高三理数黄冈中学高三月考卷
- 格式:pdf
- 大小:1.01 MB
- 文档页数:11
湖北省黄冈中学上学期高三数学( 理科 )10 月月考试卷人教版第Ⅰ卷 (选择题共 50分)一、选择题:本大题共 10 小题,每题5 分,共 50 分。
在每题给出的四个选项中,只有一项为哪一项切合题目要求的。
1.设全集为 R ,A = {x |x 25 x6 0}, B {x x5}a11 B ,则()a , 为常数,且A .B .C .D .2.已知函数 f ( x) log a ( x 2ax 3) ( a0且a1) 知足:对随意实数 x 、x,当x 1x 2 a 时,1 22总有f ( x 1 )f (x 2 ) 0 ,那么实数 a 的取值范围是()A .( 0, 3)B .( 1, 3)C . (1, 2 3 )D . (0, 2 3 )3.若 tan100a ,则用 a 表示 cos10 °的结果为()A .1B .a C .aD .1a1 a 21 a 21a 24.设数列 { a } 是公比为 ( ≠ 1),首项为 b 的等比数列, S 是其前 n 项和,对随意的 n N ,nn点 (S n , S n 1) 在()A .直线 y = ax + b 上B .直线 y = ax - b 上C .直线 y = bx +a 上D .直线 y = bx - a 上5.已知 f (x)a x , g( x)log b x, 且 lg a lg b0, 则 y = f ( x ) 与 y = g ( x ) 的图象()A .对于直线 x+ y = 0B .对于直线 x - y =0 对称C .对于 y 轴对称D .对于原点对称6.若“p 且 q ”与“┐ p 或 ”平均假命题,则()qA . p 真 q 假B . p 假 q 真C . p 与 q 均真D . p 与 q 均假7.若sin(2)4 , sin( 2 2 ) 3 , 则θ角的终边在()5 5A .第一象限B .第二象限C .第三象限D .第四象限8.设O 为内部一点,且OA 2OB 3OC 0,则的面积与的面积之比为△ABC△ AOC△BOC- 1 -( )A .3B .5C . 2D . 3239.已知函数 f (x)2 x1, (x 0),若方程 f ( x) xa 有且只有两个不相等的实数根,则实f ( x 1), (x0),数 a 的取值范围为()A .,0B . 0,1C . ( ,1)D . 0,10.设定义域、值域均为 R 的函数 y = f( x ) 的反函数为 y = f -1( x ). 若 f( x ) + f (1 - x ) =2 对全部x R 建立,则 f - 1( x - 2) + f - 1(4 - x ) 的值为()A . 0B . 1C .- 1D . 2第Ⅱ卷(非选择题,共100 分)二、填空题:本大题共 5 小题,每题5 分,共 25 分。
一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.sin(1920)-的值为( )A.2-B .12-C.2D .12解析:sin(1920)sin(2406360)sin(18060)-=-⨯=+,即原式sin 60=-,故选A .答案:A2.命题“x ∀∈R ,20x >”的否定是( )A .x ∀∈R ,20x ≤B .x ∃∈R ,20x >C .x ∃∈R ,20x <D .x ∃∈R ,20x ≤解析:全称命题的否定是特称命题,易知应选D .答案:D3.已知集合{P =正奇数}和集合{|M x x ==,,}a b a P b P ⊕∈∈,若M P ⊆,则M 中的运算“⊕”是( ) A .加法 B .除法C .乘法D .减法解析:由已知集合M 是集合P 的子集,设*21,21(,)a m b n m n =-=-∈N ,∵(21)(21)a b m n ⋅=--42()12[2()1]1mn m n mn m n P =-++=-++-∈,∴M P ⊆,而其它运算均不使结果属于集合P ,故选C . 答案:C4.已知某几何体的侧视图与其正视图相同,相关的尺寸如下图所示,则这个几何体的体积是( )A. 8πB. 7πC. 2π`D.74π解析:依题意该几何体为一空心圆柱,故其体积2237[2()]124V ππ=-⨯=,选D .答案:D5.已知A 、B 两点分别在两条互相垂直的直线20x y -=和0x ay +=上,且AB 线段的中点为P 10(0,)a,则线段AB 的长为( ) 俯视图正 视 图 侧视图A .8B .9C .10D .11解析:由已知两直线互相垂直得2a =,∴线段AB 中点为P (0,5),且AB 为直角三角形AOB 的斜边,由直角三角形的性质得||2||10AB PO ==,选C .答案:C6.已知各项为正的等比数列{}n a 中,4a 与14a 的等比中项为7112a a +的最小值为( )A .16B .8C .D .4解析:由已知24148a a ==,再由等比数列的性质有4147118a a a a ==,又70a >,110a >,71128a a +≥=,故选B .7.设函数2,0(),01x x bx c f x x ≥⎧++=⎨<⎩,若(4)(0)f f =,(2)2f =,则函数()()g x f x x=-的零点的个数是( )A .0B .1C .2D .3解析:已知即164422b c c b c ++=⎧⎨++=⎩,∴46b c =-⎧⎨=⎩,若0x ≥,则246x x x -+=,∴2x =,或3x =;若0x <,则1x =舍去,故选C .答案:C8.给出下列的四个式子:①1a b -,②1a b +,③1b a +,④1ba-;已知其中至少有两个式子的值与tan θ的值相等,则( ) A .cos 2,sin 2a b θθ== B .sin 2,cos 2a b θθ== C .sin,cos22a b θθ==D .cos,sin22a b θθ==解析:sin sin 21cos2tan ,cos2,sin 2cos 1cos2sin 2a b θθθθθθθθθ-===∴==+时,式子①③与tan θ的值相等,故选A .答案:A9.设集合(){}(){},|||||1,,()()0A x y x y B x y y x y x =+≤=-+≤,M AB =,若动点(,)P x y M ∈,则22(1)x y +-的取值范围是( )A .15[,]22B .5]22C .1[,22D .22解析:在同一直角坐标系中画出集合A 、B 所在区域,取交集后如图,故M 所表示的图象如图中阴影部分所示,而22(1)d x y =+-表示的是M 中的点到(0,1)的距离,从而易知所求范围是15[,]22,选A .10.已知O 为平面上的一个定点,A 、B 、C 是该平面上不共线的三个动点,点P 满足条件2OB OC OP +=(),(0,)||cos ||cos AB ACAB B AC Cλλ++∈+∞,则动点P 的轨迹一定通过ABC ∆的( )A .重心B .垂心C .外心D .内心解析:设线段BC 的中点为D ,则2OB OCOD +=,∴2OB OC OP +=()||cos ||cos AB ACAB B AC Cλ++()||cos ||cos AB ACOD AB B AC Cλ=++,∴()||cos ||cos AB ACOP OD DP AB B AC Cλ-=+=,∴()()||cos ||cos ||cos ||cos AB AC AB BC AC BCDP BC BC AB B AC C AB B AC Cλλ⋅⋅⋅=+⋅=+||||cos()||||cos ()(||||)0||cos ||cos AB BC B AC BC CBC BC AB B AC Cπλλ-=+=-+=,∴DP BC ⊥,即点P 一定在线段BC 的垂直平分线上,即动点P 的轨迹一定通过ABC ∆的外心,选C . 答案:C二.填空题:本大题共5小题,每小题5分,共25分,把答案直接填在题中横线上. 11.1220x e dx =⎰______________.解析:1122220011|(1)22xx e dx e e ==-⎰.答案:1(1)2e - 12.定义运算a cad bc b d=-,复数z 满足11z i i i=+,则复数z 的模为_______________.解析:由11z i i i=+得1212izi i i z i i+-=+⇒==-,∴z ==.13.已知方程22220x y kx y k ++++=所表示的圆有最大的面积,则直线(1)2y k x =-+的倾斜角α=_______________.