.若∠ADE=∠C,AB=6,AC=4,AD=2,则EC= 1 .【分析】只要证明△ADE∽△ACB,推出=,求出AE即可解决问题;【解答】解;∵∠A=∠A,∠ADE=∠C,∴△ADE∽△ACB,∴=,∴=,∴AE=3,∴EC=AC﹣AE=4﹣3=1,故答案为1.【点评】本题考查相似三角形的判定和性质,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.11.如图,扇形的圆心角∠AOB=60°,半径为3cm.若点C、D是的三等分点,则图中所有阴影部分的面积之和是cm2.【分析】由题意可知C、D是弧AB的三等分点,通过平移可把阴影部分都集中到一个小扇形中,可发现阴影部分正好是扇形AOB的,先求出扇形AOB的面积再求阴影部分的面积或者直接求圆心角是20度,半径是3的扇形的面积皆可.【解答】解:S扇形OAB=,S阴影=S扇形OAB=×π=π.故答案为:【点评】此题考查扇形的面积问题,通过平移的知识把小块的阴影部分集中成一个规则的图形﹣﹣扇形,再求算扇形的面积即可.利用平移或割补把不规则图形变成规则图形求面积是常用的方法.12.“平改坡”是指在建筑结构许可条件下,将多层住宅的平屋顶改建成坡屋顶,并对外立面进行整修粉饰,达到改善住宅性能和建筑物外观视觉效果的房屋修缮行为.如图是某小区对楼顶进行“平改坡”改造的示意图.根据图中的数据,如果要使坡面BC的坡度达到1:1.2,那么立柱AC的长为 2.5 米.【分析】由坡度的概念得出=,根据AB=3可得AC的长度.【解答】解:根据题意知=,∵AB=3,∴=,解得:AC=2.5,故答案为:2.5.【点评】本题主要考查解直角三角形的应用﹣坡度坡角问题,解题的关键是熟练掌握坡度的定义.13.如图,一次函数y1=kx+b的图象与反比例函数y2=的图象相交于点A和点B.当y1>y2>0时,x的取值范围是﹣2<x<﹣0.5 .【分析】根据一次函数与反比例函数交点纵坐标,结合图象确定出所求x的范围即可.【解答】解:根据图象得:当y1>y2>0时,x的取值范围是﹣2<x <﹣0.5,故答案为:﹣2<x<﹣0.5【点评】此题考查了反比例函数与一次函数的交点问题,利用了数形结合的思想,弄清数形结合思想是解本题的关键.14.如图,在Rt△ABC中,∠C=90°,AB=10,若以点C为圆心,CB 长为半径的圆恰好经过AB的中点D,则AC的长等于5.【分析】连接CD,根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD,求出圆的半径的长,再利用勾股定理列式进行计算即可得解.【解答】解:如图,∵∠C=90°,点D为AB的中点,∴AB=2CD=10,∴CD=5,∴BC=CD=5,在Rt△ABC中,AC===5.故答案为:5.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的应用,求出圆的半径的长是解题的关键.15.如图,在平面直角坐标系xOy中,△ABC经过若干次图形的变化(平移、轴对称、旋转)得到△DEF,写出一种由△ABC得到△DEF的过程:向右平移4个单位,沿对称轴BC翻折,再绕点C逆时针旋转90°.【分析】根据对应点C与点F的位置,结合两三角形在网格结构中的位置解答.【解答】解:△ABC向右平移4个单位,沿对称轴BC翻折,再绕点C逆时针旋转90°即可得到△DEF,所以,过程为:向右平移4个单位,沿对称轴BC翻折,再绕点C逆时针旋转90°.故答案为:向右平移4个单位,沿对称轴BC翻折,再绕点C逆时针旋转90°.【点评】本题考查了几何变换的类型,平移、旋转,准确识图是解题的关键.16.北京昌平区有一块三角形空地(如图1)准备绿化,拟从点A出发,将△ABC分成面积相等的三个三角形,栽种三种不同的花草.下面是小美的设计(如图2).作法:(1)作射线BM;(2)在射线BM上顺次截取BB1=B1B2=B2B3;(3)连接B3C,分别过B1、B2作B1C1∥B2C2∥B3C,交BC于点C1、C2;(4)连接AC1、AC2.则.请回答,成立的理由是:①平行线分线段成比例定理;②等底共高.【分析】根据平行线分线段成比例定理和等底共高求解可得.【解答】解:由BB1=B1B2=B2B3且B1C1∥B2C2∥B3C,依据平行线分线段成比例定理知BC1=C1C2=C2C,再由△ABC1,△AC1C2与△AC2C等底共高知,故答案为:①平行线分线段成比例定理;②等底共高.【点评】本题主要考查作图﹣应用与设计作图,解题的关键是掌握平行线分线段成比例定理和等底共高的两三角形面积关系.三、解答题(共68分)17.(5分)计算:tan30°﹣2cos60°+cos45°+π0.【分析】根据特殊角的三角函数值先进行化简,然后根据实数运算法则进行计算即可得出结果.【解答】解:tan30°﹣2cos60°+cos45°+π0=×﹣2×+×+1=1﹣1+1+1=2.【点评】本题主要考查了特殊角的三角函数值,特殊角的三角函数值应用广泛,一是它可以当作数进行运算,二是具有三角函数的特点,在解直角三角形中应用较多.18.(5分)如图,△ABC中,∠ABC=60°,AB=2,BC=3,AD⊥BC垂足为D.求AC长.【分析】先在Rt△ABD中利用三角函数定义求出AD=,BD=1.再得到CD=2.然后在Rt△ADC中根据勾股定理求出AC即可.【解答】解:∵AD⊥BC,垂足为D,∴∠ADB=∠ADC=90°.在Rt△ABD中,∠ADB=90°,∠ABC=60°,AB=2,∴sinB=,cosB=,即=, =,解得:AD=,BD=1.∵BC=3,∴CD=2.在Rt△ADC中,AC==.【点评】本题考查了解直角三角形和勾股定理的应用,注意:在直角三角形中,两直角边的平方和等于斜边的平方.19.(5分)如图,BO是△ABC的角平分线,延长BO至D使得BC=CD.(1)求证:△AOB∽△COD.(2)若AB=2,BC=4,OA=1,求OC长.【分析】(1)由BO是△ABC的角平分线、BC=CD知∠ABO=∠CBO=∠D,根据∠AOB=∠COD即可得证;(2)由△AOB∽△COD知=,据此即可得出答案.【解答】解:(1)∵BO是△ABC的角平分线,∴∠ABO=∠CBO,∵BC=CD,∴∠CBO=∠D,∴∠ABO=∠D,又∵∠AOB=∠COD,∴△AOB∽△COD;(2)∵BC=4,∴BC=CD=4,∵△AOB∽△COD,∴=,即=,解得:OC=2.【点评】本题主要考查相似三角形的判定与性质,解题的关键是熟练掌握相似三角形的判定与性质、角平分线的性质、等边对等角等知识点.20.(5分)已知二次函数y=x2+bx+c图象上部分点的横坐标x、纵坐标y的对应值如下表:x …0 1 2 3 …y … 3 0 ﹣1 0 …(1)求二次函数的表达式.(2)画出二次函数的示意图,结合函数图象,直接写出y<0 时自变量x 的取值范围.【分析】(1)根据表格数据,利用待定系数法即可求出二次函数表达式;(2)画出二次函数的示意图,找出函数图象在x轴下方的部分,此题得解.【解答】解:(1)由已知可知,二次函数经过(0,3),(1,0)则有,解得:,所以二次函数的表达式为y=x2﹣4x+3;(2)函数图象如图所示:由函数图象可知当1<x<3时,y<0.【点评】本题考查了抛物线与x轴的交点、二次函数的图象以及待定系数法求二次函数解析式,解题的关键是:(1)利用待定系数法求出函数解析式;(2)根据给定点的坐标画出函数图象.21.(5分)如图,AB是⊙O的弦,⊙O的半径OD⊥AB 垂足为C.若AB=2,CD=1,求⊙O的半径长.【分析】先根据垂径定理求出AC的长,设⊙O的半径为r,再连接OA,在Rt△OAC中利用勾股定理求出r的值即可.【解答】解:∵⊙O的弦AB=8,半径OD⊥AB,∴AC=AB=×2=,设⊙O的半径为r,则OC=r﹣CD=r﹣1,连接OA,在Rt△OAC中,OA2=OC2+AC2,即r2=(r﹣1)2+()2,解得r=2.【点评】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.22.(5分)点P(1,4),Q(2,m)是双曲线y=图象上一点.(1)求k值和m值.(2)O为坐标原点.过x轴上的动点R作x轴的垂线,交双曲线于点S,交直线OQ于点T,且点S在点T的上方.结合函数图象,直接写出R的横坐标n的取值范围.【分析】(1)利用待定系数法即可解决问题;(2)利用图象法即可解决问题;【解答】(1)解:∵点P(1,4),Q(2,m )是双曲线y=图象上一点.∴4=,m=,∴k=4,m=2.(2)观察函数图象可知,R的横坐标n的取值范围:0<n<2或n<﹣2.【点评】本题考查反比例函数图象上点的特征、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.(5分)小明同学要测量学校的国旗杆BD的高度.如图,学校的国旗杆与教学楼之间的距AB=20m.小明在教学楼三层的窗口C测得国旗杆顶点D的仰角为14°,旗杆底部B的俯角为22°.(1)求∠BCD的大小.(2)求国旗杆BD的高度(结果精确到1m.参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin14°≈0.24,cos14°≈0.97,tan14°≈0.25)【分析】(1)过C作CE∥AB交BD于E.根据题意可得答案;(2)在Rt△CEB中,利用三角函数可得tan∠ECB=,代入数据可得BE的长,然后在Rt△CED中可得tan∠DCE==≈0.25,进而可得ED长,再求和即可.【解答】解:(1)过C作CE∥AB交BD于E.由已知,∠DCE=14°,∠ECB=22°,∴∠DCB=36°;(2)在Rt△CEB中,∠CEB=90°,AB=20,∠ECB=22°,∴tan∠ECB==≈0.4,∴BE≈8,在Rt△CED中,∠CED=90°,CE=AB=20,∠DCE=14°,∴tan∠DCE==≈0.25,∴DE≈5,∴BD≈13,∴国旗杆BD的高度约为13米.【点评】此题主要考查了解直角三角形的应用,关键是读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.24.(5分)如图,AB是⊙O的直径,C、D是⊙O上两点, =.过点B作⊙O的切线,连接AC并延长交于点E,连接AD并延长交于点F.(1)求证:AC=CE.(2)若AE=8,sin∠BAF=求DF长.【分析】(1)连接BC,想办法证明AC=BC,EC=BC即可解决问题;(2)首先证明∠DBF=∠BAF,可得sin∠BAF=sin∠DBF==,由此即可解决问题;【解答】(1)证明:连结BC.∵AB是的直径,C在⊙O上∴∠ACB=90°,∵=,∴AC=BC∴∠CAB=45°.∵AB是⊙O的直径,EF切⊙O于点B,∴∠ABE=90°,∴∠AEB=45°,∴AB=BE,∴AC=CE.(2)在Rt△ABE中,∠ABE=90°,AE=8,AE=BE ∴AB=8,在Rt△ABF中,AB=8,sin∠BAF=,解得:BF=6,连结BD,则∠ADB=∠FDB=90°,∵∠BAF+∠ABD=90°,∠ABD+∠DBF=90°,∴∠DBF=∠BAF,∵sin∠BAF=,∴sin∠DBF=,∴=,∴DF=.【点评】本题考查切线的性质、圆周角定理、解直角三角形、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.(5分)如图,Rt△ABC中,∠C=90°,AC=BC,AB=4cm.动点D 沿着A→C→B的方向从A点运动到B点.DE⊥AB,垂足为E.设AE 长为xcm,BD长为ycm(当D与A重合时,y=4;当D与B重合时y=0).小云根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小云的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm 0 0.5 1 1.5 2 2.5 3 3.5 4y/cm 4 3.5 3.2 2.8 2.1 1.4 0.7 0补全上面表格,要求结果保留一位小数.则t≈ 2.9 .(2)在下面的网格中建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当DB=AE时,AE的长度约为2.3 cm.【分析】(1)按题意,认真测量即可;(2)利用数据描点、连线;(3)当DB=AE时,y=x,画图形测量交点横坐标即可.【解答】解:(1)根据题意量取数据为2.9故答案为:2.9(2)根据已知数据描点连线得:(3)当DB=AE时,y与x满足y=x,在(2)图中,画y=x图象,测量交点横坐标为2.3.故答案为:2.3【点评】本题以考查画函数图象为背景,应用了数形结合思想和转化的数学思想.26.(7分)已知抛物线:y=mx2﹣2mx+m+1(m≠0).(1)求抛物线的顶点坐标.(2)若直线l1经过(2,0)点且与x轴垂直,直线l2经过抛物线的顶点与坐标原点,且l1与l2的交点P在抛物线上.求抛物线的表达式.(3)已知点A(0,2),点A关于x轴的对称点为点B.抛物线与线段AB恰有一个公共点,结合函数图象写出m的取值范围.【分析】(1)利用配方法把解析式配成顶点式即可得到抛物线的顶点坐标;(2)先确定P点坐标,然后把P点坐标代入y=mx2﹣2mx+m+1求出m 即可;(3)分别把A、B点的坐标代入y=mx2﹣2mx+m+1求出对应的m的值,然后根据二次函数的性质确定满足条件的m的范围.