广州中考数学试题
- 格式:doc
- 大小:814.00 KB
- 文档页数:25
广州历届中考真题数学试卷第一卷第一部分:选择题1. 单选题(共15小题,每小题1分,共计15分)请在每小题的括号中填入相应的字母。
1) 设a = 2, b = -3, c = 4,则下列哪个等式成立?()A. a^2 - b^2 = -25B. a^3 + b^3 = -1C. a^2 - b^2 + c^2 = 7D. a^3 + b^3 + c^3 = 22) 下列哪个数是有理数?()A. √2B. πC. 0D. e3) 已知〈ABC〉是一条直线段,点X在〈AB〉上,点Y在〈BC〉上,若AX : XB = 1:2,BY : YC = 2:1,则∠AXY等于()A. 30°B. 45°C. 60°D. 90°4) 若2loga = log(a^2 - 4),则a的值是()A. -2B. 0C. 1D. 35) 已知函数y = 3x^2 + bx + 2的图象过点(1,4),则b的值是()A. -2B. 0C. 2D. 46) 若a + b + c + d = 10,且abcd = 9,则ab + ac + ad + bc + bd + cd 的最大值是()A. 16B. 18C. 19D. 207) (sinα + cosα)(sinα - cosα)的值等于()A. 1B. sin2α - cos2αC. sin2α - 2cos2αD. sin2α + cos2α8) 在函数y = 2^x + ax - 1的图象上,存在两点A和B,已知A(-1, -1)和B(0, 1),则a的值为()A. -3B. -2C. 2D. 39) 已知直线l过点A(6,3)及B(-2,5),P是l上的一点,且AP : PB = 2:3,则线段AB的中点坐标是()A. (2, 4)B. (3, 4)C. (4, 3)D. (4, 2)10) 一根长为10cm的软铁线,弯成一个圆形,再将该圆形展开形成一个圆环,圆环是否比圆形长?()A. 是B. 否11) 在锐角三角形ABC中,已知a/sinA = b/sinB = c/sinC = 2√3,其中a,b,c分别为BC,CA,AB的长度,则△ABC的面积等于()A. 3B. 6C. 9D. 1212) 在平面直角坐标系中,点A(-1,4),点B(5,2),点C(-3,-2)的图象与坐标轴所围成的面积是()A. 14B. 16C. 18D. 2013) 若a,b是正数,且a:(a+b) = 2:5,则a的值是()A. 2/3B. 1/3C. 3D. 514) 在菱形ABCD中,点E是AD边上的一点,且AE : ED = 1:2,则BE与CD的交点是()A. EB. 稍右上方区域C. 稍左下方区域D. 真菱形15) 在平行四边形ABCD中,点E在对角线AC上,若AE : EC = 1:3,则BE : ED的值是()A. 1:3B. 3:1C. 1:4D. 4:1第二部分:非选择题第二卷第三部分:解答题1. 解答题(共5小题,共计50分)解答下列各题。
广州市2023年中考数学试卷含答案一、选择题(每题2分,共10题)1. 一本书的原价是150元,打8折后的价格是多少?A. 120元B. 125元C. 130元D. 135元2. 已知直线l1与直线l2互相垂直,直线l1的斜率为4/5,则直线l2的斜率为多少?A. -5/4B. -4/5C. 4/5D. 5/43. 某数的6倍减去4得到56,这个数是多少?A. 4B. 8C. 12D. 164. 若图中正方形ABCD的边长为4cm,点E为边AB上的一点,且(图略)A. 3cm²B. 4cm²C. 5cm²D. 6cm²5. 高度为4cm的正方体A、B、C组成的长方体如图所示,则长方体的体积是多少?(图略)A. 12cm³B. 16cm³C. 20cm³D. 24cm³二、填空题(每空2分,共8空)1. 一个数的4倍减去2得到14,这个数是_______。
2. 若直线l1的斜率为3/2,直线l2过点A(2, 4)且与l1平行,则直线l2的方程为_______。
3. 在△ABC中,∠B=90°,AB=3cm,BC=4cm,则AC的长度是_______。
4. 半径为5cm的圆的周长是_______cm。
三、计算题(每题10分,共2题)1. 用两个算式表示:539人共坐了15排靠窗和走道座位的飞机,且每排有40个座位。
解:设靠窗的座位数为x,则走道座位数为15-x。
靠窗座位数x乘以靠窗后座位价格fi加上走道座位数(15-x)乘以走道后座位价格di,等于总收入。
得到以下方程组:40x*fi + 40(15-x)*di = 539fi + 539di (1)x + 15-x = 15 (2)方程组(1)求得fi + di = 40方程组(2)求得40x = 15解此方程组,得靠窗座位价格fi = 5元,走道座位价格di = 35元。
2024年广东省广州市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.四个数10-,1-,0,10中,最小的数是( )A .10-B .1-C .0D .10【答案】A【分析】本题考查了有理数的大小比较,解题关键是掌握有理数大小比较法则:正数大于零,负数小于零,正数大于一切负数;两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小.【详解】解:101010-<-<< ,∴最小的数是10-,故选:A .2.下列图案中,点O 为正方形的中心,阴影部分的两个三角形全等,则阴影部分的两个三角形关于点O 对称的是( )A .B .C .D .【答案】C【分析】本题考查了图形关于某点对称,掌握中心对称图形的性质是解题关键.根据对应点连线是否过点O 判断即可.【详解】解:由图形可知,阴影部分的两个三角形关于点O 对称的是C ,故选:C .3.若0a ≠,则下列运算正确的是( )A .235a a a +=B .325a a a ⋅=C .235a a a⋅=D .321a a ÷=4.若a b <,则( )A .33a b +>+B .22a b ->-C .a b -<-D .22a b<【答案】D【分析】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题关键.根据不等式的基本性质逐项判断即可得.【详解】解:A .∵a b <,∴33a b +<+,则此项错误,不符题意;B .∵a b <,∴22a b -<-,则此项错误,不符题意;C .∵a b <,∴a b ->-,则此项错误,不符合题意;D .∵a b <,∴22a b <,则此项正确,符合题意;故选:D .5.为了解公园用地面积x (单位:公顷)的基本情况,某地随机调查了本地50个公园的用地面积,按照04x <≤,48x <≤,812x <≤,1216x <≤,1620x <≤的分组绘制了如图所示的频数分布直方图,下列说法正确的是( )A .a 的值为20B .用地面积在812x <≤这一组的公园个数最多C .用地面积在48x <≤这一组的公园个数最少D .这50个公园中有一半以上的公园用地面积超过12公顷【答案】B【分析】本题考查的是从频数分布直方图获取信息,根基图形信息直接可得答案.【详解】解:由题意可得:5041612810a =----=,故A 不符合题意;用地面积在812x <≤这一组的公园个数有16个,数量最多,故B 符合题意;用地面积在04x <≤这一组的公园个数最少,故C 不符合题意;这50个公园中有20个公园用地面积超过12公顷,不到一半,故D 不符合题意;故选B6.某新能源车企今年5月交付新车35060辆,且今年5月交付新车的数量比去年5月交付的新车数量的1.2倍还多1100辆.设该车企去年5月交付新车x 辆,根据题意,可列方程为( )A .1.2110035060x +=B .1.2110035060x -=C .1.2(1100)35060x +=D .110035060 1.2x -=⨯【答案】A【分析】本题考查了一元一次方程的应用,找出题目中的数量关系是解题关键.设该车企去年5月交付新车x 辆,根据“今年5月交付新车的数量比去年5月交付的新车数量的1.2倍还多1100辆”列出方程即可.【详解】解:设该车企去年5月交付新车x 辆,根据题意得:1.2110035060x +=,故选:A .7.如图,在ABC 中,90A ∠=︒,6AB AC ==,D 为边BC 的中点,点E ,F 分别在边AB ,AC 上,AE CF =,则四边形AEDF 的面积为( )A .18B .C .9D .