解析:1r =≤,当有最大半径时有最大面积,此时0k =,1r =,∴直线方程为2y x =-+,设倾斜角为α,则由tan 1α=-且[0,)απ∈得34πα=.答案:34π14.已知函数2()mf x x -=是定义在区间2[3,]m m m ---上的奇函数,则()f m =_______.解析:由已知必有23m m m -=+,即2230m m --=,∴3m =,或1m =-; 当3m =时,函数即1()f x x -=,而[6,6]x ∈-,∴()f x 在0x =处无意义,故舍去; 当1m =-时,函数即3()f x x =,此时[2,2]x ∈-,∴3()(1)(1)1f m f =-=-=-.答案:1-15.在工程技术中,常用到双曲正弦函数2x x e e shx --=和双曲余弦函数2x x e e chx -+=,双曲正弦函数和双曲余弦函数与我们学过的正弦函数和余弦函数有许多相类似的性质,请类比正、余弦函数的和角或差角公式,写出关于双曲正弦、双曲余弦函数的一个正确的类似公式 .解析:由右边2222x x y y x x y ye e e e e e e e ----++--=⋅-⋅1()4x yx y x y x y x y x y x y x y e e e e e e e e +--+--+--+--=+++-++-()()1(22)()42x y x y x y x y e e e e ch x y ------+=+==-=左边,故知.答案:填入()c c c s s h x y hx hy hx hy -=-,()c c c s s h x y hx hy hx hy +=+,()c s sh x y shx hy chx hy -=-,()c s sh x y shx hy chx hy +=+四个之一即可.三.解答题:本大题共6小题,共75分,请给出各题详细的解答过程.16.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且*41()n n S a n =+∈N .(1)求1a ,2a ;(2)设3log ||n n b a =,求数列{}n b 的通项公式. 解答:(1)由已知1141S a =+,即1141a a =+,∴=1a 13,……………………2分 又2241S a =+,即1224()1a a a +=+,∴219a =-; ……………………5分 (2)当1n >时,1111(1)(1)44n n n n n a S S a a --=-=+-+,即13n n a a -=-,易证数列各项不为零(注:可不证),故有113n n a a -=-对2n ≥恒成立,∴{}n a 是首项为13,公比为13-的等比数列, ∴1111()(1)333n n n n a ---=-=-, ……………………10分∴33log ||log 3nn n b a n -===-. ……………………12分17.(本小题满分12分)已知 1:(),3xp f x -=且|()|2f a <; q :集合2{|(2)10,}A x x a x x =+++=∈R ,且A ≠∅.若p ∨q 为真命题,p ∧q 为假命题,求实数a 的取值范围. 解答:若1|()|||23af a -=<成立,则616a -<-<, 即当57a -<<时p 是真命题; ……………………4分 若A ≠∅,则方程2(2)10x a x +++=有实数根, 由2(2)40a ∆=+-≥,解得4a ≤-,或0a ≥,即当4a ≤-,或0a ≥时q 是真命题; ……………………8分 由于p ∨q 为真命题,p ∧q 为假命题,∴p 与q 一真一假,故知所求a 的取值范围是(,5](4,0)[7,)-∞--+∞. ……………………12分(注:结果中在端点处错一处扣1分,错两处扣2分,最多扣2分) 18.(本小题满分12分)已知ABC ∆的两边长分别为25AB =,39AC =,且O 为ABC∆外接圆的圆心.(注:39313=⨯,65513=⨯)(1)若外接圆O 的半径为652,且角B 为钝角,求BC 边的长; (2)求AO BC ⋅的值.解答:(1)由正弦定理有2sin sin AB ACR C B==, ∴253965sin sin C B ==,∴3sin 5B =,5sin 13C =, ……………………3分 且B 为钝角,∴12cos 13C =,4cos 5B =-,∴3125416sin()sin cos sin cos ()51313565B C B C C B +=+=⨯+⨯-=,又2sin BC R A=,∴2sin 65sin()16BC R A B C ==+=; ……………………6分 (2)由已知AO OC AC +=,∴22()AO OC AC +=,即2222||2||||39AO AO OC OC AC +⋅+== ……………………8分同理AO OB AB +=,∴2222||2||||25AO AO OB OB AB +⋅+==, …………10分两式相减得22(3925)(3925)896AO OC AO OB ⋅-⋅=-+=,即2896AO BC ⋅=,∴448AO BC ⋅=. ……………………12分19.(本小题满分12分)在如图所示的多面体ABCDE中,AB⊥平面ACD ,DE⊥平面ACD ,AC=AD=CD=DE=2,AB=1,G 为AD 中点.(1)请在线段CE 上找到点F 的位置,使得恰有直线BF∥平面ACD ,并证明这一事实; (2)求平面BCE 与平面ACD 所成锐二面角的大小; (3)求点G 到平面BCE 的距离.解法一:以D 点为原点建立如图所示的空间直角坐标系,使得x 轴和z 轴的正半轴分别经过点A 和点E ,则各点的坐标为(0,0,0)D ,(2,0,0)A , (0,0,2)E ,(2,0,1)B,(1,0)C ,(1)点F 应是线段CE 的中点,下面证明:设F 是线段CE 的中点,则点F的坐标为1(2F,∴3(0)2BF =-,显然BF 与平面xOy 平行,此即证得BF∥平面ACD ; ……………………4分 (2)设平面BCE 的法向量为(,,)n x y z =,则n CB ⊥,且n CE ⊥,由(1,CB =,(1,2)CE =-,∴020x z x z ⎧-+=⎪⎨--+=⎪⎩,不妨设y =12x z =⎧⎨=⎩,即(1,3,2)n =,∴所求角θ满足(0,0,1)2cos 2||n n θ⋅==,∴4πθ=; ……………………8分(3)由已知G 点坐标为(1,0,0),∴(1,0,1)BG =--,由(2)平面BCE 的法向量为(1,3,2)n =, ∴所求距离3||24||BG n d n ⋅==……………………12分解法二:(1)由已知AB⊥平面ACD ,DE⊥平面ACD ,∴AB//ED , 设F 为线段CE 的中点,H 是线段CD 的中点,连接FH ,则//FH =12ED ,∴//FH =AB , …………………2分∴四边形ABFH 是平行四边形,∴//BF AH , 由BF ⊄平面ACD 内,AH ⊂平面ACD ,//BF ∴平面ACD ; ……………4分 (2)由已知条件可知ACD ∆即为BCE ∆在平面ACD 上的射影,设所求的二面角的大小为θ,则cos ACDBCES Sθ∆∆=, ……………………6分易求得BC=BE =,CE=∴1||2BCES CE ∆==而2||4ACD S AC ∆==∴cos 2ACD BCE S S θ∆∆==,而02πθ<<, ∴4πθ=;………………8分(3)连结BG 、CG 、EG ,得三棱锥C —BGE , 由ED ⊥平面ACD ,∴平面ABED ⊥平面ACD , 又CG AD ⊥,∴CG ⊥平面ABED ,设G 点到平面BCE 的距离为h ,则C BGE G BCE V V --=即1133BGE BCE S GC S h ∆∆⨯=⨯,由32BGE S ∆=,6BCE S ∆=,3CG =,∴3332246BGE BCE S GC h S ∆∆⨯===即为点G 到平面BCE 的距离.………………12分 20.(本小题满分13分)已知椭圆22221y x ab+=(0)a b >>的一个顶点为B (0,4),离心率e =5,直线l 交椭圆于M 、N 两点. (1)若直线l 的方程为4y x =-,求弦MN 的长;(2)如果ΔBMN 的重心恰好为椭圆的右焦点F ,求直线l 方程的一般式.