【解答】(1)解:∵y=mx2﹣2mx+m+1=m(x﹣1)2+1,∴抛物线的顶点坐标为(1,1);(2)易得直线l2的表达式为y=x,当x=2时,y=x=2,则P(2,2),把P(2,2)代入y=mx2﹣2mx+m+1得4m﹣4m+m+1=2,解得m=1,∴抛物线解析式为y=x2﹣2x+2;(3)点A(0,2)关于x轴的对称点B的坐标为(0,﹣2),当抛物线过A(0,2)时,把A(0,2)代入y=mx2﹣2mx+m+1得m+1=2,解得m=1,结合图象可知,当抛物线开口向上且和线段AB恰有一个公共点时,0<m≤1;当抛物线过B(0,﹣2)时,把B(0,﹣2)代入y=mx2﹣2mx+m+1得m+1=﹣2,解得m=﹣3,结合图象可知,当抛物线开口向上且和线段AB恰有一个公共点时,﹣3≤m<0;综上所述,m的取值范围是 0<m≤1或﹣3≤m<0.【点评】本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.也考查了二次函数的性质.27.(8分)如图,已知Rt△ABC中,∠ACB=90°,AC=BC,D是线段AB上的一点(不与A、B重合).过点B作BE⊥CD,垂足为E.将线段CE绕点C顺时针旋转90°,得到线段CF,连结EF.设∠BCE度数为α.(1)①补全图形.②试用含α的代数式表示∠CDA.(2)若=,求α的大小.(3)直接写出线段AB、BE、CF之间的数量关系.【分析】(1)①根据要求画出图形即可;②利用三角形的外角的性质计算即可;(2)只要证明△FCE∽△ACB,可得==,Rt△CFA中,∠CFA=90°,cos∠FCA=,推出∠FCA=30°,即α=30°.(3)在Rt△ABC,和Rt△CBE中,利用勾股定理即可解决问题;【解答】解:(1)①补全的图形如图所示:②∵CA=CB,∠ACB=90°,∴∠A=∠ABC=45°,∴∠CDA=∠DBC+∠BCD=45°+α.(2)在△FCE和△ACB中,∠CFE=∠CAB=45°,∠FCE=∠ACB=90°,∴△FCE∽△ACB,∴=∵=∴=连结FA,∵∠FCA=90°﹣∠ACE,∠ECB=90°﹣∠ACE,∴∠FCA=∠BCE=α,在Rt△CFA中,∠CFA=90°,cos∠FCA=∴∠FCA=30°,即α=30°.(3)结论:AB2=2CF2+2BE2.理由:∵AB2=AC2+BC2=2BC2,BC2=CE2+BE2=CF2+BE2,∴AB2=2CF2+2BE2.【点评】本题考查相似三角形综合题、相似三角形的判定和性质、等腰直角三角形的性质、勾股定理、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考压轴题.28.(8分)已知在平面直角坐标系xOy中的点P和图形G,给出如下的定义:若在图形G上存在一点Q,使得P、Q之间的距离等于1,则称P为图形G的关联点.(1)当⊙O的半径为1时,①点P1(,0),P2(1,),P3(0,3)中,⊙O的关联点有P1,P2.②直线经过(0,1)点,且与y轴垂直,点P在直线上.若P是⊙O的关联点,求点P的横坐标x的取值范围.(2)已知正方形ABCD的边长为4,中心为原点,正方形各边都与坐标轴垂直.若正方形各边上的点都是某个圆的关联点,求圆的半径r的取值范围.【分析】(1)①利用两圆的位置关系即可判断;②根据定义分析,可得当最小y=﹣x上的点P到原点的距离在1到3之间时符合题意,设P(x,﹣x),根据两点间的距离公式即可得到结论;(2)根据关联点的定义求出圆的半径r的最大值与最小值即可解决问题;【解答】解:(1)①∵点P1(,0),P2(1,),P3(0,3)∴OP1=,OP2=2,OP3=3,∴半径为1的⊙P1与⊙O相交,半径为1的⊙P2与⊙O相交,半径为1的⊙P3与⊙O相离1,∴⊙O的关联点是P1,P2;故答案为:P1,P2;②如图,以O为圆心,2为半径的圆与直线y=1交于 P1,P2两点.线段P1,P2上的动点P(含端点)都是以O为圆心,1为半径的圆的关联点.故此﹣≤x≤.(2)由已知,若P为图形G的关联点,图形G必与以P为圆心1为半径的圆有交点.∵正方形ABCD边界上的点都是某圆的关联点,∴该圆与以正方形边界上的各点为圆心1为半径的圆都有交点故此,符合题意的半径最大的圆是以O为圆心,3为半径的圆;符合题意的半径最小的圆是以O为圆心,2﹣1 为半径的圆.综上所述,2﹣1≤r≤3.【点评】本题考查一次函数综合题、圆、正方形的有关性质等知识,解题的关键是理解题意,学会用转化的思想思考问题,学会用分类讨论的思想思考问题,属于中考压轴题.。
昌平区第一学期初三年级期末质量抽测数 学 试 卷学校: 班级 姓名一、选择题(共8道小题,每小题2分,共16分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.已知∠A 为锐角,且sin A =2,那么∠A 等于 A .15° B .30° C .45° D .60° 2.如图是某几何体的三视图,该几何体是A .圆锥B .圆柱C .长方体D .正方体(第2题图)(第3题图)(第4题图)3.如图,点B 是反比例函数ky x =(0k ≠)在第一象限内图象上的一点,过点B 作BA ⊥轴于点A ,BC⊥y 轴于点C ,矩形AOCB 的面积为6,则的值为 A .3B .6C .-3D .-64.如图,⊙O 是△ABC 的外接圆,∠A =50︒,则∠BOC 的大小为 A .40° B .30° C .80°D .100°5.将二次函数265y x x =-+用配方法化成2()y x h k =-+的形式,下列结果中正确的是 A .2(6)5y x =-+ B .2(3)5y x =-+C .2(3)4y x =--D .2(3)9y x =+- 6.如图,将ΔABC 绕点C 顺时针旋转,点B 的对应点为点E ,点A 的对应点为点D ,当点E 恰好落在边AC 上时,连接AD ,若∠ACB=30°,则∠DAC 的度数是(第6 题图)(第7 题图)A .60°B .65°C . 70°D .75°7.如图,AB 为⊙O 的直径,点C 为⊙O 上的一点,过点C 作⊙O 的切线,交直径AB 的延长线于点D ,若∠A =25°,则∠D 的度数是A .25°B .40°C .50°D .65°8.小苏和小林在如图所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y (单位:m )与跑步时间t (单位:s )的对应关系如下图所示.下列叙述正确的是A .两人从起跑线同时出发,同时到达终点.B .小苏跑全程的平均速度大于小林跑全程的平均速度. C. 小苏在跑最后100m 的过程中,与小林相遇2次.D .小苏前15s 跑过的路程小于小林前15s 跑过的路程.二、填空题(共8道小题,每小题2分,共16分)9.请写出一个图象在第二,四象限的反比例函数的表达式.10.如图,在平面直角坐标系Oy 中,点A ,点B 的坐标分别为(0,2), (1-,0),将线段AB 沿轴的正方向平移,若点B 的对应点的坐标为 'B (2,0),则点A 的对应点'A 的坐标为.(第10题图)11.如图,P A ,PB 分别与⊙O 相切于A 、B 两点,点C 为劣弧AB 上任意一点,过点C 的切线分别交AP ,BP 于D ,E 两点.若AP=8,则 △PDE 的周长为.12.抛物线2y x bx c =++经过点A (0,3),B (2,3),抛物线的对称轴为.(第11题图)13.如图,⊙O 的半径为3,正六边形ABCDEF 内接于⊙O ,则劣弧AB 的长为.14.如图,在直角三角形ABC中,∠C=90°,BC=6,AC=8,点D是AC边上一点,将△BCD沿BD折叠,使点C落在AB边的E点,那么AE的长度是.15.如图,在平面直角坐标系Oy中,△CDE可以看作是△AOB经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△AOB得到△CDE的过程:.(第13题图) (第14题图) (第15题图) 16.阅读以下作图过程:第一步:在数轴上,点O表示数0,点A表示数1,点B表示数5,以AB为直径作半圆(如图);第二步:以B点为圆心,1为半径作弧交半圆于点C(如图);第三步:以A点为圆心,AC为半径作弧交数轴的正半轴于点M.请你在下面的数轴中完成第三步的画图(保留作图痕迹,不写画法),并写出点M表示的数为________.(第16题图)三、解答题(共6道小题,每小题5分,共30分)︒-︒+︒-︒.17.计算:2sin30tan60cos60tan4518.二次函数图象上部分点的横坐标,纵坐标y的对应值如下表:(1(2)在图中画出这个二次函数的图象.19.如图,在△ABC 中, AB=AC ,BD ⊥AC 于点D .AC =10,cos A =45,求BC 的长.20.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,连接AC ,BC .(1)求证:A BCD ∠=∠; (2)若AB =10,CD =8,求BE 的长.21.尺规作图:如图,AC 为⊙O 的直径.(1)求作:⊙O 的内接正方形ABCD .(要求:不写作法,保留作图痕迹); (2)当直径AC=4时,求这个正方形的边长.22.某校九年级数学兴趣小组的同学进行社会实践活动时,想利用所学的解直角三角形的知识测量某塔的高度,他们先在点D 用高1.5米的测角仪DA 测得塔顶M 的仰角为30︒,然后沿DF 方向前行40m 到达点E 处,在E 处测得塔顶M 的仰角为60︒.请根据他们的测量数据求此塔MF 的高.(结果精确到0.1m ,参考数据:41.12≈,73.13≈,45.26≈)四、解答题(共4道小题,每小题6分,共24分)23.如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m 时,桥洞与水面的最大距离是5m .(1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如下图), 你选择的方案是_____(填方案一,方案二,或方案三),则B 点坐标是______, 求出你所选方案中的抛物线的表达式;(2)因为上游水库泄洪,水面宽度变为6m ,求水面上涨的高度.24.如图,AB 为⊙O 的直径,C 、F 为⊙O 上两点,且点C 为弧BF 的中点,过点C 作AF 的垂线,交AF的延长线于点E ,交AB 的延长线于点D . (1)求证:DE 是⊙O 的切线; (2)如果半径的长为3,tan D=34,求AE 的长.25.小明根据学习函数的经验,对函数4254y x x =-+ 的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)自变量的取值范围是全体实数,与y 的几组对应数值如下表:(2)如图,在平面直角坐标系Oy 中,描出了以上表中各组对应值为坐标的点,根据描出的点,画出该函数的图象;(3)观察函数图象,写出一条该函数的性质; (4)进一步探究函数图象发现:①方程42540x x -+=有个互不相等的实数根;②有两个点(1,y 1)和(2,y 2)在此函数图象上,当2>1>2时,比较y 1和y 2的大小关系为: y 1y 2 (填“>”、“<”或“=”);③若关于的方程4254x x a -+=有4个互不相等的实数根,则a 的取值范围是.26.在平面直角坐标系Oy 中,抛物线y=m 2-2m -3 (m ≠0)与y 轴交于点A ,其对称轴与轴交于点B 顶点为C 点.(1)求点A 和点B 的坐标;(2)若∠ACB =45°,求此抛物线的表达式;(3)在(2)的条件下,垂直于轴的直线与抛物线交于点P (1,y 1)和Q (2,y 2),与直线AB 交于点N (3,y 3),若3<1<2,结合函数的图象,直接写出1+2+3的取值范围为.五、解答题(共2道小题,每小题7分,共14分)27.已知,△ABC 中,∠ACB =90°,AC =BC ,点D 为BC 边上的一点.(1)以点C 为旋转中心,将△ACD 逆时针旋转90°,得到△BCE ,请你画出旋转后的图形;yl(2)延长AD 交BE 于点F ,求证:AF ⊥BE ; (3)若AC,BF =1,连接CF ,则CF 的长度为.28.对于平面直角坐标系Oy 中的点P ,给出如下定义:记点P 到轴的距离为1d ,到y 轴的距离为2d ,若12d d ≥,则称1d 为点P 的最大距离;若12d d <,则称2d 为点P 的最大距离.例如:点P (3-,4)到到轴的距离为4,到y 轴的距离为3,因为3<4,所以点P 的最大距离为4. (1)①点A (2,5-)的最大距离为;②若点B (a ,2)的最大距离为5,则a 的值为;(2)若点C 在直线2y x =--上,且点C 的最大距离为5,求点C 的坐标;(3)若⊙O 上存在..点M ,使点M 的最大距离为5,直接写出⊙O 的半径r 的取值范围.昌平区第一学期初三年级期末质量抽测数学参考答案及评分标准一、选择题(共8道小题,每小题2分,共16分)三、解答题(共6道小题,每小题5分,共30分)17.解:2sin30tan60cos60tan45︒-︒+︒-︒122112=⨯-…………………………………………………………4分12=.…………………………………………………………………5分18.解:(1)由题意可得二次函数的顶点坐标为(1-,4-).………………………………… 1分设二次函数的解析式为:2(1)4y a x=+-………………2分把点(0,3)代入2(1)4y a x=+-得1a=∴2(1)4y x=+-…………………………………3分(2)如图所示……………………………………………………… 5分19.解:∵AC=AB,AB=10,∴AC=10.……………………………………………1分在Rt△ABD中∵cos A=ADAB=45,∴AD=8,……………………………………………………………………2分∴DC=2.