∵90BAC ∠=︒,AB AC =∴45BAD B C ∠=∠=∠=︒∴ADE CDF V V ≌,S S S =+8.函数21y ax bx c =++与2k y x=的图象如图所示,当( )时,1y ,2y 均随着x 的增大而减小.A .1x <-B .10x -<<C .02x <<D .1x >【答案】D 【分析】本题考查了二次函数以及反比例函数的图象和性质,利用数形结合的思想解决问题是关键.由函数图象可知,当1x >时,1y 随着x 的增大而减小;2y 位于在一、三象限内,且2y 均随着x 的增大而减小,据此即可得到答案.【详解】解:由函数图象可知,当1x >时,1y 随着x 的增大而减小;2y 位于一、三象限内,且在每一象限内2y 均随着x 的增大而减小,∴当1x >时,1y ,2y 均随着x 的增大而减小,故选:D .9.如图,O 中,弦AB 的长为C 在O 上,OC AB ⊥,30ABC ∠=︒.O 所在的平面内有一点P ,若5OP =,则点P 与O 的位置关系是( )A .点P 在O 上B .点P 在O 内C .点P 在O 外D .无法确定10.如图,圆锥的侧面展开图是一个圆心角为72︒的扇形,若扇形的半径l是5,则该圆锥的体积是()A B C.D【答案】D【分析】本题考查了弧长公式,圆锥的体积公式,勾股定理,理解圆锥的底面周长与侧面展开图扇形的弧长相等是解题关键,设圆锥的半径为r,则圆锥的底面周长为2rπ,根据弧长公式得出侧面展开图的弧长,进而得出1r=,再利用勾股定理,求出圆锥的高,再代入体积公式求解即可.【详解】解:设圆锥的半径为r,则圆锥的底面周长为2rπ,二、填空题11.如图,直线l 分别与直线a ,b 相交,a b ,若171∠=︒,则2∠的度数为 .【答案】109︒【分析】本题考查的是平行线的性质,邻补角的含义,先证明1371∠=∠=︒,再利用邻补角的含义可得答案.【详解】解:如图,∵a b ,171∠=︒,∴1371∠=∠=︒,∴21803109∠=︒-∠=︒;故答案为:109︒12.如图,把1R ,2R ,3R 三个电阻串联起来,线路AB 上的电流为I ,电压为U ,则123U IR IR IR =++.当120.3R =,231.9R =,347.8R =, 2.2I =时,U 的值为 .【答案】220【分析】本题考查了代数式求值,乘法运算律,掌握相关运算法则,正确计算是解题关键.根据123U IR IR IR =++,将数值代入计算即可.【详解】解:123U IR IR IR =++ ,当120.3R =,231.9R =,347.8R =, 2.2I =时,()20.3 2.231.9 2.247.8 2.220.331.947.8 2.2220U =⨯+⨯+⨯=++⨯=,故答案为:220.13.如图,ABCD Y 中,2BC =,点E 在DA 的延长线上,3BE =,若BA 平分EBC ∠,则DE = .【答案】5【分析】本题考查了平行四边形的性质,等腰三角形的判定和性质,掌握平行四边形的性质是解题关键.由平行四边形的性质可知,2AD BC ==,BC AD ∥,进而得出BAE EBA ∠=∠,再由等角对等边的性质,得到3BE AE ==,即可求出DE 的长.【详解】解:在ABCD Y 中,2BC =,2AD BC ∴==,BC AD ∥,CBA BAE ∴∠=∠,BA 平分EBC ∠,CBA EBA ∴∠=∠,BAE EBA∴∠=∠,3BE AE∴==,235DE AD AE∴=+=+=,故答案为:5.14.若2250a a--=,则2241a a-+=.【答案】11【分析】本题考查了已知字母的值求代数式的值,得出条件的等价形式是解题关键.由2250a a--=,得225a a-=,根据对求值式子进行变形,再代入可得答案.【详解】解:2250a a--=,225a a∴-=,()2224122125111a a a a∴-+=-+=⨯+=,故答案为:11.15.定义新运算:()()20a b aa ba b a⎧-≤⎪⊗=⎨-+>⎪⎩例如:224(2)40-⊗=--=,23231⊗=-+=.若314x⊗=-,则x的值为.16.如图,平面直角坐标系xOy 中,矩形OABC 的顶点B 在函数(0)k y x x =>的图象上,(1,0)A ,(0,2)C .将线段AB 沿x 轴正方向平移得线段A B ''(点A 平移后的对应点为A '),A B ''交函数(0)k y x x =>的图象于点D ,过点D 作DE y ⊥轴于点E ,则下列结论:①2k =;②OBD 的面积等于四边形ABDA '的面积;③A E ';④B BD BB O ''∠=∠.其中正确的结论有 .(填写所有正确结论的序号)∵1212AOB A OD S S '==⨯= ,∴BOK AKDA S S '= 四边形,∴BOK BKD AKDA S S S S '+=+ 四边形∴OBD 的面积等于四边形ABDA 如图,连接A E ',∵DE y ⊥轴,DA O EOA '∠=∠∴四边形A DEO '为矩形,∴A E OD '=,∴当OD 最小,则A E '最小,设()2,0D x x x ⎛⎫> ⎪⎝⎭,∴B BD A OB ''' ∽,∴B BD B OA '''∠=∠,∵B C A O ''∥,∴CB O A OB '''∠=∠,∴B BD BB O ''∠=∠,故④符合题意;三、解答题17.解方程:1325x x =-.解得:3x =,经检验,3x =是原方程的解,∴该分式方程的解为3x =.18.如图,点E ,F 分别在正方形ABCD 的边BC ,CD 上,3BE =,6EC =,2CF =.求证:ABE ECF △△∽.19.如图,Rt ABC △中,90B Ð=°.(1)尺规作图:作AC 边上的中线BO (保留作图痕迹,不写作法);(2)在(1)所作的图中,将中线BO 绕点O 逆时针旋转180︒得到DO ,连接AD ,CD .求证:四边形ABCD 是矩形.【答案】(1)作图见解析(2)证明见解析【分析】本题考查的是作线段的垂直平分线,矩形的判定,平行四边形的判定与性质,旋转的性质;(1)作出线段AC 的垂直平分线EF ,交AC 于点O ,连接BO ,则线段BO 即为所求;(2)先证明四边形ABCD 为平行四边形,再结合矩形的判定可得结论.【详解】(1)解:如图,线段BO 即为所求;(2)证明:如图,∵由作图可得:AO CO =,由旋转可得:BO DO =,∴四边形ABCD 为平行四边形,∵90ABC ∠=︒,∴四边形ABCD 为矩形.20.关于x 的方程2240x x m -+-=有两个不等的实数根.(1)求m 的取值范围;(2)化简:2113|3|21m m m m m ---÷⋅-+.【答案】(1)3m >(2)2-【分析】本题考查的是一元二次方程根的判别式,分式的混合运算,掌握相应的基础知识是解本题的关键;(1)根据一元二次方程根的判别式建立不等式解题即可;(2)根据(1)的结论化简绝对值,再计算分式的乘除混合运算即可.21.善于提问是应用人工智能解决问题的重要因素之一.为了解同学们的提问水平,对A,B两组同学进行问卷调查,并根据结果对每名同学的提问水平进行评分,得分情况如下(单位:分):A组75788282848687889395B组75778083858688889296(1)求A组同学得分的中位数和众数;(2)现从A、B两组得分超过90分的4名同学中随机抽取2名同学参与访谈,求这2名同学恰好来自同一组的概率.由树状图可知,共有12种等可能的情况,其中这2名同学恰好来自同一组的情况有∴这2名同学恰好来自同一组的概率41123=.22.2024年6月2日,嫦娥六号着陆器和上升器组合体(简称为“着上组合体”)成功着陆在月球背面.某校综合实践小组制作了一个“着上组合体”的模拟装置,在一次试验中,如图,该模拟装置在缓速下降阶段从A 点垂直下降到B 点,再垂直下降到着陆点C ,从B 点测得地面D 点的俯角为36.87︒,17AD =米,10BD =米.(1)求CD 的长;(2)若模拟装置从A 点以每秒2米的速度匀速下降到B 点,求模拟装置从A 点下降到B 点的时间.(参考数据:sin 36.870.60︒≈,cos36.870.80︒≈,tan 36.870.75︒≈)【答案】(1)CD 的长约为8米;(2)模拟装置从A 点下降到B 点的时间为4.5秒.【分析】本题考查了解直角三角形的应用——仰俯角问题,灵活运用锐角三角函数求边长是解题关键.(2)解:17AD =Q 22AC AD CD ∴=-=在BCD △中,C ∠=sin BC BDC BD∠= ,sin 36.87BC BD ∴=⋅︒15AB AC BC ∴=-=-23.