解答:(1)由已知4b =,且55c a =,即2215c a=,∴22215a b a-=,解得220a =,∴椭圆方程为2212016y x +=; ……………………3分 由224580x y +=与4y x =-联立,消去y 得29400x x -=,∴10x =,2409x =, ∴所求弦长221402||11||9MN x x =+-=; ……………………6分 (2)椭圆右焦点F 的坐标为(2,0), 设线段MN 的中点为Q 00(,)x y ,由三角形重心的性质知2BF FQ =,又(0,4)B , ∴00(2.4)2(2,)x y -=-,故得003,2x y ==-,求得Q 的坐标为(3,2)-; ……………………9分 设1122(,),(,)M x y N x y ,则12126,4x x y y +=+=-,且222211221,120162016x y x y +=+=, ……………………11分以上两式相减得12121212()()()()02016x x x x y y y y +-+-+=,1212121244665545MN y y x x k x x y y -+==-=-=-+-∴,故直线MN 的方程为62(3)5y x +=-,即65280x y --=. ……………………13分 (注:直线方程没用一般式给出但结果正确的扣1分) 21.(本小题满分14分)已知函数[)1()ln 1,sin g x x x θ=++∞⋅在上为增函数,且(0,)θπ∈,12()ln m ef x mx x x-+=--,m ∈R . (1)求θ的值;(2)当0m =时,求函数()f x 的单调区间和极值; (3)若在[1,]e 上至少存在一个0x ,使得00()()f x g x >成立,求m 的取值范围. 解答:(1)由已知/211()0sin g x xx θ=-+≥⋅在[1,)+∞上恒成立, 即2sin 10sin x x θθ⋅-≥⋅,∵(0,)θπ∈,∴sin 0θ>,故sin 10x θ⋅-≥在[1,)+∞上恒成立,只需sin 110θ⋅-≥, 即sin 1θ≥,∴只有sin 1θ=,由(0,)θπ∈知2πθ=; ……………………4分(2)∵0m =,∴12()ln ef x x x-+=--,(0,)x ∈+∞, ∴/2221121()e e x f x x x x ---=-=, 令/()0f x =,则21x e =-(0,)∈+∞, ∴x ,/()f x 和()f x 的变化情况如下表:即函数的单调递增区间是(0,21)e -,递减区间为(21,)e -+∞,有极大值(21)1ln(21)f e e -=---; ……………………9分(3)令2()()()2ln m eF x f x g x mx x x +=-=--, 当0m ≤时,由[1,]x e ∈有0m mx x -≤,且22ln 0ex x--<,∴此时不存在0[1,]x e ∈使得00()()f x g x >成立;当0m >时,2/222222()m e mx x m e F x m x x x+-++=+-=, ∵[1,]x e ∈,∴220e x -≥,又20mx m +>,∴/()0F x >在[1,]e 上恒成立,故()F x 在[1,]e 上单调递增,∴max ()()4mF x F e me e==--, 令40m me e -->,则241em e >-,故所求m 的取值范围为24(,)1ee +∞-. ……………………14分。
高三月考数学试卷(答案在最后)一、选择题:本题共8小题,每小题5分,共40分.1.已知集合A =x 0<<,B =x 1<<2,若B A ⊆,则实数a 的取值范围为()A.()2,∞+ B.[)2,∞+ C.()0,2 D.(]0,22.已知,p q 为实数,1i -是关于x 的方程20x px q ++=的一个根,则p q -=()A.2- B.2C.4D.4-3.设a,b 均为非零向量,且()a ab ⊥- ,2b a = ,则a 与b 的夹角为()A.3π B.4π C.6π D.23π4.若35log 2a =,0.115b -⎛⎫= ⎪⎝⎭,0.125c -⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系为().A.c a b << B.a b c<< C.a c b<< D.c b a<<5.已知等比数列{}n a 的前3项和为28,0n a >且5256a a -=,则6a =()A.28B.56C.64D.1286.已知02πβα<<<,()4sin 5αβ-=,tan tan 2αβ⋅=,则sin sin αβ=()A.15B.25C.12D.227.球O 与棱长为2的正方体ABCD −A 1B 1C 1D 1的各个面都相切,点M 为棱DD 1的中点,则平面ACM 截球O 所得截面的面积为()A.4π3B.πC.2π3D.π38荀子《劝学》:“不积跬步,无以至千里;不积小流,无以成江海.”这告诉我们中学生要不断学习才能有巨大的进步.假设学生甲和学生乙刚开始的“日学习能力值”相同,学生甲的“日学习能力值”都在前一天的基础上提高1%,而学生乙的“日学习能力值”与前一天相同,那么当学生甲的“日学习能力值”是学生乙的2倍时,大约经过了()(参考数据:lg101 2.0043,lg20.3010≈≈)A.60天B.65天C.70天D.75天二、多选题:本题共3小题,每小题6分,共18分9.某老师想了解班上学生的身高情况,他随机选取了班上6名男同学,得到他们的身高的一组数据(单位:厘米)分别为167,170,172,178,184,185,则下列说法正确的是()A.若去掉一个最高身高和一个最低身高,则身高的平均值会变大B.若去掉一个最高身高和一个最低身高,则身高的方差会变小C.若去掉一个最高身高和一个最低身高,则身高的极差会变小D.这组数据的第75百分位数为18110.已知实数a ,b 满足()lg lg lg 4a b a b +=+,则下列结论正确的是()A.a b +的最小值为9 B.1ab 的最大值为14D.lg lg a b +的最小值为4lg211..已知函数()f x 及其导函数()f x '的定义域均为R ,若(31)f x +是偶函数,且(2)(2)f x f x +--=x ,令()()g x f x '=,则下列说法正确的是A.函数1(2)2y x f x =-+是奇函数B.(1)g =C.函数()g x 的图象关于点(3,1)对称D.26i 1325(i)2g ==∑三、填空题:本题共3小题,每小题5分,共15分。
湖北省黄冈中学高三数学理科 3 月份模拟考试卷新课标人教版本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150 分,用时120 分钟.第Ⅰ卷(选择题,满分50 分)一、选择题(本大题共10 小题,每题 5 分,共50 分.在每题给出的四个选项中,只有一项是切合题目要求的,把正确的代号填在指定地点上)1.条件p : x 1 2 ,条件q : x2,则p 是q 的A.充足不用要条件B.必需不充足条件C.充要条件D.既不充足也不用要条件2.利用数学概括法证明不等式11n 1n113时,由 k 递推到 k+1 左侧应增添n2n14的因式是A.1B.11C.11D.112( k1)12(k1)2( k 1)2k2k2k 1 3.函数y A sin(x) (> 0,|| <, x R)的部分图象如下图,则此函数表2达式为A.y4sin(x)y844B.y4sin(x)-284O6x C.y4sin(x)-484D.y4sin(x)844.函数y a x 1的图象与函数y log a ( x1) (此中 a0且 a 1 )的图象对于A.直线y x 对称B.直线C.直线y对称D.直线x 1y x 1对称y x 1对称5.设地球的半径为R,已知地球表面上A、B两地的纬度均为北纬45,又 A、B 两地的球面距离为R ,则A、B两地的经度差能够为3A.45B. 60C. 90D.1206.设椭圆x2y21 、双曲线x2y21、抛物线y22(m n)x (此中 m n 0 )m2n2m 2n2的离心率分别为 e1, e2 ,e3,则A.e1 e2e3B.e1e2e3C . e 1e 2 e 3D . e 1e 2与 e 3 大小不确立7.一个球的内接正四棱柱的侧面积与上下两底面积的和之比为4:1,体积为 4 2,则这个球的表面积A .12B . 12C. 3 3D .1238.设失散型随机变量可能的取值为1、 2、3、 4, P(k) ak b ( k1,2,3,4 ),又 的数学希望为 E 3 ,则 a bA .1B. 0C.1 D.1101059.记首项为 1、公比为 q (0 | q | 1 )的无量等比数列 {a n }的各项的和为 nS , S 表示该数列的前 n 项和,且lim( S n aS q ,则实数 a 的取值范围为nA .[3,3)B . ( 3,3)44C . 3 a 3,且a 13 a 3,且a 1a |D . a |4410.