……………………………………………………………………………3分∴6BD==.…………………………………………………………4分∴BC==……………………………………………………5分20.(1)证明:∵ 直径AB ⊥弦CD ,∴弧BC =弧BD . …………………… 1分∴A BCD ∠=∠.…………………… 2分(2)解:连接OC∵ 直径AB ⊥弦CD ,CD =8, ∴CE =ED =4. …………………… 3分∵ 直径AB =10,∴CO =OB =5.在Rt △COE 中3OE =…………………… 4分∴2BE =.…………………… 5分21.(1)如图所示…………………… 2分(2)解:∵ 直径AC =4,∴OA =OB =2. ……………………… 3分∵正方形ABCD 为⊙O 的内接正方形, ∴∠AOB=90°,……………………… 4分∴AB == 5分.22.解:由题意AB =40,CF =1.5,∠MAC=30°,∠MBC =60°, ∵ ∠MAC=30°,∠MBC =60°, ∴∠AMB=30°∴∠AMB =∠MAB∴ AB =MB =40.………………………… 1分 在Rt △ACD 中, ∵ ∠MCB=90°,∠MBC =60°, ∴ ∠BMC =30°.∴ BC =12BM =20.………………………… 2分∴MC ==………………………………… 3分., ∴ MC 34.6. ……………………………………………… 4分∴ MF = MC+CF =36.1.………………………………………………………… 5分 ∴ 塔MF 的高约为36.1米. …………………………………… 5分23.解:方案1:(1)点B 的坐标为(5,0)…………… 1分 设抛物线的解析式为:(5)(5)y a x x =+-…………… 2分 由题意可以得到抛物线的顶点为(0,5),代入解析式可得:15a =- ∴抛物线的解析式为:1(5)(5)5y x x =-+-…………… 3分 (2)由题意:把3x =代入1(5)(5)5y x x =-+-解得:165y ==3.2…………… 5分 ∴水面上涨的高度为3.2m …………… 6分方案2:(1)点B 的坐标为(10,0)…………… 1分 设抛物线的解析式为:(10)y ax x =-…………… 2分由题意可以得到抛物线的顶点为(5,5),代入解析式可得:15a =- ∴抛物线的解析式为:1(10)5y x x =--…………… 3分 (2)由题意:把2x =代入1(10)5y x x =--解得:165y ==3.2…………… 5分 ∴水面上涨的高度为3.2m …………… 6分方案3:(1)点B 的坐标为(5, 5-)…………… 1分 由题意可以得到抛物线的顶点为(0,0) 设抛物线的解析式为:2y ax =…………… 2分 把点B 的坐标(5, 5-),代入解析式可得:15a =-∴抛物线的解析式为:215y x =-…………… 3分(2)由题意:把3x =代入215y x =-解得:95y =-= 1.8-…………… 5分 ∴水面上涨的高度为5 1.8-=3.2m …………… 6分24.(1)证明:连接OC ,∵点C 为弧BF 的中点,∴弧BC =弧CF .∴BAC FAC ∠=∠.…………… 1分∵OA OC =,∴OCA OAC ∠=∠.∴OCA FAC ∠=∠.……………………2分∵AE ⊥DE ,∴90CAE ACE ︒∠+∠=.∴90OCA ACE ︒∠+∠=.∴OC ⊥DE .∴DE 是⊙O 的切线. …………………… 3分(2)解:∵tan D=OC CD =34,OC =3, ∴CD =4.…………………………… 4分∴OD =5.∴AD= OD+ AO=8.…………………………… 5分 ∵sin D=OC OD =AE AD =35,∴AE=245.……………………………6分 25. (1)m =0,…………… 1分(2)作图,……………2分(3)图像关于y 轴对称, (答案不唯一) ……………3分(4)(5)944a -<< 26.解:(1)∵抛物线y=m 2-2m -3 (m ≠0)与y 轴交于点A , ∴点A 的坐标为,3-(0);…………………… 1分 ∵抛物线y=m 2-2m -3 (m ≠0)的对称轴为直线1x =,∴点B 的坐标为,0(1).…………………… 2分 (2)∵∠ACB =45°,∴点C 的坐标为,4-(1),…………………… 3分把点C 代入抛物线y=m 2-2m -3得出1m =,∴抛物线的解析式为y=2-2-3. …………………… 4分(3)123523x x x <++< ……………………6分 27.(1)补全图形…………………… 2分(2)证明:∵ΔCBE 由ΔCAD 旋转得到,∴ΔCBE ≌ΔCAD ,……………… 3分∴∠CBE =∠CAD ,∠BCE =∠ACD =90°,……………4分 ∴∠CBE +∠E =∠CAD +∠E ,∴∠BCE =∠AFE =90°,∴AF ⊥BE .……………………………………5分(3………………………………………………7分28.解:(1)①5……………………… 1分②5±……………………… 3分(2)∵点C 的最大距离为5, ∴当5x <时,5y =±,或者当5y <时,5x =±. ………………4分 分别把5x =±,5y =±代入得:当5x =时,7y =-,当5x =-时,3y =,当5y =时,7x =-,当5y =-时,3x =,∴点C (5-,3)或(3,5-).……………………… 5分(3)5r ≤≤…………………………………7分。
昌平区2010—2011学年初三年级期末考试数学试卷参考答案及评分标准 2011.1一、选择题(共8个小题,每小题4分,共32分)二、填空题(共4个小题,每小题4分,共16分)三、解答题(共10道小题,共50分) 13.(4分)解:原式=32333222-⨯+⨯………………………………3分 =1-3 ………………………………4分 14.(4分)解:∵∠AED =∠ABC ,∠A =∠A ,∴△AED ∽△ABC . ………………………………2分∴BCDEAB AE =. ………………………………3分 ∵AE =5,AB = 9,CB =6,∴695DE=, ∴.310=DE ………………………………4分15. (5分)解:连结OA ,OB .∵∠BAC =120°,AB =AC =4,∴∠CBA =∠C =30°. ………………………………2分 ∴ ∠O =60° ………………………………3分 ∵OB =OA ,∴△OAB 是等边三角形. ………………………………4分 ∴OB =OA =4.则⊙O 的直径是8. ………………………………5分A BCED16. (6分) 解:(1)y =x 2-2x -3 = x 2-2x +1-4=(x -1)2-4 ……………………………… 1分 ∴抛物线-2-32y =x x 的对称轴是x =1,顶点坐标是(1,-4). ……………………………… 3分(2)如图. ……………………………… 4分(3)① x < -1或x >3; ……………………………… 5分② x ≤1. ……………………………… 6分 17.(5分)解:(1)在Rt BDA △中,90BDA =o∠,12AD =,4sin 5AD B AB ==, 15AB ∴=. ……………………………1分9BD ∴===.1495DC BC BD ∴=-=-=. ……………………………2分(2)在Rt ADC △中,90ADC =o∠,512tan ==DC AD C . ……………………………3分DE Q 是斜边AC 上的中线,12DE AC EC ∴==.EDC C ∴=∠∠. ……………………………4分∴ta n ∠EDC=512tan =C . ……………………………5分18.(5分)(1)答:图中三对相似三角形是:△AMF ∽△BGM ,△DMG ∽△DBM ,△EMF ∽△EAM …………………………3分(2)证明△AMF ∽△BGM .证明:∵∠AFM =∠DME +∠E ,∠BMG =∠A +∠E , 又∵∠DME =∠A ,∴∠AFM =∠BMG . …………………………………4分 ∵∠A =∠B ,∴△AMF ∽△BGM . …………………………………5分MFG DECAB CE A19.(5分)(1)证明:连结CD (如图), …………………… 1分 ∵AC 是⊙O 的直径,∴90ADC BDC ∠=∠=o.E Q 是BC 的中点,DE BE EC ∴==.∴DBE BDE ∠=∠OA OD =Q ,ADO A ∴∠=∠.90DBE A ∠+∠=o Q , 90BDE ADO ∴∠+∠=o . 90EDO ∴∠=o . 即OD DE ⊥. ∵点D 在⊙O 上,∴DE 是⊙O 的切线 . ……………………………………………………………… 3分(2)解:连结OE .∵E 是BC 的中点,O 是AC 的中点,∴OE ∥AB ,OE =12AB . ∴△OEF ∽△BDF .在Rt ABC △中,AC = 4,BC = 根据勾股定理,得 AB = 8, ∴OE = 4, ∵sin ∠ABC =4182AC AB ==, ∴∠ABC =30°. ∴∠A =60°.∴ AOD △是边长为2的等边三角形. ∴ 2AD =,BD = AB -AD =6.∴ EF :FD = OE :BD = 4:6 = 2:3 . ………………………………………… 5分20.(5分)(1)如图. ………………………………………… 1分(2)据题意,得 四边形CDBG 是矩形,CG =DB =21. …………… 2分 在Rt CG △A 中,∠AGC =90°,45ACG =o Q ∠.21AG CG ∴==. ………………………………………… 3分 在Rt BCG △中,∠BGC=90°,∴tan 30213BG CG =⋅=⨯=o…………………4分A BC DG 45°30°∴ 建筑物的高AB =(21+37)米. ……………………… 5分 21. (5分)()222214214(1)44144b ac m m m m m m m-=+-+=++--Q ()证明:10=>,∴一元二次方程mx 2+(2m +1)x +m +1=0有两个不相等的实数根.即:m 取任意非零实数,抛物线C 1与x 轴总有两个不同的交点. ……………… 2分 (2)解:∵ mx 2+(2m +1)x +m +1=0的两个解分别为:x 1=-1,x 2=-mm 1+, ∴A (-1,0),B (-mm 1+,0) . ……………………………… 4分 (3) 解:∵抛物线C 1与x 轴的一个交点的坐标为A (-1,0),∴将抛物线C 1沿x 轴正方向平移一个单位长度得到抛物线C 2与x 轴交点坐标为(0,0), 即 无论m 取任何非零实数,C 2必经过定点(0,0). ………………… 5分 22.(6分)(1)如图. …………………………………… 1分(2)连结OH .∵PN 与⊙O 相切,切点为H ,∴OH ⊥PN .∴∠PHO =90°.在Rt △PHO 中,PO =10,OH =6,根据勾股定理,得8PH ==. ………………… 3分(3)画图. …………………………………………… 4分 分两种情况,如图所示.①当点A 在点O 左边时,直线A 1B 1切⊙O 于M 1. 连结O M 1,则∠OM 1 B 1= 90°. 在△PB 1A 1和△PHO 中,1482PB t t PH ==,15102PA t tPO ==. ∴11PB PA PH PO=. 又∠P =∠P ,∴△PB 1A 1∽△PHO .∴∠PB 1A 1=∠PHO =90°. ∴∠HB 1M 1= 90°.∴四边形B 1M 1OH 为矩形, ∴B 1H =M 1O . ∴8-4t = 6.∴t = 0.5. ………………… 5分 ②当点A 在点O 右边时.MM同理,得 t = 3.5. ………………… 6分 即 当t 为0.5秒或3.5秒时,直线AB 与⊙O 相切. 四、解答题(共3道小题,共22分) 23.( 7分 )解:(1)设一次购买x 只,则20-0.1(10)x -=16,解得50x =.∴一次至少买50只,才能以最低价购买 . ………………… 2分 (2)当1050x <≤时,2[200.1(10)12]0.19y x x x x =---=-+ …………… 4分当50x >时,(2016)4y x x =-=. ……………………………………5分(3)220.190.1(45)202.5y x x x =-+=--+.① 当10<x ≤45时,y 随x 的增大而增大,即当卖的只数越多时,利润更大.② 当45<x ≤50时,y 随x 的增大而减小,即当卖的只数越多时,利润变小. 且当46x =时,y 1=202.4,当50x =时,y 2=200. ………………………………………………6分 y 1>y 2.即出现了卖46只赚的钱比卖50只嫌的钱多的现象. 当45x =时,最低售价为200.1(4510)16.5--=(元).∴为了不出现这种现象,在其他优惠条件不变的情况下,店家应把最低价每只16元至少提高到16.5元 . …………………………………………………………7分24.( 8分 ) 解:(1)当x 变化时,y 不变. 如图1,94AFOE AMON y S S ===正方形四边形. ……………………………………… 2分(2)当x 变化时,y 不变.如图2,作OE ⊥AD 于E ,OF ⊥AB 于F . ……………………………………… 3分 ∵AC 是正方形ABCD 的对角线, ∴∠BAD =90°,AC 平分∠BAD .。