一个人的脚印信息往往对应着这个人某些方面的基本特征.某数学兴趣小组收集了大量不同人群的身高和脚长数据,通过对数据的整理和分析,发现身高y 和脚长x 之间近似存在一个函数关系,部分数据如下表:脚长(cm)x ...232425262728...身高(cm)y (156163)170177184191…(1)在图1中描出表中数据对应的点(,)x y ;(2)根据表中数据,从(0)y ax b a =+≠和(0)k y k x=≠中选择一个函数模型,使它能近似地反映身高和脚长的函数关系,并求出这个函数的解析式(不要求写出x 的取值范围);(3)如图2,某场所发现了一个人的脚印,脚长约为25.8cm ,请根据(2)中求出的函数解析式,估计这个人的身高.【答案】(1)见解析(2)75y x =-(3)175.6cm【分析】本题考查了函数的实际应用,正确理解题意,选择合适的函数模型是解题关键.(1)根据表格数据即可描点;(2)选择函数(0)y ax b a =+≠近似地反映身高和脚长的函数关系,将点()()23,156,24,163代入即可求解;(3)将25.8cm 代入75y x =-代入即可求解;【详解】(1)解:如图所示:(2)解:由图可知:y 随着x 的增大而增大,因此选择函数(0)y ax b a =+≠近似地反映身高和脚长的函数关系,将点()()23,156,24,163代入得:1562316324a b a b=+⎧⎨=+⎩,解得:75a b =⎧⎨=-⎩∴75y x =-(3)解:将25.8cm 代入75y x =-得:725.85175.6cmy =⨯-=∴估计这个人身高175.6cm24.如图,在菱形ABCD 中,120C ∠=︒.点E 在射线BC 上运动(不与点B ,点C 重合),AEB △关于AE 的轴对称图形为AEF △.(1)当30BAF ∠=︒时,试判断线段AF 和线段AD 的数量和位置关系,并说明理由;(2)若6AB =+O 为AEF △的外接圆,设O 的半径为r .①求r 的取值范围;②连接FD ,直线FD 能否与O 相切?如果能,求BE 的长度;如果不能,请说明理由.【分析】(1)由菱形的性质可得120BAD C ∠=∠=︒,AB AD =,再结合轴对称的性质可得结论;(2)①如图,设AEF △的外接圆为O ,连接AC 交BD 于H .连接OA ,OE ,OF ,OC ,证明ABC 为等边三角形,,,,A E F C 共圆,2120AOE AFE ∠=∠=︒,O 在BD 上,30AEO EAO ∠=∠=︒,过O 作OJ AE ⊥于J ,当AE BC ⊥时,AE 最小,则AO 最小,再进一步可得答案;②如图,以A 为圆心,AC 为半径画圆,可得,,,B C F D 在A 上,延长CA 与A 交于L ,连接DL ,证明18030150CFD ∠=︒-︒=︒,可得60OFC ∠=︒,OCF △为等边三角形,证明1203090BAF ∠=︒-︒=︒,可得:45BAE FAE ∠=∠=︒,BE EF =,过E 作EM AF ⊥于M ,再进一步可得答案.【详解】(1)解:AF AD =,AF AD ⊥;理由如下:∵在菱形ABCD 中,120C ∠=︒,∴120BAD C ∠=∠=︒,AB AD =,∵30BAF ∠=︒,∴1203090FAD ∠=︒-︒=︒,∴AF AD ⊥,由对折可得:AB AF =,∴AF AD =;(2)解:①如图,设AEF △的外接圆为O ,连接AC 交BD 于H .连接OA ,OE ,OF ,OC ,∵四边形ABCD 为菱形,120BCD ∠=︒,∴AC BD ⊥, 60BCA ∠=︒,BA BC =,∴ABC 为等边三角形,∴60ABC AFE ACB ∠=∠=︒=∠,∴,,,A E F C 共圆,2120AOE AFE ∠=∠=︒,O 在BD 上,同理可得ACD 为等边三角形,∴60CAD ∠=︒,∴30CLD ∠=︒,∴18030150CFD ∠=︒-︒=︒,∵DF 为O 的切线,∴90OFD ∠=︒,∴60OFC ∠=︒,∵OC OF =,∴OCF △为等边三角形,∴60COF ∠=︒,∴1302CAF COF ∠=∠=︒,25.已知抛物线232:621(0)G y ax ax a a a =--++>过点()1,2A x 和点()2,2B x ,直线2:l y m x n =+过点(3,1)C ,交线段AB 于点D ,记CDA 的周长为1C ,CDB △的周长为2C ,且122C C =+.(1)求抛物线G 的对称轴;(2)求m 的值;(3)直线l 绕点C 以每秒3︒的速度顺时针旋转t 秒后(045)t ≤<得到直线l ',当l AB '∥时,直线l '交抛物线G 于E ,F 两点.①求t 的值;②设AEF △的面积为S ,若对于任意的0a >,均有S k ≥成立,求k 的最大值及此时抛物线G 的解析式.∵直线2:l y m x n =+过点(3,1)C ,2C ,且122C C =+,∴A 在B 的左边,AD AC CD ++=∵C 在抛物线的对称轴上,∴CA CB =,∴345t =,解得:15t =,②∵()1122AEF A E S EF y y EF =⋅-= 当1y =时,232621ax ax a a --++∴22620x x a a --+=,。
2023广州中考数学试卷真题一、选择题1. 下列数中,最小的是:A) 0.003B) 0.3C) 0.03D) 0.00332. 若a=8,b=-3,则-2a(b-1)的值为:A) -58B) 58C) -46D) 463. 下列计算错误的是:A) 4 × (5 + 3) = 32B) (6 + 2) × (6 - 2) = 32C) 12 ÷ (8 - 4) = 3D) 6 × 2 ÷ 2 = 6二、填空题1. 将0.75写成分数形式为 __________.2. 若a:b = 2:5,b:c = 3:4,则a:c = _________.3. (5a + 2b) ÷ 3a = ________.三、解答题1. 若正方形ABCD的边长为2cm,求其面积和周长。
解:正方形的面积可以通过边长的平方来计算。
所以面积为2cm ×2cm = 4cm²。
周长可以通过边长乘以4来计算。
所以周长为2cm × 4 = 8cm。
2. 某水果摊主有5箱苹果,每箱有30个。
他卖掉了其中的2/3箱苹果,剩下的苹果放在8个相同大小的篮子里。
每个篮子里大约有多少个苹果?解:一共有5箱苹果,每箱30个,总共有5 × 30 = 150个苹果。
卖掉2/3箱苹果后剩下1/3箱苹果,即剩下5 × 30 × 1/3 = 50个苹果。
将50个苹果平均放在8个篮子里,每个篮子里大约有50 ÷ 8 ≈ 6个苹果。
四、应用题某商场举办家电清仓活动,折扣力度如下:- 少于1000元的商品打9折;- 1000元到2000元的商品打8折;- 2000元以上的商品打7折。
小明想买一台原价为2800元的电视机,小红想买一台原价为800元的洗衣机。
他们分别享受了多少折扣?实际支付了多少钱?解:小明的电视机原价为2800元,由于该商品在2000元以上的范围内,所以可以享受7折的折扣。
广东2024数学中考试题一、选择题(本题共10小题,每小题3分,共30分)1. 已知方程 \( x^2 + 4x + 4 = 0 \),求方程的根。
A. \( x = -2 \pm 2i \)B. \( x = 2 \pm 2i \)C. \( x = -2 \)D. \( x = 2 \)2. 若 \( \frac{1}{a} + \frac{1}{b} = \frac{1}{9} \),且 \( a \) 和 \( b \) 均为正整数,求 \( a + b \) 的值。
A. 18B. 9C. 81D. 无法确定3. 计算 \( \sqrt{8} \) 的值。
A. 4B. 2B. \( 2\sqrt{2} \)D. \( \sqrt{2} \)4. 已知 \( \sin(\alpha) = \frac{3}{5} \),且 \( \alpha \) 在第一象限,求 \( \cos(\alpha) \) 的值。
A. \( \frac{4}{5} \)B. \( \frac{12}{13} \)C. \( \frac{16}{25} \)D. \( \frac{24}{25} \)5. 一个圆的半径为 \( r \),其面积为 \( \pi r^2 \),若半径增加\( \frac{r}{2} \),求新圆的面积。