若函数 y f ( x) ( x R) 知足 f ( x 2) f ( x) , 且 x( 1,1] 时 f ( x)| x |, 则函数yf ( x) 的图象与函数 ylg | x | 的图象的交点个数为A .16B.18C. 20D.无数个第Ⅱ卷(非选择题,合计100 分)二、填空题(本大题共5 小题,每题5 分,共 25 分,把正确的答案填在指定地点上)n11.若3x 1(n ∈ N)的睁开式中第 3 项为常数项,则睁开式中二项式系数最大的是第x____________ 项.12.现有四所大学进行自主招生,同时向一所高中的已获市级比赛一等奖的甲、乙、丙、丁四位学生发出录取通知书. 若这四名学生都愿意进这四所大学的任意一所就读, 则仅有两名学生被录取到同一所大学的概率为____________ .13.下边的 8 个语句是一个计算机程序的操作说明:(1)初始值为 x 1, y 1,z 0, n 0 ;(2) n n 1(将目前 n 1的值给予新的 n ); (3) x x 2 (将目前 x 2 的值给予新的 x );(4) y2y (将目前 2 y 的值给予新的 y );(5) z z xy (将目前 z xy 的值给予新的 z );( 6)假如 z 7000 ,则履行语句( 7),不然返回语句( 2)持续进行; ( 7)打印 n, z ;( 8)程序停止.由语句( 7)打印出的数值为_____________ , _____________ .14.已知OFQ的面积为S, 且OF FQ1,若1S3, 则向量OF与FQ的夹角的范围22是.15.已知f x是定义在R上的不恒为零的函数,且对于任意的a,b R ,知足f ( ab) af (b)bf (a), f (2) 2, a n f (2 n ) (n N ), b n f (2 n ) ( n N )n2n以下结论:① f (0) f (1) ;② f (x) 为偶函数;③数列a n为等比数列;④数列 b n为等差数列.此中正确的选项是.三.解答题(本大题共 5 个小题,合计75 分).16.(此题满分 12 分)已知函数f (x)x3ax23x .(Ⅰ)若 f ( x) 在 x[1 ,+∞)上是增函数,务实数 a 的取值范围;(Ⅱ)若 x 3 是f ( x)的极值点,求 f ( x) 在 x[1 ,a] 上的最小值和最大值.17.(此题满分 12 分)已知函数 f ( x) 2 sin x62 cos x .(Ⅰ)当 x,时,若 sin x 4,求函数 f (x) 的值;25(Ⅱ)当 x2,时,求函数 h( x)3sin(x) cos(2x) 的值域;63(Ⅲ)把函数 y f ( x) 的图象按向量m 平移获得函数g (x) 的图象,若函数 g( x) 是偶函数,写出 m 最小的向量m 的坐标.18.(此题满分12 分)有混在一同质地平均且粗细同样的长分别为 1 m、2 m、3 m的钢管各3根(每根钢管附有不一样的编号),现任意抽取 4 根(假定各钢管被抽取的可能性是均等的),再将抽取的 4 根首尾相接焊成笔挺的一根.(Ⅰ)求抽取的 4 根钢管中恰有 2 根长度同样的概率;(Ⅱ)若用ξ 表示新焊成的钢管的长度(焊接偏差不计), 试求ξ的概率散布和数学希望。
湖北省黄冈中学高三11月月考数学试题(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.直线tan 07x y π+=的倾斜角是( D )A .7π- B .7π C .57π D .67π[提示]:6tan tan 77k ππ=-=. 2.如果0,10a b <-<<,那么下列不等式中正确的是( A )A .2a ab ab <<B .2ab a ab <<C .2a ab ab <<D .2ab ab a <<[提示]:由已知可知2101b b -<<<<,又0a <,2a ab ab ∴<<.3.两条直线1:(1)3l ax a y +-=,2:(1)(23)2l a x a y -++=互相垂直,则a 的值是 ( C ) A .5- B .1 C .13-或 D .03-或 [提示]: (1)(1)(23)0a a a a ⋅-+-⋅+=.4.曲线224x y +=与曲线{22cos 22sin x y θθ=-+=+ ([0,2)θπ∈)关于直线l 对称,则直线l 的方程为( D )A .2y x =-B .0x y -=C .20x y +-=D .20x y -+= [提示]: 两圆圆心(0,0)、(2,2)-关于直线l 对称,易求直线为20x y -+=.5.不等式2|3||1|3x x a a +---对任意实数x 恒成立,则实数a 的取值范围为( A )A .(,1][4,)-∞-+∞B .(,2][5,)-∞-+∞C .[1,2]D .(,1][2,)-∞+∞[提示]:由绝对值的意义知不等式左边的最大值为4,23441a a a a∴-⇒-或.6.在ABC ∆中,若对任意的实数m ,有||||BA mBC AC -,则ABC ∆为( A ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .以上均不对 [提示]:当m 变化时,||BA mBC -为动线段|'|AC 的长度,因而可以确定ABC ∆为直角三角形.7.设D 是由{()()0x y x y y -+所确定的平面区域,记“平面区域D 被夹在直线1x =-和x t=([1,1]t ∈-)之间的部分的面积”为S ,则函数()S f t =的大致图象为( B ) [提示]:由题意知当[1,0]t ∈-时,21(1)2S t =-;当[0,1]t ∈时,21(1)2S t =+.8.设()()(),F x f x f x x =+-∈R ,[,]2ππ--是函数()F x 的单调递增区间,将()F x 的图像按向量(,0)a π=平移得到一个新的函数()G x 的图像,则()G x 的一个单调递减区间是( D ) A .[,0]2π- B .[,]2ππ C .3[,]2ππ D .3[,2]2ππ[提示]:()()()()F x f x f x F x -=-+=,∴()F x 为偶函数,()F x 在[,]2ππ--单调递增, () [,]2F x ππ∴在单调递减,()G x ∴的单调递减区间为3[,2]2ππ.9.定义域为R 的函数1,(2)()|2|1,(2)x f x x x ⎧≠⎪=-⎨=⎪⎩,若关于x 的方程2()()0f x bf x c ++=恰有5个不同的实数解12345,,,,x x x x x ,则12345()f x x x x x ++++=( B ) A .14 B .18 C .112 D .116[提示]:由题意知()1()(1)f x f x m m ==≠或.由123()11,3,2f x x x x =⇒===,由4511()2,2f x m x x m m =⇒=+=-,123451()(10)8f x x x x x f ∴++++==. 10.设2sin1sin 2sin 222n n na =++⋅⋅⋅+ , 则对任意正整数,()m n m n >都成立的是( C ) A .||2n m m n a a ⋅-> B .||2n m m na a --> C .1||2n m n a a -< D .1||2n m n a a ->[提示]:12sin(1)sin(2)sin ||||222n m n n m n n m a a ++++-=++⋅⋅⋅+12sin(1)sin(2)sin ||||||222n n m n n m ++++++⋅⋅⋅+1112111112211||||||12222212n m n n m n m ++++-<++⋅⋅⋅+==--12n <. 二、填空题:本大题共5小题;每小题5分,共25分,把答案填在题中的横线上. 11.在锐角ABC ∆中,1,2BC B A ==,则cos ACA 的值等于 .[答案] 2提示:设,2.A B θθ∠=⇒=由正弦定理得,1 2.sin 2sin 2cos cos AC BC AC ACθθθθ=∴=⇒=12.已知两点(2,2)P --和(0,1)Q -,在直线2x =上取一点(2,)R m ,使PR RQ+最小,则m 的值为 .[答案] 43-[提示]:先求点P 关于2x =的对称点'(6,2)P -,则'P Q 的方程为116y x =--,其与2x =的交点为4(2,)3-,m ∴=43-.13.已知‚A ‚B C 三点共线,O 为这条直线外一点,存在实数m ,使30mOA OB OC -+= 成立,则点A 分BC 的比为___________. [答案] 13-提示:由题意知2m =,A 分BC 的比为13-.14.