昌平区2016 - 2017学年度第一学期九年级期末质量抽测数学试卷(120分钟 满分120分)一、选择题(共10道小题,每小题3分,共30分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.下列图形中,既是中心对称图形又是轴对称图形的是2.如图,在⊙O 中,∠BOC =80°,则∠A 等于A .50°B .20°C .30°D .40° 3.将二次函数表达式223y x x =-+用配方法配成顶点式正确的是A .2(1)+2y x =-B .2(+1)+4y x =C .2(1)2y x =--D .2(2)2y x =+-4.如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的左视图是A B C D 5.如图,在由边长为1的小正方形组成的网格中,点A 、B 、C 都在 小正方形的顶点上,则tan ∠CAB 的值为A .1B .13C .12D.56.如图,反比例函数ky x=在第二象限的图象上有一点A ,过点A作AB ⊥x 轴于B ,且=2AOBS,则k 的值为A .4-B .2C .2-D .4A7.已知一个扇形的半径是2,圆心角是60°,则这个扇形的面积是A .2π3 B .π C .π3D .2π 8.在平面直角坐标系中,以点(3,2)为圆心,2为半径的圆与坐标轴的位置关系为A .与x 轴相离、与y 轴相切B .与x 轴、y 轴都相离C .与x 轴相切、与y 轴相离D .与x 轴、y 轴都相切 9.已知点A (2,y 1)、B (m ,y 2)是反比例函数(0)ky k x=>的图象上的两点,且y 1<y 2. 满足条件的m 值可以是A .6-B .1-C .1D .3二、填空题(共6道小题,每小题3分,共18分) 11.已知sin A =,则锐角A 的度数是 . 12.如图,四边形ABCD 内接于⊙O ,E 为DC 延长线上一点,∠A = 70º,则∠BCE 的度数为 .13.将抛物线22y x =向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的表达式为 .E14.如图,⊙O 的直径AB 垂直于弦CD ,垂足是E ,∠A =22.5°,OC =4,则CD 的长为 .15.《九章算术》是中国古代数学最重要的著作,包括246个数学问题,分为九章。
2016昌平区初三(上)期末数学一、选择题(共10道小题,每小题3分,共30分)下列各题均有四个选项,其中只有一个是符合题意的.1.(3分)下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C. D.2.(3分)如图,在⊙O中,∠BOC=80°,则∠A等于()A.50°B.20°C.30°D.40°3.(3分)将二次函数表达式y=x2﹣2x+3用配方法配成顶点式正确的是()A.y=(x﹣1)2+2 B.y=(x+1)2+4C.y=(x﹣1)2﹣2 D.y=(x+2)2﹣24.(3分)如图,几何体是由一些正方体组合而成的立体图形,则这个几何体的左视图是()A.B.C.D.5.(3分)如图,在由边长为1的小正方形组成的网格中,点A、B、C都在小正方形的顶点上,则tan∠CAB的值为()A.1 B.C.D.6.(3分)如图,反比例函数y=在第二象限的图象上有一点A,过点A作AB⊥x轴于B,且S△AOB=2,则k的值为()A.﹣4 B.2 C.﹣2 D.47.(3分)已知一个扇形的半径是2,圆心角是60°,则这个扇形的面积是()A. B.πC.D.2π8.(3分)在平面直角坐标系中,以点(3,2)为圆心,2为半径的圆与坐标轴的位置关系为()A.与x轴相离、与y轴相切B.与x轴、y轴都相离C.与x轴相切、与y轴相离D.与x轴、y轴都相切9.(3分)已知点A(2,y1)、B(m,y2)是反比例函数y=(k>0)的图象上的两点,且y1<y2.满足条件的m 值可以是()A.﹣6 B.﹣1 C.1 D.310.(3分)如图,点A,B,C,D,E为⊙O的五等分点,动点M从圆心O出发,沿线段OA→劣弧AC→线段CO的路线做匀速运动,设运动的时间为t,∠DME的度数为y,则下列图象中表示y与t之间函数关系最恰当的是()A.B.C.D.二、填空题(共6道小题,每小题3分,共18分)11.(3分)已知sinA=,则锐角A的度数是.12.(3分)如图,四边形ABCD内接于⊙O,E为DC延长线上一点,∠A=70°,则∠BCE的度数为.13.(3分)将抛物线y=2x2向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的表达式为.14.(3分)如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为.15.(3分)《九章算术》是中国古代数学最重要的著作,包括246个数学问题,分为九章.在第九章“勾股”中记载了这样一个问题:“今有勾八步,股十五步,问勾中容圆径几何?”这个问题可以描述为:如图所示,在Rt△ABC中,∠C=90°,勾为AC长8步,股为BC长15步,问△ABC的内切圆⊙O直径是多少步?”根据题意可得⊙O的直径为步.16.(3分)如图,Rt△ABC中,已知∠C=90°,∠B=55°,点D在边BC上,BD=2CD.把线段BD 绕着点D逆时针旋转α(0<α<180)度后,如果点B恰好落在Rt△ABC的边上,那么α=.三、解答题(共6道小题,每小题5分,共30分)17.(5分)计算:2sin30°﹣4sin45°•cos45°+tan260°.18.(5分)一个不透明的口袋里装有分别标有汉字“书”、“香”、“昌”、“平”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀.(1)若从中任取一个球,球上的汉字刚好是“书”的概率为多少?(2)从中任取一球,不放回,再从中任取一球,请用树状图或列表的方法,求取出的两个球上的汉字能组成“昌平”的概率.19.(5分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,如果AC=2,且tan∠ACD=2.求AB的长.20.(5分)一个二次函数图象上部分点的横坐标x,纵坐标y的对应值如表:﹣(1)求这个二次函数的表达式;(2)求m的值.21.(5分)如图,△ABC内接于⊙O,若⊙O的半径为6,∠B=60°,求AC的长.22.(5分)一个圆形零件的部分碎片如图所示.请你利用尺规作图找到圆心O.(要求:不写作法,保留作图痕迹)四、解答题(共4道小题,每小题5分,共20分)23.(5分)昌平区南环路大桥位于南环路东段,该桥设计新颖独特,悬索和全钢结构桥体轻盈、通透,恰好与东沙河湿地生态恢复工程及龙山、蟒山等人文、自然景观相呼应;首创的两主塔间和无上横梁的设计,使大桥整体有一种开放、升腾的气势,预示昌平区社会经济的蓬勃发展,绚丽的夜景照明设计更是光耀水天,使得南环路大桥不仅是昌平新城的交通枢纽,更是一座名副其实的景观大桥,今后也将成为北京的一个新的旅游景点,成为昌平地区标志性建筑.某中学九年级数学兴趣小组进行了测量它高度的社会实践活动.如图,他们在B点测得顶端D的仰角∠DBA=30°,向前走了50米到达C点后,在C点测得顶端D的仰角∠DCA=45°,点A、C、B在同一直线上.求南环大桥的高度AD.(结果保留整数,参考数据:≈1.41,≈1.73,≈2.45)24.(5分)在平面直角坐标系xOy中,反比例函数y=的图象过点A(6,1).(1)求反比例函数的表达式;(2)过点A的直线与反比例函数y=图象的另一个交点为B,与y轴交于点P,若AP=3PB,求点B的坐标.25.(5分)如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F 为BC的中点,连接EF和AD.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为2,∠EAC=60°,求AD的长.26.(5分)有这样一个问题:探究函数y=的图象与性质.小文根据学习函数的经验,对函数y=的图象与性质进行了探究.下面是小文的探究过程,请补充完整:(1)函数y=的自变量x的取值范围是;(2)表是y与x的几组对应值.则m的值为;﹣﹣﹣﹣﹣(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)结合函数的图象,写出该函数的性质(一条即可):.五、解答题(共3道小题,第27,28小题各7分,第29小题8分,共22分)27.(7分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0).(1)在图1中画出△ABC关于x轴对称的△A1B1C1;(2)在图1中画出将△ABC绕原点O按逆时针方向旋转90°所得的△A2B2C2;(3)在图2中,以点O为位似中心,将△ABC放大,使放大后的△A3B3C3与△ABC的对应边的比为2:1(画出一种即可).直接写出点A的对应点A3的坐标.28.(7分)在平面直角坐标系xOy中,抛物线y=﹣2x2+bx+c经过点A(0,2),B(3,﹣4).(1)求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A,B之间的部分为图象G(包含A,B两点).若直线CD与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围.29.(8分)如图1,在△ABC中,∠ACB=90°,点P为△ABC内一点.(1)连接PB,PC,将△BCP沿射线CA方向平移,得到△DAE,点B,C,P的对应点分别为点D,A,E,连接CE.①依题意,请在图2中补全图形;②如果BP⊥CE,BP=3,AB=6,求CE的长.(2)如图3,连接PA,PB,PC,求PA+PB+PC的最小值.小慧的作法是:以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,那么就将PA+PB+PC的值转化为CP+PM+MN 的值,连接CN,当点P落在CN上时,此题可解.请你参考小慧的思路,在图3中证明PA+PB+PC=CP+PM+MN.并直接写出当AC=BC=4时,PA+PB+PC的最小值.参考答案与试题解析一、选择题(共10道小题,每小题3分,共30分)下列各题均有四个选项,其中只有一个是符合题意的.1.【解答】A、不是中心对称图形,是轴对称图形,故此选项错误;B、是中心对称图形,也是轴对称图形,故此选项正确;C、不是中心对称图形,是轴对称图形,故此选项错误;D、不是中心对称图形,也不是轴对称图形,故此选项错误;故选:B.2.【解答】∵⊙O是△ABC外接圆,AB是直径,∴∠ACB=90°,∴∠A+∠B=90°,∵OB=OC,∴∠B=∠BCO,∵∠BOC=80°,∴∠B=∠BCO=50°∴∠A=40°.故选D.3.【解答】y=x2﹣2x+3=(x﹣1)2+2.故选A.4.【解答】从左边看第一层是两个正方形,第二层是左边一个正方形,故选:D.5.【解答】如图,tan∠CAB==,故选:C.6.【解答】∵反比例函数的图象在二、四象限,∴k<0,∵S△AOB=2,∴|k|=4,∴k=﹣4,即可得双曲线的表达式为:y=﹣,故选A.7.【解答】扇形的面积==,故选:A.8.【解答】∵是以点(2,3)为圆心,2为半径的圆,则有2=2,3>2,∴这个圆与x轴相切,与y轴相离.故选C.9.【解答】∵k>0,∴在每个象限内,y随x的增大而减小,由题意得,0<m<2,故选:C.10.【解答】根据题意,分3个阶段;①P在OA之间,∠DME逐渐减小,到A点时,为36°,②P在之间,∠DME保持36°,大小不变,③P在CO之间,∠DME逐渐增大,到O点时,为72°;又由点P作匀速运动,故①③都是线段;分析可得:B符合3个阶段的描述;故选B.二、填空题(共6道小题,每小题3分,共18分)11.【解答】由sinA=,得∠A=60°,故答案为:60°.12.【解答】∵四边形ABCD内接于⊙O,∴∠A+∠BCD=180°,∠A=70°,∵∠BCE+∠BCD=180°,∴∠BCE=○A=70°.故答案为:70°.13.【解答】将抛物线y=2x2向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的表达式为y=2(x﹣3)2+2,故答案为:y=2(x﹣3)2+2.14.【解答】∵∠A=22.5°,∴∠BOC=2∠A=45°,∵⊙O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,∴CE=OC=2,∴CD=2CE=4.故答案为4.15.【解答】∵∠C=90°,AC=8步,BC=15步,∴AB==17步,∴△ABC的内切圆⊙O直径=8+15﹣17=6步,故答案为:6.16.【解答】设旋转后点B的对应点为B′,①当B′在线段AB上时,连接B′D,如图1,由旋转性质可得BD=B′D,∴∠DB′B=∠B=55°,∴α=∠BDB′=180°﹣55°﹣55°=70°;②当点B′在线段AC上时,连接B′D,如图2,由旋转性质可得BD=B′D,∵BD=2CD,∴B′D=2CD,∴sin∠CB′D==,∴∠CB′D=30°,∴∠BDB′=90°+30°=120°;综上可知旋转角α为70°或120°,故答案为:70°或120°.三、解答题(共6道小题,每小题5分,共30分)17.【解答】2sin30°﹣4sin45°•cos45°+tan260°=2×﹣4××+()2=1﹣2+3=2.18.【解答】(1)从中任取一个球,球上的汉字刚好是“书”的概率=;(2)画树状图为:共有12种等可能的结果数,其中取出的两个球上的汉字能组成“昌平”的结果数为2,所以取出的两个球上的汉字能组成“昌平”的概率═=.19.