A. \( \frac{9}{4} \pi r^2 \)B. \( \frac{5}{4} \pi r^2 \)C. \( \frac{7}{4} \pi r^2 \)D. \( \frac{6}{4} \pi r^2 \)6. 若一个多项式 \( P(x) \) 可以表示为 \( (x-1)(x-2)(x-3) \) 的形式,求 \( P(5) \) 的值。
A. -1B. 0C. 1D. 57. 已知 \( \log_{10}(100) = 2 \),求 \( \log_{10}(0.01) \) 的值。
2022年广州市初中学业水平考试数 学注意事项:1. 答题前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;将自己的条形码粘贴在答题卡的“条形码粘贴处”。
2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
答案不能答在试卷上。
3. 非选择题答案必须用黑色字迹的钢笔或签字笔写在答题卡各题目指定区域的相应位置上,涉及作图的题目,用2B 铅笔画图;如需改动,先划掉原来的答案,然后再写上新的答案,改动后的答案也不能超出指定的区域,不准使用铅笔(作图除外)、涂改液和修正带。
不按以上要求作答的答案无效。
4. 考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。
第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图是一个几何体的侧面展开图,这个几何体可以是(*)A .圆锥B .圆柱C .棱锥D .棱柱2.下列图形中,是中心对称图形的是(*)A .B .C .D .3.x 应满足的条件为(*)A .1≠-x B .1>-x C .1<-x D .1≤-x4.点(3,﹣5)在正比例函数=y kx (0≠k )的图象上,则k 的值为(*)A .15-B .15C .35-D .53-5.下列运算正确的是(*)A 2=B .11+-=a a a a(0≠a )C .=D .235⋅=a a a 6.如图,抛物线2=++y ax bx c (0≠a )的对称轴为2=-x ,下列结论正确的是(*)A .a <0B .c >0C .当x <﹣2时,y 随x 的增大而减小D .当x >﹣2时,y 随x 的增大而减小7.实数a ,b 在数轴上的位置如图所示,则(*)A .=a bB .>a bC .<a bD .>a b8.为了疫情防控,某小区需要从甲、乙、丙、丁4名志愿者中随机抽取2名负责该小区入口处的测温工作,则甲被抽中的概率是(*)A .12B .14C .34D .5129.如图,正方形ABCD 的面积为3,点E 在边CD 上,且CE =1,∠ABE 的平分线交AD 于点F ,点M ,N 分别是BE ,BF 的中点,则MN 的长为(*)A B C .2D 10.如图,用若干根相同的小木棒拼成图形,拼第1个图形需要6根小木棒,拼第2个图形需要14根小木棒,拼第3个图形需要22根小木棒……若按照这样的方法拼成的第n 个图形需要2022根小木棒,则n 的值为(*)A .252B .253C .336D .337第二部分非选择题(共90分)二、填空题(本大题共6小题,每小题3分,满分18分.)11.在甲、乙两位射击运动员的10次考核成绩中,两人的考核成绩的平均数相同,方差分别为2 1.45=甲S ,20.85=乙S ,则考核成绩更为稳定的运动员是*.(填“甲”、“乙”中的一个).12.分解因式:2321-=a ab *.13.如图,在ABCD 中,AD =10,对角线AC 与BD 相交于点O ,AC +BD =22,则△BOC 的周长为*.14.分式方程3221=+x x 的解是*.15.如图,在△ABC 中,AB =AC ,点O 在边AC 上,以O 为圆心,4为半径的圆恰好过点C ,且与边AB 相切于点D ,交BC 于点E ,则劣弧DE 的长是*.(结果保留π)16.如图,在矩形ABCD 中,BC =2AB ,点P 为边AD 上的一个动点,线段BP 绕点B 顺时针旋转60°得到线段BP ′,连接PP ′,CP ′.当点P ′落在边BC 上时,∠PP ′C 的度数为*;当线段CP ′的长度最小时,∠PP ′C 的度数为*.三、填空题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分4分)解不等式:324-<x .18.(本小题满分4分)如图,点D ,E 在△ABC 的边BC 上,∠B =∠C ,BD =CE ,求证:△ABD ≌△ACE .19.(本小题满分6分)某校在九年级学生中随机抽取了若干名学生参加“平均每天体育运动时间”的调查,根据调查结果绘制了如下不完整的频数分布表和频数分布直方图.频数分布表请根据图表中的信息解答下列问题:(1)频数分布表中的a =,b =,n =;(2)请补全频数分布直方图;(3)若该校九年级共有480名学生,试估计该校九年级学生平均每天体育运动时间不低于120min的学生人数.某燃气公司计划在地下修建一个容积为V (V 为定值,单位:m 3)的圆柱形天然气储存室,储存室的底面积S (单位:m 2)与其深度d (单位:m )是反比例函数关系,它的图象如图所示.(1)求储存室的容积V 的值;(2)受地形条件限制,储存室的深度d 需要满足16≤d ≤25,求储存室的底面积S 的取值范围.21.(本小题满分8分)已知()()()2232323=+++-+T a b a b a b a .(1)化简T ;(2)若关于x 的方程2210+-+=x ax ab 有两个相等的实数根,求T 的值.22.(本小题满分10分)如图,AB 是⊙O 的直径,点C 在⊙O 上,且AC =8,BC =6.(1)尺规作图:过点O 作AC 的垂线,交劣弧AC 于点D ,连接CD(保留作图痕迹,不写作法);(2)在(1)所作的图形中,求点O 到AC 的距离及sin ∠ACD 的值.23.(本小题满分10分)某数学活动小组利用太阳光线下物体的影子和标杆测量旗杆的高度.如图,在某一时刻,旗杆AB 的影子为BC ,与此同时在C 处立一根标杆CD ,标杆CD 的影子为CE ,CD =1.6m ,BC =5CD .(1)求BC 的长;(2)从条件①、条件②这两个条件中选择一个作为已知,求旗杆AB 的高度.条件①:CE =1.0m ;条件②:从D 处看旗杆顶部A 的仰角α为54.46°.注:如果选择条件①和条件②分别作答,按第一个解答计分.参考数据:1sin54.460.8︒≈,8cos54.460.5︒≈,0cos54.46 1.4︒≈已知直线l:=+y kx b经过点(0,7)和点(1,6).(1)求直线l的解析式;(2)若点P(m,n)在直线l上,以P为顶点的抛物线G过点(0,﹣3),且开口向下.①求m的取值范围;②设抛物线G与直线l的另一个交点为Q,当点Q向左平移1个单位长度后得到的点Q′也在G上时,求G在44155≤≤+m mx的图象的最高点的坐标.25.(本小题满分12分)如图,在菱形ABCD中,∠BAD=120°,AB=6,连接BD.(1)求BD的长;(2)点E为线段BD上一动点(不与点B,D重合),点F在边AD上,且=BE.①当CE⊥AB时,求四边形ABEF的面积;②当四边形ABEF的面积取得最小值时,+CE的值是否也最小?如果是,求CE的最小值;如果不是,请说明理由.2022年广东省广州市中考数学试卷参考答案与试题解析选择题一、选择题(本大题共10小题,每小题3分,满分30分。