方程240x ax b ---=恰有两个不相等实根的充要条件是 .[答案]22a -<<且 20a b +>提示:作()|24|,()f x x g x ax b =-=+的图像,则(2)0g >且||2a <.15.关于曲线C :221x y --+=的下列说法:①关于原点对称;②关于直线0x y +=对称;③是封闭图形,面积大于π2;④不是封闭图形,与圆222x y +=无公共点;⑤与曲线D :22||||=+y x 的四个交点恰为正方形的四个顶点,其中正确的序号是 . [答案] ①②④⑤提示:将(,)x y 替换为(,)x y --,(,)y x --可知①②正确;该曲线与坐标轴无交点可知,该曲线不是封闭曲线,③不正确;方程可变形为222222x y x y xy xy +=⇒(当且仅当2x y ==时取等),与圆无公共点,且与曲线D 有四个交点,④⑤正确.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程及演算步骤. 16.(本小题满分12分)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且满足25cos 25A =,3AB AC =. (Ⅰ)求ABC ∆的面积; (Ⅱ)若6b c +=,求a 的值.16.[解答] (Ⅰ)25cos25A =,234cos 2cos 1,sin 255A A A ∴=-==, 由3AB AC ⋅=得cos 3,bc A =5bc ∴=,1sin 22ABC S bc A ∆∴==(Ⅱ)对于5bc =,又6b c +=,5,1b c ∴==或1,5b c ==,由余弦定理得2222cos 20a b c bc A =+-=,25a ∴=17.(本小题满分12分)在平面直角坐标系中,O 为坐标原点,已知(1,2)a =-,点(8,0),(,),A B n t (sin ,)C k t θ (0)2πθ.(Ⅰ)若AB a ⊥且||5||AB OA =,求向量OB ;(Ⅱ)若AC 与a 共线,当4k >时,且sin t θ取最大值为4时,求OA OC ⋅. 17.[解答](Ⅰ)(8,),820AB n t AB a n t =-⊥∴-+=2225||||,564(3)5OA AB n t t =∴⨯=-+=, 得8t =±,(24,8)OB ∴=或(8,8)OB =--.(Ⅱ)(sin 8,)AC k t θ=-AC 与a 共线, 2sin 16t k θ∴=-+2324sin (2sin 16)sin 2(sin )t k k k k θθθθ=-+=--+,44,10k k >∴>>,∴当4sin k θ=时,sin t θ取最大值为32k , 由324k =,得8k =,此时,(4,8)6OC πθ==,(8,0)(4,8)32OA OC ∴⋅=⋅=.18.(本小题满分12分)已知函数()log (1)a f x x =+,点P 是函数()y f x =图像上任意一点,点P 关于原点的对称点Q 的轨迹是函数()y g x =的图像.(Ⅰ)当01a <<时,解关于x 的不等式2()()0f x g x +≥;(Ⅱ)当1a >,且[0,1)x ∈时,总有2()()f x g x m +≥恒成立,求m 的取值范围. 18.[解答]由题意知:P 、Q 关于原点对称,设(,)Q x y 是函数()y g x =图像上任一点,则(,)P x y --是()log (1)a f x x =+上的点,所以log (1)a y x -=-+,于是()log (1)a g x x =--.(Ⅰ)由2()()0f x g x +得2101010(1)1x x x x x ⎧+>⎪->⇒-<⎨⎪+-⎩,∴01a <<时,不等式的解集为{10}x x-<(Ⅱ)2()()2log (1)log (1)a a y f x g x x x =+=+--,当1a >,且[0,1)x ∈时,总有2()()f x g x m +≥恒成立,即[0,1)x ∈时,2(1)log 1ax mx +-恒成立,22(1)(1):log log 11m ma a x x a a x x++≥∴≤--即恒成立,设2(1)4()(1)4,0110,11x x x x x x x ϕ+==-+-≤<∴->--min ()1x ϕ∴=(此时0x =),01maa ∴=, 0m ∴.19.(本小题满分12分)已知点(3,0)R -,点P 在y 轴上,点Q 在x 轴的正半轴上,点M 在直线PQ 上 ,且满足230PM MQ +=,0RP PM ⋅=.(Ⅰ)当点P 在y 轴上移动时,求点M 的轨迹C 的方程;(Ⅱ)设11(,),A x y 22(,)B x y 为轨迹C 上两点,且110,0x y >>,(1,0)N ,求实数λ,使AB AN λ=,且163AB =. 19. [解答] (Ⅰ)设点(,)M x y ,由230PM MQ += 得(0,),(,0)23yx P Q -,由0,RP PM ⋅=得3(3,)(,)022y yx -⋅=即24(0)y x x =>.(Ⅱ)由题意可知N 为抛物线2:4C y x=的焦点,且 A B 、为过焦点N 的直线与抛物线C 的两个交点.当直线AB 斜率不存在时,得A(1,2),B(1,-2),|AB|1643=<,不合题意; 当直线AB 斜率存在且不为0时,设: (1)AB l y k x =-,代入24y x =得22222(2)0k x k x k -++=则AB 212222(2)4162243k x x k k +=++=+=+=,解得32=k , 代入原方程得031032=+-x x ,得1213,3x x ==或121,33x x ==,由AB AN λ=,得21143N x x x x λ-==-或4.20.(本小题满分13分)如图,1l 、2l 是通过某城市开发区中心O 的两条南北和东西走向的街道,连接M 、N 两地之间的铁路线是圆心在2l上的一段圆弧.若点M 在点O 正北方向,且3MO km=,点N 到1l 、2l 的距离分别为4km 和5km .(Ⅰ)建立适当坐标系,求铁路线所在圆弧的方程;(Ⅱ)若该城市的某中学拟在点O 正东方向选址建分校,考虑环境问题,要求校址到点O 的距离大于4km 26km ,求该校址距点O 的最近距离(注:校址视为一个点).20.[解答](Ⅰ)分别以2l 、1l为x 轴,y 轴建立如图坐标系.据题意得(0,3),(4,5)M N ,531,402MN k -∴==- (2,4),MN 中点为∴线段MN 的垂直平分线方程为:42(2)y x -=--),故圆心A 的坐标为(4,0),5)30()04(22=-+-=r 半径 ,∴弧MN 的方程:22(4)25x y -+=(0≤x ≤4,y ≥3) (Ⅱ)设校址选在B (a ,0)(a >4),.40,26)(22恒成立对则≤≤≥+-x y a x整理得:2(82)170a x a -+-≥,对0≤x ≤4恒成立(﹡) 令2()(82)17f x a x a =-+- ∵a >4 ∴820a -< ∴()f x 在[0,4]上为减函数 ∴要使(﹡)恒成立,当且仅当{{244 5(4)(8-2)417a a a f a a >>⋅+-即解得,即校址选在距O 最近5k m 的地方.21.(本小题满分14分)已知函数()(01)1x f x x x =<<-的反函数为1()f x -,数列{}n a 和{}n b 满足:112a =,11()n n a f a -+=,函数1()y f x -=的图象在点()1,()()n f n n N -*∈处的切线在y 轴上的截距为nb .(Ⅰ)求数列{na }的通项公式;(Ⅱ)若数列2{}n n nb a a λ-的项仅5255b a a λ-最小,求λ的取值范围;(Ⅲ)令函数2121()[()()]1x g x f x f x x --=+⋅+,01x <<,数列{}n x 满足:112x =,01n x <<,且1()n n x g x +=,其中n N *∈.证明:2223212112231()()()516n n n n x x x x x x x x x x x x ++---+++<.21.[解答](Ⅰ)令1x y x =-,解得1y x y =+,由01x <<,解得0y >, ∴函数()f x 的反函数1()(0)1x f x x x -=>+,则11()1n n nn a a f a a -+==+,得1111n n a a +-=.1{}n a ∴是以2为首项,l 为公差的等差数列,故11n a n =+.