【解答】在Rt△ABC中,∵∠ACB=90°,CD⊥AB,∴∠B=∠ACD,∵tan∠ACD=2,∴tan∠B=,∴,由勾股定理得AB=5.20.【解答】(1)设这个二次函数的表达式为y=a(x﹣h)2+k.依题意可知,顶点(﹣1,),∴.∵(0,4),∴.∴.∴这个二次函数的表达式为.(2)当x=1时,y=﹣×4+=,即.21.【解答】如图,作直径AD,连接CD.∴∠ACD=90°.∵∠B=60°,∴∠D=∠B=60°.∵⊙O的半径为6,∴AD=12.在Rt△ACD中,∠CAD=30°,∴CD=6.∴AC=.22.【解答】如图,点O即为所求.四、解答题(共4道小题,每小题5分,共20分)23.【解答】由题意知,在Rt△ACD中,∠CAD=90°,∠DCA=45°,∴AC=AD.设AC=AD=x,在Rt△ABD中,∵∠BAD=90°,∠DBA=30°,∴BD=2AD=2x,∴AB=.∴BC=.∵BC=50,∴.∴x≈68.3.∴x=68.∴南环大桥的高度AD约为68米.24.【解答】(1)反比例函数的图象过点A(6,1),∴m=6×1=6,∴反比例函数的表达式为.(2)过A点作AM⊥y轴于点M,AM=6,作BN⊥y轴于点N,则AM∥BN,如图所示.∵AM∥BN,AP=3PB,∴,∵AM=6,∴BN=2,∴B点横坐标为2或﹣2,∴B点坐标为(2,3)或(﹣2,﹣3).25.【解答】(1)证明:连接CE,如图所示:∵AC为⊙O的直径,∴∠AEC=90°.∴∠BEC=90°.∵点F为BC的中点,∴EF=BF=CF.∴∠FEC=∠FCE.∵OE=OC,∴∠OEC=∠OCE.∵∠FCE+∠OCE=∠ACB=90°,∴∠FEC+∠OEC=∠OEF=90°.∴EF是⊙O的切线.(2)解:∵OA=OE,∠EAC=60°,∴△AOE是等边三角形.∴∠AOE=60°.∴∠COD=∠AOE=60°.∵⊙O的半径为2,∴OA=OC=2在Rt△OCD中,∵∠OCD=90°,∠COD=60°,∴∠ODC=30°.∴OD=2OC=4,∴CD=.在Rt△ACD中,∵∠ACD=90°,AC=4,CD=.∴AD==.26.【解答】(1)由题意可知2x﹣2≠0,解得x≠1,故答案为:x≠1;(2)当x=3时,m==,故答案为:;(3)利用描点法可画出函数图象,如图:(4)由函数图象可知:图象有两个分支,关于点(1,1)中心对称,故答案为:图象有两个分支,关于点(1,1)中心对称.五、解答题(共3道小题,第27,28小题各7分,第29小题8分,共22分)27.【解答】(1)如图1,△A1B1C1为所作;(2)如图1,△A2B2C2为所作;(3)如图2,△A3B3C3△ABC为所作,此时点A的对应点A3的坐标是(﹣4,﹣4).28.【解答】(1)抛物线y=﹣2x2+bx+c经过点A(0,2),B(3,﹣4),代入得解得:,∴抛物线的表达式为y=﹣2x2+4x+2,对称轴为直线x=1;(2)由题意得C(﹣3,4),二次函数y=﹣2x2+4x+2的最大值为4.由函数图象得出D纵坐标最大值为4.因为点B与点C关于原点对称,所以设直线BC的表达式为y=kx,将点B或点C 与的坐标代入得,.∴直线BC的表达式为.当x=1时,.∴t的范围为.29.【解答】(1)①补全图形如图所示;②如图,连接BD、CD∵△BCP沿射线CA方向平移,得到△DAE,∴BC∥AD且BC=AD,∵∠ACB=90°,∴四边形BCAD是矩形,∴CD=AB=6,∵BP=3,∴DE=BP=3,∵BP⊥CE,BP∥DE,∴DE⊥CE,∴在Rt△DCE中,CE====;(2)证明:如图所示,以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,连接BN.由旋转可得,△AMN≌△ABP,∴MN=BP,PA=AM,∠PAM=60°=∠BAN,AB=AN,∴△PAM、△ABN都是等边三角形,∴PA=PM,∴PA+PB+PC=CP+PM+MN,当AC=BC=4时,AB=4,当C、P、M、N四点共线时,由CA=CB,NA=NB可得CN垂直平分AB,∴AQ=AB=2=CQ,NQ=AQ=2,∴此时CN=CP+PM+MN=PA+PB+PC=.。
昌平区 - 第一学期初三年级期末质量抽测 数学试卷(120分钟 满分120分).1一、选择题(共10道小题,每小题3分,共30分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.下列图形中,既是中心对称图形又是轴对称图形的是2.如图,在⊙O 中,∠BOC =80°,则∠A 等于A .50°B .20°C .30°D .40°3.将二次函数表达式223y x x =-+用配方法配成顶点式正确的是A .2(1)+2y x =-B .2(+1)+4y x =C .2(1)2y x =--D .2(2)2y x =+-4.如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的左视图是A B C D5.如图,在由边长为1的小正方形组成的网格中,点A 、B 、C 都在小正方形的顶点上,则tan ∠CAB 的值为A .1B .13C .12 D .556.如图,反比例函数ky x=在第二象限的图象上有一点A ,过点A 作AB ⊥x 轴于B ,且=2AOBS ,则k 的值为A .4-B .2C .2-D . 47.已知一个扇形的半径是2,圆心角是60°,则这个扇形的面积是A .2π3 B .π C .π3D .2π 8.在平面直角坐标系中,以点(3,2)为圆心,2为半径的圆与坐标轴的位置关系为A .与x 轴相离、与y 轴相切B .与x 轴、y 轴都相离C .与x 轴相切、与y 轴相离D .与x 轴、y 轴都相切 9.已知点A (2,y 1)、B (m ,y 2)是反比例函数(0)ky k x=>的图象上的两点,且y 1<y 2. 满足条件的m 值可以是A .6-B .1-C .1D .310.如图,点A ,B ,C ,D ,E 为⊙O 的五等分点,动点M 从圆心O 出发,沿线段OA →劣弧AC →线段CO 的路线做匀速运动,设运动的时间 为t ,∠DME 的度数为y ,则下列图象中表示y 与t 之间函数关系最恰 当的是二、填空题(共6道小题,每小题3分,共18分) 11.已知3sin A =,则锐角A 的度数是 . 12.如图,四边形ABCD 内接于⊙O ,E 为DC 延长线上一点,∠A = 70º,则∠BCE 的度数为 .13.将抛物线22y x =向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的表达式为 .OBC DEOED C14.如图,⊙O 的直径AB 垂直于弦CD ,垂足是E ,∠A =22.5°,OC =4,则CD 的长为 .15.《九章算术》是中国古代数学最重要的著作,包括246个数学问题,分为九章。
北京市昌平区九年级上学期期末考试试题一、选择题(共 8 道小题,每小题 2 分,共 16 分)1.已知∠A为锐角,且sinA=,那么∠A 等于()A.15°B.30°C.45°D.60°【分析】根据特殊角三角函数值,可得答案.【解答】解:由∠A为锐角,且sinA=,得∠A=45°,故选:C.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.2.如图是一个几何体的三视图,则这个几何体是()A.圆锥B.圆柱C.长方体D.球体【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由于主视图和左视图为三角形可得此几何体为锥体,由俯视图为圆形可得为圆锥.故选:A.【点评】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.13.如图,点 B是反比例函数y=(≠0)在第一象限内图象上的一点,过点B 作BA⊥轴于点A,BC⊥y 轴于点C,矩形AOCB的面积为6,则的值为()A.3 B.6 C.﹣3 D.﹣6【分析】可根据反比例函数的比例系数的几何意义得到的值.【解答】解:因为矩形 AOCB 的面积为 6,所以的值为 6,故选:B.【点评】本题考查了反比例函数的比例系数的几何意义:在反比例函数 y=图象中任取一点,过这一个点向轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值||.4.如图,⊙O是△ABC的外接圆,∠A=50°,则∠BOC的度数为()A.40°B.50°C.80°D.100°【分析】由⊙O是△ABC 的外接圆,∠A=50°,根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠BOC的度数.【解答】解:∵⊙O 是△ABC 的外接圆,∠A=50°,2∴∠BOC=2∠A=100°.故选:D.【点评】此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.5.将二次函数 y=2﹣6+5用配方法化成y=(﹣h)2+的形式,下列结果中正确的是()A.y=(﹣6)2+5B.y=(﹣3)2+5 C.y=(﹣3)2﹣4 D.y=(+3)2﹣9【分析】运用配方法把一般式化为顶点式即可.【解答】解:y=2﹣6+5=2﹣6+9﹣4=(﹣3)2﹣4,故选:C.【点评】本题考查的是二次函数的三种形式,正确运用配方法把一般式化为顶点式是解题的关键.6.如图,将△ABC 绕点 C顺时针旋转,点B的对应点为点E,点A 的对应点为点D,当点E恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC 的度数是()A.60°B.65°C.70°D.75°【分析】由旋转性质知△ABC∽△DEC,据此得∠ACB=∠DCE=30°、AC=DC,继而可得答案.3【解答】解:由题意知△ABC∽△DEC,则∠ACB=∠DCE=30°,AC=DC,∴∠DAC===75°,故选:D.【点评】本题主要考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③ 旋转前、后的图形全等.7.如图,AB为⊙O的直径,点C为⊙O上的一点,过点C作⊙O的切线,交直径AB的延长线于点 D,若∠A=25°,则∠D的度数是()A.25°B.40°C.50°D.65°【分析】连接 OC.由等腰三角形的性质和三角形的外角的性质可求得∠DOC=50°,接下,由切线的性质可证明∠OCD=90°,最后在△OCD 中依据三角形内角和定理可求得∠D 的度数.【解答】解:连接 OC.∵OA=OC,∴∠A=∠OCA=25°.∴∠DOC=∠A+∠ACO=50°.4∵CD 是⊙的切线,∴∠OCD=90°.∴∠D=180°﹣90°﹣50°=40°.故选:B.【点评】本题主要考查的是切线的性质、等腰三角形的性质、三角形的外角的性质、三角形的内角和定理,求得∠DOC和∠OCD的度数是解题的关键.8.小苏和小林在如图所示的跑道上进行4×50 米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如下图所示.下列叙述正确的是()A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏在跑最后 100m的过程中,与小林相遇2 次D.小苏前 15s跑过的路程小于小林前15s跑过的路程【分析】通过函数图象可得,两人从起跑线同时出发,小林先到达终点,小苏后到达终点,小苏用的时间多,而路程相同,根据速度=,根据行程问题的数量关系可以求出甲、乙的速度,所以小苏跑全程的平均速度小于小林跑全程的平均速度,根据图象小苏前15s 跑过的路程小于小林前15s跑过的路程,两人相遇时,即实线与虚线相交的地方有两次,即可解答.5【解答】解:由函数图象可知:两人从起跑线同时出发,先后到达终点,小林先到达终点,故 A错误;根据图象两人从起跑线同时出发,小林先到达终点,小苏后到达终点,小苏用的时间多,而路程相同,根据速度=,所以小苏跑全程的平均速度小于小林跑全程的平均速度,故 B错误;小林在跑最后 100m的过程中,两人相遇时,即实线与虚线相交的地方,由图象可知 1 次,故 C错误;根据图象小苏前 15s 跑过的路程小于小林前 15s 跑过的路程,故 D 正确;故选:D.【点评】本题主要考查了函数图象的读图能力,要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.二、填空题(共 8 道小题,每小题 2 分,共 16 分)9.请写一个图象在第二、四象限的反比例函数解析式:y=﹣.【分析】根据反比例函数的性质可得<0,写一个<0 的反比例函数即可.【解答】解:∵图象在第二、四象限,∴y=﹣,故答案为:y=﹣.【点评】此题主要考查了反比例函数(≠0),(1)>0,反比例函数图象在一、三象限;(2)<0,反比例函数图象在第二、四象限内.10.如图,在平面直角坐标系Oy中,点A,点B的坐标分别为(0,2),(﹣1,0),将线段 AB沿轴的正方向平移,若点B的对应点的坐标为B'(2,0),则点A的对应点A'的坐标为(3,2).【分析】根据平移的性质即可得到结论.【解答】解:∵将线段 AB 沿轴的正方向平移,若点 B 的对应点B′的坐标为(2,0),∵﹣1+3=2,∴0+3=3∴A′(3,2),故答案为:(3,2)【点评】本题考查了坐标与图形变化﹣平移.解决本题的关键是正确理解题目,按题目的叙述一定要把各点的大致位置确定,正确地作出图形.11.如图,PA,PB分别与⊙O相切于 A、B两点,点 C为劣弧 AB上任意一点,过点C的切线分别交AP,BP于D,E两点.