绝密★启用前2024年广东省广州市中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.四个数−10,−1,0,10中,最小的数是( )A. −10B. −1C. 0D. 102.下列图案中,点O为正方形的中心,阴影部分的两个三角形全等,则阴影部分的两个三角形关于点O对称的是( )A. B. C. D.3.若a≠0,则下列运算正确的是( )A. a2+a3=a5B. a3⋅a2=a5C. 2a⋅3a=5aD. a3÷a2=14.若a<b,则( )A. a+3>b+3B. a−2>b−2C. −a<−bD. 2a<2b5.为了解公园用地面积x(单位:公顷)的基本情况,某地随机调查了本地50个公园的用地面积,按照0<x≤4,4<x≤8,8<x≤12,12<x≤16,16<x≤20的分组绘制了如图所示的频数分布直方图,下列说法正确的是( )A. a的值为20B. 用地面积在8<x≤12这一组的公园个数最多C. 用地面积在4<x≤8这一组的公园个数最少D. 这50个公园中有一半以上的公园用地面积超过12公顷6.某新能源车企今年5月交付新车35060辆,且今年5月交付新车的数量比去年5月交付的新车数量的1.2倍还多1100辆.设该车企去年5月交付新车x辆,根据题意,可列方程为( )A. 1.2x+1100=35060B. 1.2x−1100=35060C. 1.2(x+1100)=35060D. x−1100=35060×1.27.如图,在△ABC中,∠A=90°,AB=AC=6,D为边BC的中点,点E,F分别在边AB,AC上,AE=CF,则四边形AEDF的面积为( )A. 18B. 9√ 2C. 9D. 6√ 28.函数y1=ax2+bx+c与y2=k的图象如图所示,当()时,y1,y2均随着xx的增大而减小.A. x<−1B. −1<x<0C. 0<x<2D. x>19.如图,⊙O中,弦AB的长为4√ 3,点C在⊙O上,OC⊥AB,∠ABC=30°.⊙O所在的平面内有一点P,若OP=5,则点P与⊙O的位置关系是( )A. 点P在⊙O上B. 点P在⊙O内C. 点P在⊙O外D. 无法确定10.如图,圆锥的侧面展开图是一个圆心角为72°的扇形,若扇形的半径l是5,则该圆锥的体积是( )A. 3√ 11π8πB. √ 118C. 2√ 6ππD. 2√ 63第II卷(非选择题)二、填空题:本题共6小题,每小题3分,共18分。
2023年广州中考数学试题及解析题目:已知直角三角形的两条直角边分别为3cm和4cm,求斜边的长度是多少?A. 5cmB. 6cmC. 7cmD. 8cm解析:根据勾股定理,斜边的长度等于直角边长度的平方和的平方根。
所以,斜边的长度为5cm,选项A正确。
题目:某商品原价为120元,现在打8折出售,打折后的价格是多少?A. 8元B. 12元C. 96元D. 108元解析:打8折相当于原价乘以0.8。
所以,打折后的价格为120元× 0.8 = 96元,选项C 正确。
题目:某数的1/5等于25,这个数是多少?A. 5B. 25C. 100D. 125解析:设这个数为x,根据题意可以得到方程1/5x = 25。
将方程两边都乘以5,得到x = 25 × 5 = 125,选项D正确。
题目:一个矩形的长是宽的3倍,如果宽为4cm,那么这个矩形的面积是多少?A. 8cm²B. 12cm²C. 16cm²D. 24cm²解析:设矩形的长为L,根据题意可以得到方程L = 3 × 4 = 12。
矩形的面积等于长乘以宽,所以面积为12cm × 4cm = 48cm²,选项D正确。
题目:某数的三分之一等于12,这个数是多少?A. 4B. 12C. 24D. 36解析:设这个数为x,根据题意可以得到方程1/3x = 12。
将方程两边都乘以3,得到x = 12 × 3 = 36,选项D正确。
题目:某数的四分之一等于20,这个数是多少?A. 5B. 10C. 16D. 80解析:设这个数为x,根据题意可以得到方程1/4x = 20。
将方程两边都乘以4,得到x = 20 × 4 = 80,选项D正确。
2024年广东省广州市中考模拟测试数学试题本试卷分选择题和非选择题两部分,共三大题25小题,共6页,满分120分,考试时间120分钟,不可以使用计算器.注意事项:1.答卷前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的钢笔或签字笔填写自己的学校、班级、姓名、座位号、考号;再用2B 铅笔把对应号码的标号涂黑.2,选择题每小题选出答案后,用2B 铅笔把答题卡上对应题号的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答题卡各题指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液,不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.一、选择题(本大题共10小题,每小题3分,满分30分)1.下列几何体中,圆锥是()A .B .C .D .2.点()4,2P -位于第()象限A .一B .二C .三D .四3.若232x y -与34mx y 是同类项,则m 等于()A .2-B .2C .3D .44.如图,//AB DE ,若40CDE ∠=︒,则B ∠的度数是()A .60︒B .50︒C .40︒D .30︒5.下列运算正确的是()A .234a a a +=B .326326a a a ⋅=C .()2351a a ÷=D .33(2)8a a-=-6.不等式组2136x x x +≥⎧⎨<-⎩的解集在数轴上表示正确的是().A .B .C .D .7.在Rt ABC △中,90B ∠=︒,12AB =,13AC =,则sin A 的值为().A .513B .1213C .512D .1258.关于一次函数32y x =-+,下列说法正确的是().A .图象过点(1,1)B .其图象可由3y x =-的图象向下平移2个单位长度得到C .y 随着x 的增大而增大D .图象经过第一、二、四象限9.在ABC △中,20AB =,18BC =,BD 是AC 边上的中线,若ABD △的周长为45,BCD △的周长是(),A .47B .43C .38D .2510.如图,小乐和小静一起从点A 出发去拍摄木棉树FH .小乐沿着水平面步行17m 到达点B 时拍到树顶点F ,仰角为63︒;小静沿着坡度5:12i =的斜坡步行13m 到达点C 时拍到树顶点F ,仰角为45︒,那么这棵木棉树的高度约()m .(结果精确到1m )(参考数据:sin 630.9︒≈,cos630.5︒≈,tan63 2.0︒≈)A .22B .21C .20D .19二、填空题(本大题共6小题,每小题3分,满分18分)11.写出命题“如果22a b =,那么a b =”的逆命题__________.12.因式分解:34ay a -=__________.13.在ABCD 中,已知120B ∠=︒,则A ∠=__________°.14.某班同学完成了10道选择题后,班长将答对题数的情况绘制成条形统计图,根据图中信息,该班同学答对题数的平均数为__________道.(保留1位小数点)15.刺绣是我国独有的一门传统艺术,它承载着大量中国民族文化的意义.圆形刺绣作品展示木架的设计简图如图所示,已知AB 、BC 、CD 分别与圆相交于点A 、点E 、点D ,AB BC ⊥,CD BC ⊥,2cm AB CD ==,12cm BC =,则圆形刺绣作品的半径为__________cm.16.如图,在边长为8的正方形ABCD 中,对角线AC 、BD 交于点O ,折叠正方形纸片,使AD 落在BD 上,点A 恰好与BD 上的点F 重合,展开后折痕DE 分别交AB 、AC 于点E 、G ,连接GF ,给出下列结论,①67.5AED ∠=︒;②四边形AEFG 是菱形;③822EF =-④DG DADE DB=.其中正确的是__________.三、解答题(本大题共9小题,满分72分)17.(本小题满分4分)解方程组3242 4 x y x y -=⎧⎨+=⎩①②18.(本小题满分4分)如图,已知//AB CD ,AB CD =,AE DF =.求证:B C ∠=∠.19.(本小题满分6分)甲同学从一副扑克中抽出两张扑克,分别是梅花5和红桃Q .(1)甲同学混合两张扑克后让乙同学随机抽取一张,乙同学抽到红桃Q 的概率为__________.(2)甲同学将两张扑克,从中间剪断得到四张形状相同的纸片,混合后让乙同学随机摸取一张,不放回接着再随机摸取一张,请用列表法或画树状图法,求这两张纸片恰好合成一张完整扑克的概率.20.(本小题满分6分)先化简,再求值:211211a a a a ⎛⎫÷+ ⎪-+-⎝⎭,其中a 的值为䒚形ABCD 的面积,已知菱形ABCD ,60A ∠=︒,2AB =.21.(本小题满分8分)如图,AB 是O 的直径,点C 、D 在圆上,3CDB ABC ∠=∠,CD 平分ACB ∠,与AB 相交于点E .(1)在CA 的延长线上找一点F ,使CF CD =,连接FD (要求:尺规作图,不写作法,保留作图痕迹);(2)求证:FD 是O 的切线.22.(本小题满分10分)今年年初一美丽的白鹅潭江而进行了以“活力湾区,新彩广州”为主题的烟花汇演,甲、乙两人从各自家前往最佳观赏点之一的洲头咀公园观看烟花汇演,由于当晚该公园附近路段实施了交通管制,甲先将车开到距离自己家20千米的停车场后,再步行2千米到达目的地,共花了1小时.此期间,已知甲开车的平均速度是甲步行平均速度的10倍.(1)求甲开车的平均速度及步行的平均速度分别是多少?(2)乙是骑车前往与他家相距8千米的目的地,若乙骑车的平均速度比甲步行的平均速度快8a 千米/小时(0a >),乙骑车时间比甲开车时间多a 小时,求a 的值.23.