(Ⅱ)∵1()(0)1xf x x x -=>+,∴121[()](1)f x x -'=+,∴1()y f x -=在点1(,())n f n -处的切线方程为21()1(1)n y x n n n -=-++,令0x =, 得22(1)n n b n =+,∴2222(1)()24n n n b n n n a a λλλλλ-=-+=---,∵仅当5n =时取得最小值,∴4.5 5.52λ<<,解之911λ<<,∴ λ的取值范围为(9,11).(Ⅲ)2121()[()()]1x g x f x f x x --=+⋅+22212[]1111x x x x x x x x -=+⋅=+-++,(0,1)x ∈. 则121(1)1nn n n n n x x x x x x ++-=-⋅+,因01n x <<,则1n n x x +>,显然12112n n x x x +>>>>.121111121(1)21448222121n n n n n n nn x x x x x x x x +++-=-⋅≤⋅<=+-++-+∴211111111()112111()()()()8n n n n n n n n n n n n n n n n x x x x x x x x x x x x x x x x ++++++++--+=-=--<-∴2222311212231()()()n n n n x x x x x x x x x x x x ++---+++1223121111111[()()()]8n n x x x x x x ++-+-++-1112111211())88n n x x x ++++=-=-∵111,2n n x x x +=>,∴1112n x +<<,∴1112n x +<<,∴11021n x +<-<∴2223212112231131()()()2112152)88816n n n n n x x x x x x x x x x x x x ++++---+++++=-<<=.。
黄冈市2024年高三年级9月调研考试数学本试卷共4页,19题.全卷满分150分.考试用时120分钟.★祝考试顺利★注意事项:1.答题前,先将自己的姓名、准考证号,考场号,座位号填写在试卷和答题卡上,并将准考证 号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在 试卷,草稿纸和答题卡上的非答题区域均无效.3. 非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷,草稿纸和 答题卡上的非答题区域均无效.4.考试结束后,请将答题卡上交.一 、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合 题目要求的.1. 若集合A={x|x²-2x-8<0,x ∈Z},B={yly=√x,x ∈R}, 则A∩B=( )A.{0,1,2,3}B.{1,2,3} c.{0,1} D.{0}2.复数则 z 的虚部为( )B. C.3.则sin 2α=( )B. 士C.D.4.若向量a=(2,0),b=(3,1),则向量a 在向量b 上的投影向量为( )D.(5,1)5 . 若m>0,n>0, 且 3m+2n-1=0, 则的最小值为( )A.20B.12C.16D.25A A口6. 已知△ABC 的内角A,B,C 所对的边分别为a,b,c, ,b=3, 下面可使得△ABC 有两组解的a 的值为( )A. B.3 C.4 D.e7.设h(x),g(x) 是定义在R上的两个函数,若Vx,x₂∈R,x≠x₂, 有n(x;)-h(x₂)≥|s(x₁)-g(x₂) 恒成立,下列四个命题正确的是( )A.若h(x)是奇函数,则g(x) 也一定是奇函数B.若g(x)是偶函数,则h(x)也一定是偶函数C. 若h(x)是周期函数,则g(x) 也一定是周期函数D. 若h(x)是R上的增函数,则H(x)=h(x)-g(x) 在R上一定是减函数8. 已知向量al=|5|=4,a.b=-8,,且|i-d=1, 则n与c夹角的最大值为( )A. B. C. D.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对得部分分,有选错的得0分.9. 已知c<0<b<a, 则( )A.ac+b<bc+aB.b³+c³<a³10. 已知函数的图象过点A(0,1)和B(x,-2)(x₀>0), 且满足|AB= √13,则下列结论正确的是( )A.C. 当时,函数f(x)值域为[0,1]日D. 函数y=x-f(x) 有三个零点11.已知f(x)=2x³-3x²+(1-a)x+b,则下列结论正确的是( )A.当a=1时,若f(x)有三个零点,则b的取值范围是(0,1)B.当a=1且x∈(0,π)时,f(sinx)<f(sin²x)C. 若f(x) 满足f(1-x)=2-f(x), 则a-2b=2D. 若f(x) 存在极值点x, 且f(x,)=f(x), 其中x₀≠x, 则三、填空题:本题共3小题,每小题5分,共15分.12.已知集合A={x|log₂x<m},, 若“x∈A” 是“x∈B” 的充分不必要条件,则实数m 的取值范围是13.已知f(x) 是定义在R上的奇函数,f(x+2) 为偶函数.当0<x<2 时,f(x)=log₂(x+1), 则f(101)=14.已知函数f(x)=sinx-x+1,若关于x的不等式f(axe')+f(-ae*-x+2)>2的解集中有且仅有2个正整数,则实数a 的取值范围为四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15 . (本小题13分)设S,为数列{a,}的前n项和,满足S,=1-a,(neN").(1)求证:(2)记T=S²+S²+…+S²,求T,.16.(本小题15分)函数f(x)=sin ox coscox+cos²ax,w>0,函数f(x) 的最小正周期为π.(1)求函数f(x)的单调递增区间以及对称中心;(2)将函数f(x)的图象先向右平移个单位,再向下平程个单位,得到函数g(x)的图象,在函数g(x)图象上从左到右依次取点A,A₂,..,A₂024, 该点列的横坐标依次为x,x₂,..,X2024, 其中求g(x)+g(x₂)+.+g(x2024)17. (本小题15分)已知函(1)若曲线y=f(x)在点(1,f(1))处的切线方程为f(x)=-x+b, 求a和b的值:(2)讨论f(x) 的单调性.18. (本小题17分)在△ABC 中,角A,B,C 所对的边分别为a,b,c(1)证明:( 2 ) 若a,b,c 成等比数列.(i) 设求g 的取值范围;(ii) 求的取值范围.19. (本小题17分)已知定义在(0,+0c)的两个函数,(1)证明:|sinx|<x(x>0):(2)若h(x)=sinx-x⁴. 证明:当a>1 时,存在x∈(0,1), 使得h(x)>0;(3)若f(x)<g(x)恒成立,求a的取值范围.A2024年9月高三起点联考数学答案一、单选题:本题共8小题,每小题5分,共40分.1.A2.B3.C4.B5.D6.D7.C8.A二、选择题:本题共3小题,每小题6分,共18分.全部选对的得6分,部分选对的得部分分,有选结的得0分.9.ABD 10.AD 11.ABD11.解析:A.a=1时,f(x)=6x²-6x=6x(x-1),f(x)在(-o.0)递增,(0,1)递减,(1,+0o)递增。
湖北省黄冈中学201X 届10月月考试题数学 (理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 第Ⅰ卷50分,第Ⅱ卷100分,卷面共计150分,时间120分钟.第Ⅰ卷(选择题 共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知集合{2,3,4}A =,{2,4,6,8}B =,*{(,)|,,}x C x y x A y B y N 且log =挝?,则C 的子集个数是( ) A .4 B .8 C .16 D .32 2.“p 或q 是假命题”是“非p 为真命题”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.已知函数()12f x x =-,若3(log 0.8)a f =,131[()]2b f =,12(2)c f -=,则( )A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.已知()f x =在区间M 上的反函数是其本身,则M 可以是( )A .[1,1]-B .[1,0]-C .[0,1]D . (1,1)-5.