若AP=8,则△PDE的周长为16 .【分析】直接运用切线长定理即可解决问题;【解答】解:∵DA、DC、EB、EC 分别是⊙O 的切线,∴DA=DC,EB=EC;∴DE=DA+EB,∴PD+PE+DE=PD+DA+PE+BE=PA+PB,∵PA、PB 分别是⊙O 的切线,∴PA=PB=8,∴△PDE 的周长=16.故答案为:16【点评】该命题以圆为载体,以考查切线的性质、切线长定理及其应用为核心构造而成;解题的关键是灵活运用有关定理分析、判断、推理或解答.12.抛物线 y=2+b+c经过点A(0,3),B(2,3),抛物线的对称轴为直线=1 .【分析】先根据抛物线上两点的纵坐标相等可知此两点关于对称轴对称,再根据中点坐标公式求出这两点横坐标的中点坐标即可.【解答】解:∵抛物线 y=2+b+c 经过点 A(0,3)和B(2,3),∴此两点关于抛物线的对称轴对称,∴==1.故答案为:直线 =1.【点评】本题考查的是二次函数的性质,根据题意判断出抛物线上两点坐标的关系是解答此题的关键.13.如图,⊙O的半径为3,正六边形ABCDEF内接于⊙O,则劣弧AB的长为π.【分析】求出圆心角∠AOB 的度数,再利用弧长公式解答即可.【解答】解:如图,连接 OA、OB,∵ABCDEF 为正六边形,∴∠AOB=360°×=60°,的长为=π.故答案为:π【点评】本题主要考查正多边形的性质和弧长公式,熟练掌握正多边形的性质是解题的关键.14.如图,在直角三角形 ABC 中,∠C=90°,BC=6,AC=8,点D是AC 边上一点,将△BCD沿BD 折叠,使点 C落在AB边的E 点,那么 AE 的长度是4.【分析】由勾股定理可知AB=10,由折叠的性质得 BE=BC=6,再由线段的和差关系即可求解.【解答】解:在Rt△ACB中,由勾股定理可知AB==10.由折叠的性质得:BE=BC=6,则AE=AB﹣BE=4.故答案为:4.【点评】本题考查了翻折变换的性质,勾股定理,主要利用了翻折前后的两个图形对应边相等.15.如图,在平面直角坐标系Oy中,△CDE可以看作是△AOB 经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△AOB 得到△CDE的过程:将△AOB绕点O顺时针旋转90°,再沿轴向右平移一个单位.【分析】根据旋转的性质,平移的性质即可得到由△OCD 得到△AOB 的过程.【解答】解:将△AOB 绕点 O 顺时针旋转90°,再沿轴向右平移一个单位得到△CDE,故答案为:将△AOB 绕点 O 顺时针旋转90°,再沿轴向右平移一个单位【点评】考查了坐标与图形变化﹣旋转,平移,对称,解题时需要注意:平移的距离等于对应点连线的长度,对称轴为对应点连线的垂直平分线,旋转角为对应点与旋转中心连线的夹角的大小.16.阅读以下作图过程:第一步:在数轴上,点 O 表示数 0,点 A 表示数 1,点B 表示数 5,以 AB为直径作半圆(如图);第二步:以 B点为圆心,1 为半径作弧交半圆于点C(如图);第三步:以 A 点为圆心,AC 为半径作弧交数轴的正半轴于点 M.请你在下面的数轴中完成第三步的画图(保留作图痕迹,不写画法),并写出点M表示的数为+1 .【分析】按照要求作图即可得点 M,连接 AC、BC,由题意知 AB=4、BC=1、∠ACB=90°,从而可得AM=AC==,继而可得答案.【解答】解:如图,点 M 即为所求,连接 AC、BC,由题意知,AB=4、BC=1,∵AB 为圆的直径,∴∠ACB=90°,则AM=AC===,∴点 M表示的数为+1,故答案为:+1.【点评】本题主要考查作图﹣尺规作图,解题的关键是熟练掌握尺规作图和圆周角定理及勾股定理.三、解答题(共 6 道小题,每小题 5 分,共 30 分)17.(5分)计算:2s in30°﹣tan60°+co s60°﹣tan45°.【分析】根据解特殊角的三角函数值解答.【解答】解:2sin30°﹣tan60°+cos60°﹣tan45°==.【点评】考查了特殊角的三角函数值.熟记特殊角的三角函数值是解题的关键.18.(5分)二次函数图象上部分点的横坐标,纵坐标 y 的对应值如下表:(2)在图中画出这个二次函数的图象.【分析】(1)利用表中数据和抛物线的对称性可得到二次函数的顶点坐标为(﹣1,﹣4),则可设顶点式y=a(+1)2﹣4,然后把点(0,3)代入求出 a 即可;(2)利用描点法画二次函数图象.【解答】解:(1)由题意可得二次函数的顶点坐标为(﹣1,﹣4),设二次函数的解析式为:y=a(+1)2﹣4,把点(0,3)代入 y=a(+1)2﹣4 得 a=1∴抛物线解析式为 y=(+1)2﹣4;(2)如图所示:【点评】本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.也考查了二次函数的性质.19.(5 分)如图,在△A BC中,AB=AC,BD⊥AC于点D.AC=10,cosA=,求 BC 的长.【分析】先在Rt△ABD 中利用 cosA 的定义可计算出 AD 的长,再利用勾股定理解答即可.【解答】解:∵AC=AB,AB=10,∴AC=10.在Rt△ABD 中∵cosA==,∴AD=8,∴DC=2.∴.∴.【点评】本题考查了勾股定理、等腰三角形的性质.勾股定理应用的前提条件是在直角三角形中.20.(5分)如图,AB 是⊙O的直径,弦CD⊥AB于点E,连接 AC,BC.(1)求证:∠A=∠BCD;(2)若AB=10,CD=8,求 BE的长.【分析】(1)根据等弧对等角证明即可;(2)连接OC,根据垂径定理得到CE=DE=CD=4,再利用勾股定理计算出OE,然后计算 OB﹣OE 即可.【解答】(1)证明:∵直径AB⊥弦 CD,∴弧 BC=弧 BD.∴∠A=∠BCD;(2)连接 OC∵直径AB⊥弦 CD,CD=8,∴CE=ED=4.∵直径 AB=10,∴CO=OB=5.在Rt△COE 中,∵OC=5,CE=4,∴OE==3,∴BE=OB﹣OE=5﹣3=2.【点评】本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了勾股定理.21.(5分)尺规作图:如图,AC 为⊙O的直径.(1)求作:⊙O的内接正方形ABCD.(要求:不写作法,保留作图痕迹);(2)当直径AC=4 时,求这个正方形的边长.【分析】(1)过点 O 作出直径 AC 的垂线,进而得出答案;(2)利用正方形的性质结合勾股定理得出正方形 ABCD 的边长.【解答】解:(1)如图所示:(2)∵直径AC=4,∴OA=OB=2.∵正方形 ABCD 为⊙O 的内接正方形,∴∠AOB=90°,∴.【点评】此题主要考查了复杂作图以及正多边形和圆,正确掌握正方形的性质是解题关键.22.(5分)某校九年级数学兴趣小组的同学进行社会实践活动时,想利用所学的解直角三角形的知识测量某塔的高度,他们先在点 D用高1.5 米的测角仪DA测得塔顶M的仰角为30°,然后沿 DF方向前行40m到达点E处,在E 处测得塔顶M的仰角为60°.请根据他们的测量数据求此塔MF的高.(结果精确到0.1m,参考数据:≈1.41,≈1.73,≈2.45)【分析】首先证明 AB=BM=40,在Rt△BCM 中,利用勾股定理求出 CM 即可解决问题;【解答】解:由题意:AB=40,CF=1.5,∠MAC=30°,∠MBC=60°,∵∠MAC=30°,∠MBC=60°,∴∠AMB=30°∴∠AMB=∠MAB∴AB=MB=40,在Rt△BCM 中,∵∠MCB=90°,∠MBC=60°,∴∠BMC=30°.∴BC==20,∴,∴MC≈34.64,∴MF=CF+CM=36.14≈36.1.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是灵活运用所学知识解决问题,本题的突破点是证明AB=BM=40,属于中考常考题型.四、解答题(共 4 道小题,每小题 6 分,共 24 分)23.(6分)如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为 10m 时,桥洞与水面的最大距离是 5m.(1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是方案二(填方案一,方案二,或方案三),则 B点坐标是(10,0),求出你所选方案中的抛物线的表达式;(2)因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.【分析】(1)根据题意选择合适坐标系即可,结合已知条件得出点B 的坐标即可;(2)根据抛物线在坐标系的位置,可知抛物线的顶点坐标为(5,5),抛物线的右端点B坐标为(10,0),可设抛物线的顶点式求解析式,再根据题意可知水面宽度变为6m 时=2或=8,据此求得对应 y 的值即可得.【解答】解:(1)选择方案二,根据题意知点 B的坐标为(10,0),故答案为:方案二,(10,0);(2)由题意知,抛物线的顶点坐标为(5,5),且经过点O(0,0),B(10,0),设抛物线解析式为y=a(﹣5)2+5,把点(0,0)代入得:0=a(0﹣5)2+5,即a=﹣,∴抛物线解析式为y=﹣(﹣5)2+5,由题意知,当=5﹣3=2 时,﹣(﹣5)2+5= ,所以水面上涨的高度为米.【点评】本题主要考查二次函数的应用,根据抛物线在坐标系中的位置及点的坐标特点,合理地设抛物线解析式,再运用解析式解答题目的问题.24.(6 分)如图,AB为⊙O的直径,C、F为⊙O上两点,且点C 为弧BF的中点,过点C作AF的垂线,交AF的延长线于点E,交 AB的延长线于点D.(1)求证:DE是⊙O的切线;(2)如果半径的长为3,tanD=,求 AE的长.【分析】(1)连接OC,如图,由弧BC=弧 CF得到∠BAC=∠FAC,加上∠OCA=∠OAC.则∠OCA=∠FAC,所以OC∥AE,从而得到OC⊥DE,然后根据切线的判定定理得到结论;(2)先在Rt△OCD 中利用正切定义计算出 CD=4,再利用勾股定理计算出OD=5,则sinD=,然后在Rt△ADE 中利用正弦的定义可求出 AE的长.【解答】(1)证明:连接 OC,如图,∵点 C 为弧 BF 的中点,∴弧 BC=弧 CF.∴∠BAC=∠FAC,∵OA=OC,∴∠OCA=∠OAC.∴∠OCA=∠FAC,∴OC∥AE,∵AE⊥DE,∴OC⊥DE.∴DE 是⊙O 的切线;(2)解:在Rt△OCD中,∵tanD==,OC=3,∴CD=4,∴OD==5,∴AD=OD+AO=8,在Rt△ADE中,∵sinD===,∴AE=.【点评】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.25.(6 分)小明根据学习函数的经验,对函数y=4﹣52+4 的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)自变量的取值范围是全体实数,与 y 的几组对应数值如下表:… 2 ﹣0 1 2 ……4.3 3.2 0 ﹣2. 2 ﹣0 2.8 3.7 4 3.7 2.8 0 ﹣﹣m 3.2 4.3 …(2)如图,在平面直角坐标系Oy中,描出了以上表中各组对应值为坐标的点,根据描出的点,画出该函数的图象;(3)观察函数图象,写出一条该函数的性质函数图象关于 y轴对称;(4)进一步探究函数图象发现:①方程4﹣52+4=0 有 4 个互不相等的实数根;②有两个点(1,y1)和(2,y2)在此函数图象上,当2>1>2 时,比较 y1 和y2的大小关系为:y1<y2(填“>”、“<”或“=”);③若关于的方程4﹣52+4=a 有 4 个互不相等的实数根,则a 的取值范围是.【分析】(1)观察对应数值表即可得出;(2)用平滑的曲线依次连接图中所描的点即可;(3)观察函数图象,即可求得.【解答】解:(1)观察对应数值表可知:m=0,(2)用平滑的曲线依次连接图中所描的点,如下图所示:(3)观察函数图象,发现该函数图象关于 y轴对称,(答案不唯一),故答案为:函数图象关于 y 轴对称;(4)①∵函数的图象与轴有 4个交点,∴方程4﹣52+4=0 有 4 互不相等的实数根,故答案为 4;②函数图象可知,当2>1>2 时,y1<y2;故答案为<;③观察函数图象,结合对应数值表可知:,故答案为:.【点评】本题考查二次函数的图象,性质和最值,观察函数图象并结合函数性质是解决本题的关键.26.(6分)在平面直角坐标系Oy中,抛物线y=m2﹣2m﹣3(m≠0)与y轴交于点A,其对称轴与轴交于点 B 顶点为 C点.(1)求点 A 和点 B的坐标;(2)若∠ACB=45°,求此抛物线的表达式;(3)在(2)的条件下,垂直于y 轴的直线 l 与抛物线交于点P(1,y1)和Q(2,y2),与直线AB交于点N(3,y3),若3<1<2,结合函数的图象,直接写出1+2+3 的取值范围为.【分析】(1)利用待定系数法、对称轴公式即可解决问题;(2)确定点 C坐标,利用待定系数法即可解决问题;23(3)如图,当直线l 在直线 l1与直线 l2之间时,3<1<2,求出直线l 经过点 A 、点C 时的1+3+2 的值即可解决问题;【解答】解:(1)∵抛物线 y=m2﹣2m﹣3 (m≠0)与 y轴交于点A,∴点 A的坐标为(0,﹣3);∵抛物线 y=m2﹣2m﹣3 (m≠0)的对称轴为直线 =1,∴点 B的坐标为(1,0).(2)∵∠ACB=45°,∴点 C的坐标为(1,﹣4),把点 C 代入抛物线 y=m2﹣2m﹣3 得出 m=1,∴抛物线的解析式为 y=2﹣2﹣3.(3)如图,当直线 l1 经过点 A 时,1=3=0,2=2,此时1+3+2=2,当直线 l2 经过点 C 时,直线 AB 的解析式为y=3﹣3,∵C(1,﹣4),∴y=﹣4 时,=﹣此时,1=2=1,3=﹣,此时1+3+2=,当直线 l 在直线 l1与直线l2之间时,3<1<2∴.