(本小题满分10分)已知一次函数y kx b =+的图象直线与反比例函数my x=的图象双曲线相交于点(2,3)A --和点(1,)B n ,且直线与x 轴、y 轴相交于点C 、点D .(1)求一次函数和反比例函数的解析式;(2)点(,)P p q 为直线AB 上的动点,过P 作x 轴垂线,交双曲线于点E ,交x 轴于点F ,请选择下面其中一题完成解答(若两题均选择,则只批改第①题)①连接DE ,若6PDE DCO S S =△△,求PEPF的值:②点P 在点E 上方时,判断关于x 的方程21(1)(1)02p p x p x -++--=的解的个数.24.(本小题满分12分)我们定义:过三角形的一个顶点的线段将三角形分成两个三角形,其中一个三角形与原三角形相似,且相似比为1:2,则原三角形叫做“友好三角形”;(1)如图1,已知在ABC △中,2AB =,114BD BC ==,求证:ABC △是“友好三角形”;(2)如图2,在55⨯的网格图中,点A 、B 在格点上,请在图中画出一个符合条件的“友好三角形”ABC △,要求点C 在格点上;(3)如图3,在(1)的条件中,作ACD △的外接圆O ,点E 是O 上的一点,CE CA =,连接DE ;①设AD x =,AE y =,求y 关于x 的函数关系式;②当//CE AB 时,求O 的半径.25.(本小题满分12分)已知一次函数1y kx =+的图像经过点(1,3)B ,与x 轴相交于点D ,与y 轴相交于点E ,点(2,0)C ,记DEO α∠=,(1)求k 的值;(2)点A 在直线1y kx =+上,且在点B 的下方,以AB 为直径的F 与线段CD 有交点,求F 的面积的取值范围.(3)在(2)的条件下,将线段AB 绕点A 按逆时针旋转2α得到线段AB ',再将线段AB 绕点B 按顺时针旋转2α得到线段BA ,再将线段B A '绕点A '按逆时针旋转2α得到线段AB '',若抛物线2y ax bx c =++经过A 、B 、A '、B ''四点,求该抛物线顶点的纵坐标的最大值与最小值的差.参考答案一、选择题(本大题共10小题,每小题3分,满分30分)1-5:ADBCD6-10:CADBC二、填空题(本大题共6小题,每小题3分,满分18分)11.如果a b =,那么22a b=12.()34a y -13.6014.8.615.1016.①②④三、解答题(本大题共9小题,满分72分)17.(本小题满分4分)解:①+②,得:48x =,2x =③③代入②,得:224y +=,1y =.21x y =⎧∴⎨=⎩(没写正确结论倒扣1分)18.(本小题满分4分)证明://AB CD ,A D ∴∠=∠,AE DF = ,AE EF DF EF ∴+=+,即AF DE =,AB CD = ,ABF DCE ∴△≌△,B C ∴∠=∠.19.(本小题满分6分)解:(1)12(2)设剪断梅花5得到的纸片是A ,B ;剪断红桃Q 得到的纸片是C ,D .根据题意,画出如下的树状图:由树状图可知,共有12种等可能得结果,其中恰好合成一张完整扑克的有4种,即AB ,BA ,CD ,DC .P ∴(恰好合成一张完整扑克)41123==20.(本小题满分6分)解:原式2221111(1)11(1)1(1)1a a a a a a a a a a a a a a --⎛⎫=÷+=÷=⋅= ⎪-------⎝⎭.过B 作BE AD ⊥于点E ,菱形ABCD 中,AB AD ∴=,60A ︒∠= ,ABD ∴△为等边三角形,2AB BD AD ===,Rt ABE △中,sin BE AB A =⋅=12222ABD ABCD a S S ⎛∴===⋅= ⎝△菱形.∴原式111==.21.(本小题满分8分)解答:(1)如图FA 、FD 为所求.(2)证明:连接OD .O 中,AB 为直径,90ACB ∴∠=︒,CD 平分ACB ∠,112452ACB ∴∠=∠=∠=︒,BDBD = ,2290BOD ∴∠=∠=︒,CF CD = ,()1180167.52CFD CDF ∴∠=∠=-∠=︒︒.CBCB = ,CAB CDB ∴∠=∠,3CDB ABC ∠=∠ ,3CAB ABC ∴∠=∠,90CAB ABC ∠︒∠+= ,390ABC ABC ∠+∠=︒.22.5ABC ∴∠=︒,67.5CAB ∠=︒,CFD CAE ∴∠=∠,//AB FD ∴,390FDO ∴∠=∠=︒,FD OD ∴⊥.又OD 为O 半径,FD ∴是O 切线22.(本小题满分10分)解(1)设甲步行的平均速度是x 千米/小时,则甲开车的平均速度是10x 千米/小时,202110x x+=,解得4x =.经检验,4x =是原方程的解,且符合题意.1010440x ∴=⨯=,答:甲开车的平均速度是40千米/小时,步行的平均速度是4千米/小时;(2)由题意可知,乙骑车的平均速度为(48)a +千米/小时.时间为12a ⎛⎫+⎪⎝⎭小时,1(48)82a a ⎛⎫++= ⎪⎝⎭,解得:112a =,232a =-(不符合题意,舍去),答:a 的值为12.23.(本小题满分10分)解:(1)把点(2,3)A --、(1,)B n 代入m y x =,得32m -=-,1mn =.解得6m =,6n =,∴反比例函数解析式为6y x=.把点(2,3)A --、(1,6)B 代入y kx b =+,得326k b k b -=-+⎧⎨=+⎩,解得33k b =⎧⎨=⎩,∴一次函数解析式为33y x =+.(2)①33y x =+ 与x 轴、y 轴相交于点C 、点D ,求得(1,0)C -,(0,3)D ,1322DCO S CO DO ∴=⋅=△,69PDE DCO S S ∴==△△,(,)P p q ,6,E p p ⎛⎫∴ ⎪⎝⎭,连接EO ,116322EOF S EF FO p p ∴=⋅=⋅⋅=△.(若直接使用k 的几何意义,没有适当的过程,本步骤不得分)1||21||2PDE EOF p PE S PES EFp EF ⋅==⋅ △△,933PE EF ∴==,3PE EF =.PE EF ∴>,点P 在线段EF 外,如图,3344PE PE EF PF PE EF EF ∴===+.②由图象可知,点P 在点E 上方时,20p ∴-<<或1p >,当1p =-时,方程21(1)(1)02p p x p x -++--=为一元一次方程210x -+=,∴方程有一个实数根.当1p ≠-时,方程21(1)(1)02p p x p x -++--=为一元二次方程,221(1)4(1)321(31)(1)2p p p p p p p -∆=-++⋅=--=+-.∴当1p >时,0∆>,方程有2个实数解,当123p -<<-,且1p ≠-时,(31)(1)0p p +->,即0∆>,方程有2个实数解,当103p -<<时,(31)(1)0p p +-<,即0∆<,方程无实数解,当13p -=时,(31)(1)0p p +-=,方程有两个相等实数解,当1p =-时,方程有一个实数解.24.(本小题满分12分)解:(1)114BD BC == ,4BC ∴=,221AB BD ==,422BC AB ==,2AB BCBD AB∴==,B B ∠=∠ ,ABD CBA ∴△△∽,ABC ∴△是友好三角形;(1)答案不唯一(3)①ABD CBA △△∽,ACB BAD AED ∴∠=∠=∠,2AC ABAD BD∴==,22AC AD x ∴==,2CE CA x ∴==,CEA CAE ∴∠=∠, 四边形ADCE 内接于O ,180ADC CEA ADC ADB ∴∠+∠=∠+∠=︒,BDA AEC EAC ∴∠=∠=∠,ABD EFA ∴△△∽,AD BD AE AF ∴=,1x y AF∴=,y AF x ∴=,BAD BCA ∠=∠ ,ADB CAE CDE ∠=∠=∠,DAB DCF ∴△△∽,CD CF AD AB ∴=,32CF x ∴=,6CF x∴=,62y AC AF CF x x x∴=+=+=,y ∴与x 的函数关系式为:226y x =-;②连接OA 、OC ,//CE AB ,CEA CAE CDE CAB ACE ∴∠=∠=∠=∠=∠,ACE ∴△是等边三角形,2y x ∴=,2226x x ∴=-,112x +=,212x =(不合题意,舍去),21y x ==,AC AE CE ==,1AC ∴=+120AOC ∴∠=︒,OA OC = ,过点O 作OH AC ⊥于点H ,12AH CH AC ==,30OCH OAH ∠=∠=︒,在Rt OCH △中cos CH OCH OC ∠=,12cos30AC r ︒=,3r AC ∴=,O ∴的半径为33AC +=.25.