在数列{a n }中,对任意*n ÎN ,都有211n n n na a k a a +++-=-(k 为常数),则称{a n }为“等差比数列”. 下面对“等差比数列”的判断: ①k 不可能为0;②等差数列一定是等差比数列;③等比数列一定是等差比数列;④通项公式为(0,0,1)n n a a b c a b=+构的数列一定是等差比数列,其中正确的判断为( ) A .①② B .②③C .③④D .①④6.已知()y f x =是偶函数,当0x >时,4()f x x x=+,且当[3,1]x ∈--时,()n f x m ≤≤恒成立,则m n -的最小值是( )A .13B .23C .1D .437.已知函数()()y f x x =?R 满足(2)()f x f x +=,且当[1,1]x ?时,2()f x x =,则()y f x = 与7log y x =的图象的交点个数为( ) A .3 B .4C .5D .68.设12()1f x x=+,11()[()]n n f x f f x +=,且(0)1(0)2n n n f a f -=+,则2010a =( )A .20081()2B .20091()2-C .20101()2D .20111()2-9.若动点P 的横坐标为x ,纵坐标为y ,使lg y ,lg ||x ,lg2y x-成公差不为0的等差数列,动点P 的轨迹图形是( )10.若函数2()||f x x x ab =+-+在区间(,0]-∞上为减函数,则实数a 的取值范围是()A .0a ≥B .0a ≤C .1a ≥D .1a ≤第Ⅱ卷(非选择题 共100分)二、填空题(本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置上.) 11.在等差数列{}n a 中,若1781212a a a a +++=,则此数列的前13项的和为 . 12.设0,1a a >≠,函数2()log (23)a f x x x =-+有最小值,则不等式log (1)0a x ->的解集为 .13.已知定义域为R 的函数()f x 满足①2()(2)242f x f x x x ++=-+,②(1)(1)f x f x +--4(2)x =-,若1(1),,()2f t f t --成等差数列,则t 的值为 .14__________.15.已知函数()y f x =是R 上的偶函数,对于x R ∈都有(6)()(3)f x f x f +=+成立,且(4)2f -=-,当12,[0,3]x x ∈且12x x ≠时,都有1212()()0f x f x x x ->-,则给出下列命题:①(2008)2f =-;②函数()y f x =图象的一条对称轴为6x =-;③函数()y f x =在[9,6]--上为减函数;④ 方程()0f x = 在[9,9]-上有4个根 ,上述命题中的所有正确命题的序号是 .(把你认为正确命题的序号都填上)BC A D三、解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.) 16.(本题满分10分)已知p :{}2|230,,A x x x x R =--≤∈q :{}22|290,,B x x mx m x R m R =-+-≤∈∈. (1)若[]1,3AB =,求实数m 的值;(2)若p 是q ⌝的充分条件,求实数m 的取值范围. 17.(本小题满分12分)已知函数5()3xf x x =-,[()]4fg x x =-.(1)求()g x 的解析式;(2) 求1(5)g -的值.18.(本小题满分12分)已知{}n a 是一个公差大于0的等差数列,且满足3655a a ⋅=, 2716a a += . (1) 求数列{}n a 的通项公式;(2) 若数列{}n a 和数列{}n b 满足等式:1212222nn nb b b a =+++(n 为正整数), 求数列{}n b 的前n 项和n S .19.(本小题满分13分)某公司是专门生产健身产品的企业,第一批产品A 上市销售40天内全部售完,该公司对第一批产品A 上市后的市场销售进行调研,结果如图(1)、(2)所示.其中(1)的抛物线表示的是市场的日销售量与上市时间的关系;(2)的折线表示的是每件产品A 的销售利润与上市时间的关系.(1)写出市场的日销售量()f t 与第一批产品A 上市时间t 的关系式;(2)第一批产品A 上市后的第几天,这家公司日销售利润最大,最大利润是多少?20.(本小题满分14分)设函数()(01)xxf x ka a a a -=->≠且是定义域在R 上的奇函数.) /件)) (1) (2)(1)若2(1)0,(2)(4)0f f x x f x >++->试求不等式的解集; (2)若223(1),()2()[1,)2x x f g x a a mf x -==+-+∞且在上的最小值为—2,求m 的值.21.(本小题满分14分)已知函数f (x )的定义域为[0,1],且同时满足:①f (1)=3;②()2f x ≥对一切[0,1]x Î恒成立;③若10x ≥,20x ≥,121x x +≤,则1212()()()2f x x f x f x ≥++-.①求函数f (x )的最大值和最小值; ②试比较1()2n f 与122n+ ()n ÎN 的大小; ③某同学发现:当1()2nx n =?N 时,有()22f x x <+,由此他提出猜想:对一切[0,1]x Î,都有()22f x x <+,请你判断此猜想是否正确,并说明理由.黄冈中学201X 届10月月考试题数学 (理科)参考答案一、选择题1.C 2.A 3.D 4.B 5.D 6.C 7.D 8.D 9.B 10.A 二、填空题11.39 12.(2,)+∞ 13.2或3 14.201X 15.、①②③④ 三、解答题16.解:(1) {}|13,,A x x x R =-≤≤∈{}|33,,B x m x m x R m R =-≤≤+∈∈,[]1,3AB =∴4m =(2)p 是q ⌝的充分条件, ∴R A B ⊆ð, ∴6m >或4m <-.17.解:(1) ∵5()3xf x x =-,∴[()]f g x 5()()3g x g x =-又[()]4f g x x =-,∴5()4()3g x x g x =--,解得312()1x g x x -=+; (2) ∵ 反函数的自变量就是原函数的函数值∴ 在312()1x g x x -=+中有31251x x -=+,解得172x =-,∴117(5)2g -=-. 18.解: (1) 解: 设等差数列{}n a 的公差为d , 则依题知0d > ,由273616a a a a +=+=且3655a a ⋅= 得365,11,2a a d === 3(3)221n a a n n ∴=+-⨯=-; (2) 令2nn nb c =,则有12n n a c c c =+++,1121n n a c c c ++=+++,两式相减得:11n n n a a c ++-= 由(1)得11,a =12n n a a +-=, 12,2(2),n n c c n +==≥即当2n ≥时,122n n n n b c +==, 又当1n =时, 1122b a ==, 12, (1)2 (2)n n n b n +=⎧∴=⎨≥⎩于是:341122222n n n S b b b +=+++=++++212224n +=+++-122(21)2621n n ++-==--.19.解:(1) 设2()(20)60f t a t =-+,由(0)0f =可知320a =-即2233()(20)6062020f t t t t =--+=-+(040)t t N <≤∈,; (2) 设销售利润为()g t 万元,则2232(6)(030)20()360(6)(3040)20t t t t g t t t t ⎧-+<<⎪⎪=⎨⎪-+≤≤⎪⎩当3040t ≤≤时,()g t 单调递减;当030t <≤时,'29()2410g t t t =-+,易知()g t 在80(0,)3单增,80(,30)3单减,而t N ∈,故比较(26)(27)g g ,,经计算,(26)2839.2(27)2843.1g g =<=,故第一批产品A 上市后的第27天这家公司日销售利润最大,最大利润是2843.1万元. 20.