【点评】本题考查二次函数综合题、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,解答(3)题时,利用了“数形结合”的数学思想,降低了解题的难度.五、解答题(共 2 道小题,每小题 7 分,共 14 分)27.(7 分)已知,△A BC中,∠A CB=90°,AC=BC,点D 为BC边上的一点.(1)以点 C为旋转中心,将△ACD 逆时针旋转90°,得到△BCE,请你画出旋转后的图形;(2)延长AD交BE于点F,求证:AF⊥BE;(3)若AC=,BF=1,连接CF,则 CF的长度为.【分析】(1)直接利用旋转的性质即可得出结论;(2)先判断出△CBE≌△CAD,得出∠CBE=∠CAD,∠BCE=∠ACD=90°,即可得出结论;(3)先利用相似三角形的性质求出BD= ,CD=(3﹣),用BC=BD+CD= ,建立方程求出BD=,CD= ,∴BD=CD,再利用三角形的面积求出CM=1,进而根据勾股定理得,AM=2,再△AMC∽△BNF,求出FN= ,BN= ,∴DN=BD﹣BN= ,得出CN=CD+DN= ,最后用勾股定理即可得出结论.【解答】解:(1)如图 1,△BCE即为所求;(2)证明:如图 2,∵△CBE 由△CAD 旋转得到,∴△CBE≌△CAD,∴∠CBE=∠CAD,∠BCE=∠ACD=90°,∴∠CBE+∠E=∠CAD+∠E,∴∠BCE=∠AFE=90°,∴AF⊥BE;(3)如图3,在Rt△ABC中,BC=AC=,∴AB=AC=,在Rt△ABF 中,根据勾股定理得,AF=3,设 AD=,∴DF=3﹣,由旋转知,CE=CD,BE=AD=由(2)知,∠BFD=90°=∠BCE,∵∠B=∠B,∴△BFD∽△BCE,∴,∴= ,∴BD= ,CD=(3﹣),∵BC=BD+CD=,∴+ (3﹣)= ,∴=,∴BD=,CD=,过点 C 作CM⊥AD 于 M,∴S△ACD=AC×CD=AD×CM,∴CM==1,在Rt△AMC 中,根据勾股定理得,AM=2,过点 F 作FN⊥BC 于 N,∴∠BNF=90°=∠AMC,由旋转知,∠CAM=∠FBN,∴△AMC∽△BNF,∴=,∴= ,∴ FN=,BN= ,∴DN=BD﹣BN= ,∴CN=CD+DN=,在Rt△CNF中,CF==故答案为:.【点评】此题是三角形综合题,主要考查了旋转的性质,全等三角形的判定和性质,勾股定理,相似三角形的判定和性质,三角形的面积公式,解本题的关键是求出BD,CD的值.28.(7分)对于平面直角坐标系Oy中的点 P,给出如下定义:记点P到轴的距离为d1,到y 轴的距离为 d2,若d1≥d2,则称d1 为点P 的最大距离;若d1<d2,则称 d2 为点 P 的最大距离.例如:点 P(﹣3,4)到到轴的距离为 4,到 y 轴的距离为 3,因为3<4,所以点P 的最大距离为 4.(1)①点A(2,﹣5)的最大距离为5 ;②若点B(a,2)的最大距离为 5,则 a的值为±5;(2)若点 C在直线y=﹣﹣2上,且点C 的最大距离为 5,求点 C的坐标;(3)若⊙O 上存在点 M,使点 M 的最大距离为 5,直接写出⊙O的半径r 的取值范围.【分析】(1)①直接根据“最大距离”的定义,其最小距离为“最大距离”;②点 B(a,2)到轴的距离为 2,且其“最大距离”为 5,所以a=±5;(2)根据点C的“最大距离”为5,可得=±5 或y=±5,代入可得结果;(3)如图,观察图象可知:当⊙O于直线=5,直线=﹣5,直线 y=5,直线y=﹣5 有交点时,⊙O 上存在点 M,使点 M 的最大距离为 5,【解答】解:(1)①∵点 A(2,﹣5)到轴的距离为 5,到 y轴的距离为2,∵2<5,∴点 A 的“最大距离”为 5.②∵点 B(a,2)的“最大距离”为 5,∴a=±5;故答案为 5,±5.(2)设点 C的坐标(,y),∵点 C 的“最大距离”为 5,∴=±5 或y=±5,当 =5 时,y=﹣7,当 =﹣5 时,y=3,当 y=5 时,=﹣7,当 y=﹣5 时,=3,∴点C(﹣5,3)或(3,﹣5).(3)如图,观察图象可知:当⊙O于直线=5,直线=﹣5,直线 y=5,直线y=﹣5 有交点时,⊙O 上存在点 M,使点 M 的最大距离为 5,∴.【点评】本题考查一次函数综合题、“最大距离”的定义、圆的有关知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用特殊位置解决数学问题,属于中考压轴题.。
昌平区2015-2016学年第一学期初三年级期末质量抽测 数 学 试 卷 2016.1学校 姓名 考试编号考生须知 1.本试卷共8页,共五道大题,29道小题,满分120分.考试时间120分钟. 2.在试卷和答题卡上认真填写学校名称、姓名和考试编号. 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.考试结束,请将本试卷和答题卡一并交回. 一、选择题(共10道小题,每小题3分,共30分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.在平面直角坐标系中,将点 A (﹣2,3)向右平移3个单位长度后得到的对应点 A ′的坐标是 A .(1,3) B .(﹣2,﹣3) C .(﹣2,6) D .(﹣2,1)2.下面四个几何体中,主视图是圆的是A B C D3.“双十二”期间,小冉的妈妈在网上商城给小冉买了一个书包,除了书包打八折外还随机赠送购买者1支笔(除颜色外其它都相同且数量有限).小冉的妈妈购买成功时,还有5支黑色,3支绿色,2支红色的笔.那么随机赠送的笔为绿色的概率为 A .110 B .15 C .310 D . 254. 已知⊙O 的半径长为5,若点P 在⊙O 内,那么下列结论正确的是 A. OP >5 B. OP =5 C. 0<OP <5 D. 0≤OP <55.如右图,在Rt △ABC 中,∠C=90°,AC =4,BC =3,则sin B 的值等于 A .43B .34C .45D .35CBA6.已知(2)2m y m x =-+是y 关于x 的二次函数,那么m 的值为 A .-2 B. 2 C. 2± D. 07.如右图,线段AB 是⊙O 的直径,弦CD 丄AB ,∠CAB =20°,则∠AOD 等于 A .120° B . 140° C .150° D . 160°8.二次函数223y x x =--的最小值为A. 5B. 0C. -3D. -49.如右图,将△ABC 绕着点C 顺时针旋转50°后得到△A 1B 1C .若∠A =40°, ∠B 1=110°,则∠BCA 1的度数是A . 90°B . 80°C . 50°D .30°10. 如右图,正方形ABCD 和正三角形AEF 都内接于⊙O ,EF 与BC ,CD 分别相交于点G ,H ,则EF GH的值为A. 2B. 32C.3 D. 2二、填空题(共6道小题,每小题3分,共18分) 11.如果3cos 2A =,那么锐角A 的度数为 .12.如右图,四边形ABCD 内接于⊙O ,E 是BC 延长线上一点,若∠BAD =105°, 则∠DCE 的度数是 .13.在一个不透明的口袋中装有5个除了标号外其余都完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号小于..4的概率为 .B 1BA C A 1ABC D OO EDBACBED C AOAB CDE O FG H14.如右图,AB 是⊙O 的直径,弦CD AB ⊥于点E ,3023CDB CD ∠== ,, 则阴影部分的面积为 .15.如图1,将一个量角器与一张等边三角形(△ABC )纸片放置成轴对称图形,CD ⊥AB ,垂足为D ,半圆(量角器)的圆心与点D 重合,此时,测得顶点C 到量角器最高点的距离CE =2cm ,将量角器沿DC 方向平移1cm ,半圆(量角器)恰与△ABC 的边AC ,BC 相切,如图2,则AB 的长为 cm .图1CBAD EED ABC 图216. 如右图,我们把抛物线y =-x (x -3)(0≤x ≤3)记为C 1, 它与x 轴交于点O ,A 1;将C 1绕点A 1旋转180°得C 2, 交x 轴于另一点A 2;将C 2绕点A 2旋转180°得C 3,交x 轴于另一点A 3;……;如此进行下去,直至得C 2016.①C 1的对 称轴方程是 ;②若点P (6047,m )在抛物线C 2016 上, 则m = .三、解答题(共6道小题,每小题5分,共30分) 17.计算:2sin 60cos30(sin 45)tan 45⋅+- .18.如下图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点, △ABC 的顶点均在格点上.(1)画出将△ABC 向右平移2个单位后得到的△A 1B 1C 1,再画出将△A 1B 1C 1绕点B 1按逆时针方向旋转90°后所得到的△A 2B 1C 2;(2)求线段B 1C 1旋转到B 1C 2的过程中,点C 1所经过的路径长.…C 3A 3C 2A 2yxOA 1C 1ACB19.抛物线2(0)y ax bx c a =++≠上部分点的横坐标x ,纵坐标y 的对应值如下表:x … -2 -1 0 1 2 … y…4664…(1)求这个二次函数的表达式及顶点坐标; (2)直接写出当y <0时x 的取值范围.20. 如下图,在△ABC 中,∠A =30°,∠B =45°,AC =32,求AB 的长.BCA21.某小区为了促进生活垃圾的分类处理,将生活垃圾分为厨余、可回收和其他三类,分别记为a ,b ,c ,并且设置了相应的垃圾箱,“厨余垃圾”箱、“可回收物”箱和“其他垃圾”箱,分别记为A ,B ,C .(1)若小明将一袋分好类的生活垃圾随机投入一类垃圾箱,请画树状图或列表求垃圾投放正确的概率;(2)为调查居民生活垃圾分类投放情况,现随机抽取了该小区三类垃圾箱中总共100吨生活垃圾,数据统计如下表(单位:吨):垃圾箱 垃圾A B C a 40 10 10 b 3 24 3 c226试估计该小区居民“厨余垃圾”投放正确的概率约是多少.22. 如右图,二次函数2y x h k ()=-+的顶点坐标为M (1,-4).(1)求出该二次函数的图象与x 轴的交点A ,B 的坐标;(2)在二次函数的图象上是否存在点P (点P 与点M 不重合),使54PAB MAB S S =△△,若存在,求出P 点的坐标;若不存在,请说明理由.四、解答题(共4道小题,每小题5分,共20分)23.如右图,△ABC 内接于⊙O ,∠B =60°,CD 是⊙O 的直径,点P 是CD 延长线上的一点,且AP =AC . (1)求证:P A 是⊙O 的切线;(2)若43AB =+,23BC =,求⊙O 的半径.POD CB AxyO A BM24.某校九年级进行集体跳绳比赛.如下图所示,跳绳时,绳甩到最高处时的形状可看作是某抛物线的一部分,记作G ,绳子两端的距离AB 约为8米,两名甩绳同学拿绳的手到地面的距离AC 和BD 基本保持1米,当绳甩过最低点时刚好擦过地面,且与抛物线G 关于直线AB 对称.(1)求抛物线G 的表达式并写出自变量的取值范围;(2)如果身高为1.5米的小华站在CD 之间,且距点C 的水平距离为m 米,绳子甩过最高处时超过她的头顶,直接写出m 的取值范围.地面GCABD25.如图,⊙O 的半径为20,A 是⊙O 上一点,以OA 为对角线作矩形OBAC ,且OC =12. 直线BC 与⊙O 交于D ,E 两点,求CE -BD 的值.OA C BD E26. 【问题学习】小芸在小组学习时问小娟这样一个问题:已知α为锐角,且sin α=13,求sin2α的值.小娟是这样给小芸讲解的:如图1,在⊙O 中,AB 是直径,点C 在⊙O 上,所以∠ACB =90°. 设∠BAC =α, 则sin α=BC AB=13.易得∠BOC =2α.设BC =x ,则AB =3x ,则AC =22x .作CD ⊥AB 于D ,求出CD =(用含x 的式子表示),可求得sin2α=CD OC= .【问题解决】已知,如图2,点M ,N ,P 为⊙O 上的三点,且∠P =β,sin β =35,求sin2β的值.ON MP图2OBCAD图1五、解答题(共3道小题,第27,28小题各7分,第29小题8分,共22分) 27.阅读下列材料:春节回家是中国人的一大情结,春运车票难买早已是不争的事实. 春节回家一般都要给父母、亲戚带点年货,坐车回去不好携带,加上普通小客车中签率低以及重大节假日高速公路小客车免费通行等因素,所以选择春节租车回家的人越来越多. 这都对汽车租赁市场起到明显的拉动作用,出现了很多的租赁公司.某租赁公司拥有20辆小型汽车,公司平均每日的各项支出共6250元. 当每辆车的日租金为500元时,可全部租出;当每辆车的日租金每增加50元,未租出的车将增加1辆.根据以上材料解答下列问题:设公司每日租出x 辆车时,日收益为y 元(日收益=日租金收入-平均每日各项支出) . (1)公司每日租出x 辆车时,每辆车的日租金收入为 元(用含x 的代数式表示); (2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元? (3)当每日租出多少辆时,租赁公司的日收益才能盈利?28. 已知,点O 是等边△ABC 内的任一点,连接OA ,OB ,OC .(1) 如图1,已知∠AOB =150°,∠BOC =120°,将△BOC 绕点C 按顺时针方向旋转60°得△ADC . ①∠DAO 的度数是 ;②用等式表示线段OA ,OB ,OC 之间的数量关系,并证明; (2) 设∠AOB =α,∠BOC =β.