(本小题满分12分)解:(1) 直线1y kx =+经过点(1,3)B ,13k ∴+=,2k ∴=.(2)方法一;由图像动态分析可得,(i )当F 经过点C 时,AB 为直径,90ACB ∴∠=︒,过点A ,B 分别作x 轴的垂线,垂足为K ,H ,90BHC CKA ∴∠=∠=︒,HBC ACK ∠=∠,BHC CKA ∴△△∽,BH HC CK AK ∴=.设点(,21)A m m +,312|21|m m =-+,解得1m =-,(1,1)A ∴--,AB =当F 与线段DC 相切于点经过点R 时,连接FR ,因AB 为直径,所以圆心F 必在直线1y kx =+上,设(,21)A m m +,则点1,22m F m +⎛⎫+ ⎪⎝⎭,则1,02m R +⎛⎫ ⎪⎝⎭,连接AR ,BR ,过点A ,B 分别作x 轴的垂线,垂足为K ,H ,则点,同理可得BH HR RK AK =,11321212m m m m +-∴=++,得到方程226110m m --=,解得113m =-213m =+(舍去),(7F ∴--,30AB =-2πS r = 圆,(2215ππS ∴-≤≤,即(405π5πS -≤≤,F ∴的面积的取值范围是:(405π5πS -≤≤.方法二: 点A 在直线21y x =+上,设点A 的横坐标为m ,(,21)A m m ∴+,以AB 为直径的圆与线段CD 有交点.设圆心为F ,圆的半径为r ,过点F 作FR x ⊥轴于点R ,当F 与x 轴相切时,半径最小,此时2AB FR =,1213,22m m F +++⎛⎫ ⎪⎝⎭,22(2)AB FR =,222213(1)(213)22m m m ++⎛⎫-++-=⨯ ⎪⎝⎭.解得113m =-213m =+(舍去),2132m r FR ++∴≥=,15r ∴≥-过点B 作BH x ⊥轴于点H ,90BHD =︒∠ ,当点A 与点D 重合时,此时F 经过点H ,FC FH >,点C 在圆外,∴当F 经过点C 时,其半径最大,此时2AB FC =,22(2)AB FC =,22221213(1)(213)4222m m m m ⎡⎤+++⎛⎫⎛⎫-++-=⨯-+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,解得1m =-.2AB r FC ∴≤===,r ∴≤,FR r FC ∴≤≤,15r ∴-≤≤30AB ∴-≤.2πS r =圆,22(15ππS ∴-≤≤,即(405π5πS -≤≤.F ∴ 的面积的取值范围是:(405π5πS -≤≤.(3)方法一:设(,21)B n n +,(,21)A m m +,15r -≤≤30AB -≤≤,而)AB n m =-,122n m ∴-≤-≤.线段AB 绕点A 按逆时钟方向旋转2α︒得到线段AB ',(2,21)B m n n '∴-+,依题意得//AB A B '',AB A B ''=,//AB A B '''',AB A B ''''=,∴四边形ABB A ''和四边形AB B A ''''都是平行四边形.∴点B 、B ''关于点B '对称,抛物线2y ax bx c =++经过A 、B 、A '、B ''四点,即对称轴经过B 、B ''的中点,B ',∴抛物线的对称轴为2x m n =-,设抛物线的解析式为2(2)y a x m n p =-++, 图像经过(,21)A m m +和(,21)B n n +,22()21(22)21a m n p m a n m p n ⎧-++=+∴⎨-+=+⎩,化简可得23()2()a m n n m -=-,3()2a n m ∴-=2(22)21a n m p n -+=+ ,24()21a n m p n ∴-+=+,24()213n m p ∴⨯-+=+,83()3p n m ∴=--,122n m -≤-≤,7353p ∴-≤≤-.∴抛物线的顶点的最大值为35-73-,最大值与最小值得差为1123-.方法二:线段AB 绕点A 按逆时钟方向旋转2α得到线段AB ',(2,21)B m n n '∴-+,依题意得//AB A B '',AB A B ''=,//AB A B '''',AB A B ''''=,∴四边形ABB A ''和四边形AB B A ''''都是平行四边形.∴点B 、B ''关于点B '对称,抛物线2y ax bx c =++经过A 、B 、A '、B ''四点,即对称轴经过B 、B ''的中点B ',∴抛物线的对称轴为2x m n =-,由图像分析可得当AB 的越长时,抛物线的开口越大,因为开口向上,则抛物线2y ax bx c =++中的a 越小,由于点B 固定,则抛物线的顶点的纵坐标则随着AB 最长时达到最小值,AB 最短时达到最大值,由(2)可得当AB =(1,1)A --.1m ∴=-,1n =,23x m n ∴=-=-,设抛物线的解析式为2(3)y a x p =++,而2(3)y a x p =++经过点A 、B ,联立方程22(13)3(13)1a p a p ⎧++=⎨-++=-⎩,解得1373a p ⎧=⎪⎪⎨⎪=-⎪⎩,min 73p ∴=-,同理可得当30AB =-(13A --.联立方程2224)312)27a p a p ⎧+=⎪⎨-+=-⎪⎩,解得35a p ⎧=⎪⎨⎪=-⎩,max 35p ∴=-∴最大值与最小值得差为1123-.。
广东省广州市2022年中考数学真题(共10题;共20分)1.(2分)如图是一个几何体的侧面展开图,这个几何体可以是()A.圆锥B.圆柱C.棱锥D.棱柱【答案】A【解析】【解答】解:该几何体的侧面展开图是扇形,所以这个几何体可能是圆锥,故答案为:A.【分析】根据该几何体的侧面展开图是扇形,求解即可。
2.(2分)下列图形中,是中心对称图形的是()A.B.C.D.【答案】C【解析】【解答】解:A、不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形,故此选项不符合题意;B、不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形,故此选项不符合题意;C、能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形,故此选项符合题意;D、不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形,故此选项不符合题意; 故答案为:C .【分析】 如果一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形叫做中心对称图形。
根据中心对称图形的定义对每个选项一一判断即可。
3.(2分)代数式1√x+1有意义时,x 应满足的条件为( ) A .x ≠−1B .x >−1C .x <−1D .x ≤-1【答案】B【解析】【解答】解:由题意可知:x +1>0,∴x >−1, 故答案为:B .【分析】先求出x +1>0,再求解即可。
4.(2分)点(3,−5)在正比例函数y =kx (k ≠0)的图象上,则k 的值为( )A .-15B .15C .−35D .−53【答案】D【解析】【解答】解:∵点(3,−5)在正比例函数y =kx(k ≠0)的图象上,∴−5=3k ,∴k =−53,故答案为:D .【分析】根据题意先求出−5=3k ,再求出k 的值即可。