解:(1)()f x 是定义域为R 上的奇函数,(0)0,10,1f k k ∴=∴-=∴=1(1)0,0f a a>∴->,又0a >且1, 1.a a ≠∴> 易知()f x 在R 上单调递增,原不等式化为:2(2)(4)f x x f x +>-224x x x ∴+>-,即2340x x +->14x x ∴><-或∴不等式的解集为{|14}x x x ><-或;(2)313(1),22f a a =∴-=,即212320,22a a a a --=∴==-或(舍去)222()222(22)(22)2(22)2x x x x x x x x g x m m ----∴=+--=---+,令()22xxt f x -==-22231,(1),()22()22x t f g t t mt t m m ≥∴≥=∴=-+=-+-当32m ≥时,当t m =时,2min ()22,2g t m m =-=-∴=当32m <时,当32t =时,min 17()324g t m =-=-,解得253122m =>,舍去综上可知2m =.21.解:(1)设12,[0,1]x x ∈,12x x <,则21[0,1]x x -∈ ∴2211211()[()]()()2f x f x x x f x x f x =-+≥-+- ∴2121()()()20f x f x f x x -≥--≥∵12()()f x f x ≤,则当01x ≤≤时,(0)()(1)f f x f ≤≤ ∴当()1x =时,()f x 取得最大值(1)3f =;又(0)(00)2(0)2(0)2f f f f =+≥-⇒≤而(0)2f ≥∴(0)2f = 当0x =时,()f x 取得最小值(0)2f = (2)在③中令1212n x x ==,得111()2()222n nf f -≥- ∴10111111()2[()2][()2]222222n n n nf f f --≤-≤≤-=∴11()222n nf ≤+ (3)对[0,1]x ∈,总存在n N ∈,满足11122n nx +≤≤由(1)(2)得:11()()222n n f x f ≤≤+ 又1112222222n nx ++>+=+∴()22f x x <+ 综上所述,对任意(0,1]x ∈,()22f x x <+恒成立。
湖北省黄冈中学高三数学12 月月考试卷理科人教版本试题分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 共 150 分,用时 120 分钟 .参照公式:假如事件 A 、 B 互斥,那么球的表面积公式P(A+B)=P(A)+P(B)S=4π R 2假如事件 A 、 B 相互独立,那么此中 R 表示球的半径P(A ·B)=P(A) ·P(B)球的体积公式 假如事件 A 在一次试验中发生的概率是V 球4 R 33P ,那么 n 次独立重复试验中恰巧发生k 此中 R 表示球的半径次的概率 P n (k) C n k P k (1P) n k第Ⅰ卷(选择题,共 50 分)一、择题:本大题共 10 小题,每题5 分,共 50 分。
在每题给出的四个选项中,只有一项是最切合题目要求的。
)26 , 1.已知向量 a =( ) ,i =(1,0) 和 j =(0,1) ,若 a ·j =- 3 ,则向量 a 与 i 的夹角 <a ,3i >=()A .B .-C .6D .63652.设全集 U=R ,已知非空会合 P={x||x2-1<a} 与会合 M={x|x -4>0} 之间知足 P ∩C M=P ,U则实数 a 的取值范围是()A . 0<a<3B . 0<a<1C . 0<a ≤ 3D . 0<a ≤ 13.已知角α的终边经过点 P ( tan β, sin β),且 cos β =- 1,则α的一个值是 ()2A .2B .5C .π- arctan1D .π- arctan23624.“一个几何体在三个两两垂直的平面上的射影是三个全等的圆”是“这个几何体是球”的()A .充足不用要条件B .必需不充足条件C .充要条件D .既不充足也不用要条件5.已知 a 、 b 、c 是互不相等的三个实数,且1 , 1 , 1成等差数列,则 b a = ()a b c c bA.cB.aC.aD.ba b, y)=0c,yc6.已知 P ( x , y)是直线 l : f(x上的一点, P (x)是直线 l外的一点,则由111222方程 f ( x,y) +f ( x , y ) +f ( x ,y) =0 表示的直线与直线l的地点关系是()1122A.相互重合B.相互平行C.相互垂直D.相互斜交7.一正四棱锥的高为 2 2 ,侧棱与底面所成的角为45°,则这一正四棱锥的斜高等于()A.2 6B.2 3C.4 3D.2 28.从一块短轴长为2b 的椭圆形玻璃镜中划出一块面积最大的矩形,其面积的取值范围是22,则这一椭圆离心率 e 的取值范围是()[3b ,4b ]A.[5,3]B.[3, 2]C.[5,2]D.[3,3] 323232329.设函数f ( x)sin(x)1(0)的导数 f( x) 的最大值为3,则f ( x) 的图象的一条6对称轴的方程是()A.x9B.x6C.x3D.x210.设表示复数 z=x+y i ( x、 y∈ R)的点 Z(x, y)位于不等式组2x2x10确立的x y10平面地区,对于随意实数a,则表示复数wz1的点 W必定位于()a( z z)a21A.第一象限B.第二象限C.第三象限D.第四象限第Ⅱ卷(非选择题,共100 分)二、填空题:本大题共 5 小题,每题 5 分,共 25分 . 把答案填在答题卡的相应地点上. 11.以曲线 y2=8x 上的随意一点为圆心作圆与直线x+2=0 相切,这些圆必过必定点,则这一定点的坐标是.12.曲线 C 与曲线 y=2x- 3 的图象对于直线l :y=x对称,则曲线C与 l有一个交点位于区间(写出一个长度为 1 的开区间即可)。
黄冈市高三年级3月份质量检测数学试题〔理科〕第一卷〔选择题 共50分〕一、 选择题:本大题共10小题,每题5分,共50分,在每题给出的四个选项中,只有一个是符合题目要求的. 1.复平面内,复数20132iz i+=,那么复数z 的共轭复数z 对应的点的象限 A .第一象限 B .第二象限 C .第三象限 D .第四象限2.如以下列图,程序框图〔算法流程图〕的输出结果是 A .—3 B .—2 C .—13.如图2所示的韦恩图中,A 、B 是两非零集合,定义集合A B ⊗为阴影局部表示的集合,假设2,,{|ln(2)},{|,0}xx y R A x y x x B y y e x ∈==-==>,那么A B ⊗为A.{|02}x x <<B.{|12}x x x ≤≥或C.{|012}x x x ≤≤≥或D. {|012}x x x <≤≥或4.假设设,m n 是两条不同的直线,,,αβγ是三个不同的平面,以下四个命题中假命题的是,//,m n αα⊥那么m n ⊥//,,m n m α⊥那么n α⊥ //,,l ααβ⊥那么l β⊥//,//,,m αββγα⊥那么m γ⊥5.高三毕业时,甲,乙,丙等五位同学站成一排合影留念,甲,乙相邻,那么甲丙相邻的概率为A.110 B.14 C.310 D.256.有以下命题:①命题“2,20x R x x ∃∈--≥〞的否认是:“2,20x R x x ∀∈--<〞; ②随机变量ξ服从正态分布2(1,)N σ,(4)0.79,P ξ≤=那么(2)0.21P ξ≤-=;③函数131()()2xf x x =-的零点在区间11(,)32内;其中正确的命题的个数为7.A ,B ,C ,D 是函数sin()(0,0)2y x πωω=+Φ><Φ<一个周期内的图象上的四个点,如以下列图,(,0),6A π-B 为y 轴上的点,C 为图像上的最低点,E 为该函数图像的一个对称中心,B 与D 关于点E 对称,CD 在x 轴上的投影为12π,那么,ωΦ的值为 A.2,3πω=Φ= B. 2,6πω=Φ= C. 1,23πω=Φ= D. 1,26πω=Φ=8.O 为坐标原点,双曲线22221x y a b-=(0,0)a b >>的右焦点F ,以OF 为直径作圆交双曲线的渐近线于异于原点的两点A 、B ,假设()0AO AF OF +⋅=,那么双曲线的离心率e 为9.等差数列{}n a 前n 项和为n S ,310061006(1)2013(1)1,a a -+-=310081008(1)2013(1)1,a a -+-=-那么A.2013100810062013,S a a =>B.2013100810062013,S a a =<C.2013100810062013,S a a =->D.2013100810062013,S a a =-< 10.O 是锐角三角形△ABC 的外接圆的圆心,且,A θ∠=假设cos cos 2,sin sin B CAB AC mAO C B+=那么m = A .sin θ B.cos θ C.tan θ第二卷〔非选择题 共100分〕二、 填空题:本大题共6小题,考生共需作答5小题。