①当α,β满足什么关系时,OA+OB+OC 有最小值?请在图2中画出符合条件的图形,并说明理由;②若等边△ABC 的边长为1,直接写出OA+OB+OC 的最小值.ABCDABCO 图1图229. 在平面直角坐标系xOy 中,已知两点A (0,3),B (1,0),现将线段AB 绕点B 按顺时针方向旋转90°得到线段BC ,抛物线y =ax 2+bx +c (a ≠0)经过点C . (1)如图1,若该抛物线经过原点O ,且14a. ①求点C 的坐标及该抛物线的表达式;②在抛物线上是否存在点P ,使得∠POB =∠BAO . 若存在,请求出所有满足条件的点P 的坐标,若不存在,请说明理由;(2)如图2,若该抛物线y =ax 2+bx +c (a ≠0)经过点D (2,1),点Q 在抛物线上,且满足∠QOB =∠BAO .若符合条件的Q 点的个数是4个,请直接写出a 的取值范围.CBAO yx12-14432-1图2图1-12344-121xyOABC昌平区2015-2016学年第一学期初三年级期末质量抽测数学参考答案及评分标准 2016. 1一、选择题(共10道小题,每小题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案ABCDCABDBC二、填空题(共6道小题,每小题3分,共18分) 题号111213141516答案 30° 105°3523π 23 32x =,- 2 三、解答题(共6道小题,每小题5分,共30分) 17.解: 2sin 60cos30(sin 45)tan 45⋅+-23321222=⨯+-⎛⎫⎪⎝⎭………………………………………………………… 4分31142=+-14=. ………………………………………………………………… 5分18.解:(1)如图所示. ………………………………………………………… 4分A 2C 2C 1ACB 1BA 1(2)∵点C 1所经过的路径为一段弧, ∴点C 1所经过的路径长为90π42π.180l ⨯==………………………………… 5分 19.解:(1)由表得,抛物线2y ax bx c =++过点(0,6),∴c = 6.…………………………………………………………………………… 1分∵抛物线26=++y ax bx 过点(-1,4)和(1,6), ∴46,6 6.a b a b =-+=++⎧⎨⎩ …………………………………………………………………… 2分解得,1,1.a b =-=⎧⎨⎩∴二次函数的表达式为26y x x =-++.…………………………………………………… 3分 ∵抛物线2y ax bx c =++过点(0,6)和(1,6), ∴抛物线的对称轴方程为12x =.∵当12x =时,254y =,∴抛物线的顶点坐标为125,24⎛⎫ ⎪⎝⎭. …………………………………………………………4分 (2)当y <0时x 的取值范围是x <-2或x >3. …………………………………………………… 5分20.解: 过点C 作CD ⊥AB 于点D . …………………………………………………………………1分 在Rt △ADC 中,30,23A AC ∠=︒=, ∴132CD AC ==,………………………2分3cos 2332AD AC A =⋅=⨯=. ………………3分在Rt △CDB 中,∠B=45°, ∴∠DCB=∠B=45°.∴3BD CD ==. …………………………………………………………………4分 ∴33AB AD BD =+=+. …………………………………………………… 5分 21.解:(1)画树状图或列表为CB a b ca b c c b aA垃圾 垃圾箱A B C a (A ,a ) (B ,a ) (C ,a ) b (A ,b ) (B ,b ) (C ,b ) c(A ,c )(B ,c )(C ,c )∴ P (垃圾投放正确)=13. ………………………………………………………………… 4分 (2)∵4024010103=++,∴估计该小区“厨余垃圾”投放正确的概率约为23. …………………………… 5分DBCA22.解:(1)∵二次函数2()y x h k =-+的顶点坐标为M (1,-4),∴抛物线的表达式为214y x ()=--.令y =0,得1213x x =-=,.∴抛物线与x 轴的交点坐标为A (-1,0),B (3,0). ………………………………… 2分 (2)∵A (-1,0), B (3,0), M (1,-4), ∴AB =4.∴8MAB S =△. ……………………………………………………………………… 3分 ∵AB =4,∴点P 到AB 的距离为5时,54PAB MAB S S =△△.即点P 的纵坐标为5±.∵点P 在二次函数的图象上,且顶点坐标为M (1,-4),∴点P 的纵坐标为5. …………………………………………………………………… 4分 ∴()2514x =--.∴ x 1=-2,x 2=4.∴点P 的坐标为(4,5)或(-2,5). ……………………………………………………… 5分 四、解答题(共4道小题,每小题5分,共20分)23.(1)证明:连接OA . ∵∠B =60°, ∴∠AOC =2∠B =120°. 又∵OA =OC ,∴∠OAC =∠OCA =30°.……………………1分 又∵AP =AC ,∴∠P =∠ACP =30°.∴∠OAP =∠AOC ﹣∠P =90°. ∴OA ⊥PA .又∵点A 在⊙O 上,∴PA 是⊙O 的切线.………………………………………………………………2分 (2)解:过点C 作CE ⊥AB 于点E . 在Rt △BCE 中,∠B =60°,23BC =, ∴132BE BC ==,CE =3.…………………………………………………3分∵43AB =+,∴4AE AB BE =-=.P OD CBA E∴在Rt △ACE 中,225AC AE CE =+=.………………………………4分∴AP =AC =5.∴在Rt △PAO 中,533OA =.∴⊙O 的半径为533. …………………………………………………………… 5分24.解:(1)如图所示建立平面直角坐标系.地面xOyGCABDE由题意可知:(4,0)A -,(4,0)B ,顶点(0,1)E .设抛物线G 的表达式为21y ax =+. ……………………………………………… 2分 ∵(4,0)A -在抛物线G 上, ∴1610a +=,求得116a =-.∴21116y x =-+. ……………………………………………………………………… 3分自变量的取值范围为-4≤x ≤4. ……………………………………………………… 4分(2)424+222m -<<. ………………………………………………… 5分 25.解:过点O 作OF DE ⊥于点F .∴DF EF =. …………………………………… 1分 在矩形ABOC 中,OA=20,∴20BC OA ==,90BOC ∠=︒. ……………………… 2分 在Rt △BOC 中,OC=20 , ∴cos ∠123205OC OCB BC===.在Rt △OCF 中,cos ∠12CF CF OCF OC==,∴3125CF =.∴365CF =. ………………………………………………………………………………3分FOAC BD E645BF BC CF =-=. …………………………………………………………………4分∴28()()5CE BD EF CF DF BF BF CF -=---=-=. ……………………………… 5分26.解:223x CD =. (1)分 sin2α=CD OC=429. ……………………………………………………………… 2分如图,连接NO ,并延长交⊙O 于点Q ,连接MQ ,MO ,过点M 作MR NO ⊥于点R . 在⊙O 中,∠NMQ =90°. ∵ ∠Q =∠P =β,∴ ∠MON =2∠Q =2β. ………………………………………… 3分 在Rt △QMN 中, ∵ sin β =35MN NQ =, ∴ 设MN =3k ,则NQ =5k ,易得OM=21NQ=52k .∴ MQ =224QN MN k -=.∵ Δ1122NMQ S MN MQ NQ MR =⋅=⋅,∴ 345k k k MR ⋅=⋅ . ∴ MR =125k . ………………………………………………………………………… 4分 在Rt △MRO 中,sin2β=sin ∠MON =122455252kMRk OM ==. …………………………… 5分 五、解答题(共3道小题,第27,28小题各7分,第29小题8分,共22分)27.解:(1)1500-50x (0≤x ≤20, x 为整数). …………………………………………………… 1分(2)∵日租金收入=每辆车的日租金×日租出车辆的数量,∴日租金收入=x (1500-50x ). …………………………………………………………… 2分 又∵日收益=日租金收入-平均每日各项支出, ∴y =x (1500-50x )-6250=-50x 2+1500x -6250=-50(x -15)2+5000. …………………………………… 3分QRO N MP 图2∵租赁公司拥有20辆小型汽车, ∴ 0≤x ≤20.∴当x =15时,y 有最大值5000.∴当日租出15辆时, 租赁公司的日收益最大,最大值为5000元. ………………… 4分 (3)当租赁公司的日收益不盈也不亏时,即y =0.∴-50(x -15)2 + 5000=0,解得x 1=25,x 2=5. …………………………………… 5分∴当5<x <25时,y >0. ……………………………………………………………… 6分 ∵租赁公司拥有20辆小型汽车,∴当每日租出5<x ≤20(x 为整数)辆时,租赁公司的日收益才能盈利.…………… 7分 28.解:(1)①90°. …………………………………………………………………………………… 1分②线段OA ,OB ,OC 之间的数量关系是222OA OB OC +=. 如图1,连接OD .∵△BOC 绕点C 按顺时针方向旋转60°得△ADC , ∴△ADC ≌△BOC ,∠OCD =60°.∴CD = OC ,∠ADC =∠BOC =120°, AD= OB . ∴△OCD 是等边三角形.∴OC =OD =CD ,∠COD =∠CDO =60°. ∵∠AOB =150°,∠BOC =120°, ∴∠AOC =90°.∴∠AOD =30°,∠ADO =60°. ∴∠DAO =90°.在Rt △ADO 中,∠DAO =90°, ∴222OA AD OD +=.∴222OA OB OC +=. ……………………………………………………………… 3分(2)①如图2,当α=β=120°时,OA +OB +OC 有最小值.作图如图2的实线部分. ……………………………………………………… 4分 如图2,将△AOC 绕点C 按顺时针方向旋转60°得△A ’O ’C ,连接OO ’. ∴△A ’O ’C ≌△AOC ,∠OCO ’=∠ACA ’=60°. ∴O ’C = OC , O ’A ’ = OA ,A ’C = BC , ∠A ’O ’C =∠AOC . ∴△OC O ’是等边三角形.∴OC = O ’C = OO ’,∠COO ’=∠CO ’O =60°.DABCO 图1O O /A /4321ABC图2∵∠AOB =∠BOC =120°, ∴∠AOC =∠A ’O ’C =120°. ∴∠BOO ’=∠OO ’A ’=180°. ∴四点B ,O ,O ’,A ’共线.∴OA +OB +OC = O ’A ’ +OB +OO ’ =BA ’ 时值最小. …………………………………… 6分②当等边△ABC 的边长为1时,OA +OB +OC 的最小值A ’B =3. ………………… 7分 29.解:(1)①如图1,过点C 作CD ⊥x 轴于点D . ∴90CDB AOB ∠=∠=︒. ∵∠ABC =90º,∴90ABO CBD ∠+∠=︒. 又∵90O AB ABO ∠+∠=︒, ∴OAB CBD ∠=∠. ∵AB =BC , ∴△AOB ≌△BDC . ∴BD =OA ,CD =OB . ∵A (0,3),B (1,0),∴C (4,1). ………………………………1分∵抛物线y=ax 2+bx+c 经过原点O ,且14a =,∴214y x bx =+. ……………………………………………………………………2分又∵抛物线经过点C (4,1), ∴34b =-. ∴该抛物线的表达式为21344y x x =-. ……………………………………………… 3分 ② 当点P 在第一象限时,过点P 作PG ⊥x 轴于点G ,连接OP .∵∠POB =∠BAO ,∴1tan tan 3POB BAO ∠=∠=.设P (3m ,m ),m >0. ……………………………………………………………………… 4分∵点P 在21344y x x =-上,∴29944m m m -=. 解得:139m =,0m =(舍去).∴1313()39P ,.…………………………………………………………………………… 5分当点P 在第四象限时,同理可求得55()39P ,-. ………………………………… 6分GP D 图1-1234-121xyO ABC当点P在第二、三象限时,∠POB为钝角,不符合题意.综上所述,在抛物线上存在使得∠POB=∠BAO的点P,点P的坐标为1313()39,或55()39,-.(2)a的取值范围为18a<-或6356a+>. …………………………………………………8分。