2019年广东省广州市中考数学试卷一、选择题:本大题共10 小题,每小题 3 分,合计30分.{题目}1.(2019年广州)|-6|=( )A .-6B .6C .16D .16{答案}B{解析}本题考查了绝对值的定义. 负数的绝对值是它的相反数,-6的相反数是6. 因此本题选B . {分值}3{章节:[1-1-2-4]绝对值 } {考点:绝对值的意义} {类别:常考题} {难度:1-最简单}{题目}2.(2019年广州)广州正稳步推进碧道建设,营造“水清岸绿、鱼翔浅底、水草丰美、白鹭成群”的生态廊道,使之成为老百姓美好生活的好去处. 到今年底各区完成碧道试点建设的长度分别为(单位:千米):5,,5,5,5,,6,5,,,. 这组数据的众数是( )A .5B .C .6D .{答案}A{解析}本题考查了众数的定义,众数是一组数据中次数出现最多的数据. 本题中建设长度出现最多的是5,因此本题选A . {分值}3{章节:[1-20-1-2]中位数和众数} {考点:众数}{类别:常考题} {难度:2-简单}{题目}3.(2019年广州)如图1 ,有一斜坡AB ,坡顶B 离地面的高度BC 为30m ,斜坡的倾斜角是∠BAC ,若tan ∠BAC =25,则此斜坡的水平距离AC 为( ) A .75 mB .50 mC .30 mD . 12 m{答案}A{解析}本题考查了解直角三角形,根据正切的定义,tan ∠BAC=BCAC. 所以,tan BCAC BAC=∠,代入数据解得,AC =75. 因此本题选A .{分值}3{章节:[1-28-1-2]解直角三角形} {考点:正切} {考点:解直角三角形} {类别:常考题} {难度:2-简单}{题目}4.(2019年广州)下列运算正确的是( )A .321--=-B .2113()33⨯-=-C .3515x x x ⋅=D .={答案}D图1{解析}本题考查了代数运算,根据有理数减法,325--=-,故A 不正确;根据有理数乘法和乘方运算,21113()3393⨯-=⨯=,故B 不正确;根据同底数幂乘法法则,358x x x ⋅=,故C 不正确;根据二次根式运算法则,D 正确. 因此本题选D . {分值}3{章节:[1-16-2]二次根式的乘除} {考点:两个有理数的减法} {考点:乘方运算法则} {考点:两个有理数相乘} {考点:同底数幂的乘法} {考点:二次根式的乘法法则} {类别:易错题} {难度:2-简单}{题目}5.(2019年广州)平面内,e O 的半径为1,点P 到O 的距离为2,过点P 可作e O 的切线的条数为( )A .0 条B .1 条C .2 条D . 无数条{答案}C{解析}本题考查了切线长定理. 因为点P 到O 的距离d =2,所以,d >r . 从而可知点P 在圆外. 由于圆外一点可引圆的两条切线,因此本题选C . {分值}3{章节:[1-24-2-2]直线和圆的位置关系} {考点:切线长定理} {考点:点与圆的位置关系} {类别:易错题}{难度:2-简单}{题目}6.(2019年广州)甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等. 设甲每小时做x个零件,下列方程正确的是()A.1201508x x=-B.1201508x x=+C.1201508x x=-D.1201508 x x=+{答案}D{解析}本题考查了分式方程解应用题,甲每小时做x个零件,则乙每小时做(x+8)个零件. 根据两人的工作时间相等以及工作时间等于工作总量除以工作效率,可列出正确的分式方程. 因此本题选D.{分值}3{章节:[1-15-3]分式方程}{考点:分式方程的应用(工程问题)}{类别:常考题}{难度:2-简单}{题目}7.(2019年广州)如图2,□ABCD中,AB=2,AD=4,对角线AC,BD相交于点O,且E,F,G,H分别是AO,BO,CO,DO的中点. 则下列说法正确的是()A.EH=HG B.四边形EFGH是平行四边形C.AC⊥BD D.△ABO的面积是△EFO的面积的2倍{答案}B{解析}本题考查了平行四边形的综合性质. 由E,F,G,H分别是AO,BO,CO,DO的中点可知,EF,FG,HG,EH分别是△ABO,△BCO,△CDO,△DAO的中位线,EH=2,HG=1. 故A不正确;由前面的中位线分析可知,EF但AB≠AD,可知C不正确;根据中位线的性图2质易知,△ABO的面积是△EFO的面积的4倍,故D不正确. 因此本题选.{分值}3{章节:[1-18-1-1]平行四边形的性质}{考点:三角形中位线}{考点:平行四边形边的性质}{考点:平行四边形对角线的性质}{考点:两组对边分别平行的四边形是平行四边形}{类别:易错题}{难度:3-中等难度}{题目}8.(2019年广州)若点A(-1,y1),B(2,y2),C(3,y3)在反比例函数6的图象上,则y1,y2,y3的大小关系是()yxA.y3 < y2 < y1 B.y2 < y1 < y3 C.y1 < y3 < y2 D.y1 < y2 < y3{答案}C{解析}本题考查了反比例函数的性质,当x=-1,2,3时,y1=-6,y2=3,y3=2. 故可判断出y1 < y3 < y2.本题也可以通过数形结合,在坐标轴上画出图象,标出具体的点的坐标的方法得出结论. 因此本题选C.{分值}3{章节:[1-26-1]反比例函数的图像和性质}{考点:反比例函数的性质}{类别:常考题}{难度:2-简单}{题目}9.(2019年广州)如图3,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,图3AD 于点E ,F ,若BE =3,AF =5,则AC 的长为( )A .B .C .10D . 8{答案}A{解析}本题考查了特殊平行四边形的性质和勾股定理. 如图,连接AE ,根据已知条件,易证△AFO ≌△CEO ,从而CE =AF =5. 因为EF 垂直平分AC ,所以AE =CE =5. 由∠B =90°,根据勾股定理,可得AB =4. 因为BC =BE +EC =8,所以AC ==除此以外,本题可以通过利用△COE ∽△CBA 求解. 因此本题选A . {分值}3{章节:[1-27-1-2]相似三角形的性质} {考点:勾股定理}{考点:垂直平分线的性质} {考点:矩形的性质} {考点:相似三角形的性质} {类别:常考题} {难度:3-中等难度}{题目}10.(2019年广州)关于x 的一元二次方程x 2-(k -1)x -k +2=0有两个实数根x 1,x 2,若(x 1-x 2+2)(x 1-x 2-2)+2x 1x 2=-3,则k 的值为( ) A .0或2B .-2或2C .-2D . 2{答案}D{解析}本题考查了一元二次方程的相关性质. 根据题目可知,121x x k +=-,122x x k ⋅=-+. 另21212121212(2)(2)2()42x x x x x x x x x x -+--+=--+21212()42x x x x =+--. 代入上面的根与系数的关系,可化简得2(1)42(2)3k k ----+=-,解得k =±2. 当k =-2时,△<0,方程没有实数根,舍去.因此本题选D.{分值}3{章节:[1-21-3] 一元二次方程根与系数的关系}{考点:灵活选用合适的方法解一元二次方程}{考点:根与系数关系}{考点:根的判别式}{类别:易错题}{难度:4-较高难度}题型:2-填空题}二、填空题:本大题共6小题,每小题3分,合计18分.{题目}11.(2019年广州)如图4,点A,B,C在直线l上,PB⊥l,PA=6cm,PB =5cm,PC=7cm,则点P到直线l的距离是 cm.{答案}5{解析}本题考查了垂线段最短这个公理,因此本题是5.{分值}3{章节: 第5章}{考点:垂线段最短}{类别:数学文化}{难度:1-简单}C A BP图4{题目}12.(2019年广州)代数式18x -有意义,应满足的条件是{答案}8x >{解析}本题考查了二次根式被开方数是非负数和分式分母不为0,因此本题是8x >. {分值}3{章节: 第15和16章}{考点: 二次根式被开方数是非负数和分式分母不为0} {类别:易错题} {难度:2-简单}{题目}13.(2019年广州)分解因式:22x y xy y ++= . {答案} 2(1)y x +{解析}本题考查了提公因式法和完全平方公式分解因式,因此本题是2(1)y x +. {分值}3 {章节: 第14章} {考点:因式分解} {类别:常考题} {难度:2-简单}{题目}14.(2019年广州)一副三角板如图5放置,将三角板ADE 绕点A 逆时针旋转α(090)o o α<<,使得三角板ADE 的一边的直线与BC 垂直,则α的度数为 . {答案}15°或60°{解析}本题考查了旋转、三角形内角和和分类讨论思想,因此本题是15°或60°. {分值}3 {章节: 第23章}{考点: 旋转、三角形内角和和分类讨论思想} {类别:思想方法} {难度:3-中等难度}{题目}15.(2019年广州)如图6放置的一个圆锥,它的主视图是直角边为2的等腰直角三角形,则该圆锥侧面展开扇形的弧长为 .(结果保留π) {答案}{解析}本题考查了勾股定理、三视图和扇形的弧长,因此本题是.{分值}3 {章节: 第24章} {考点: 扇形的弧长}图5图6ABCDM FGE 图7{类别:常考题} {难度:2-简单}{题目}16.(2019年广州)如图7,正方形ABCD 的边长为2,点E 在边AB 上运动(不与A,B 重合),较∠DAM=450,点F 在射线AM 上,且,CF 与AD 相交于点G,连接EC,EF,EG.则下列结论:(1)045ECF =∠, (2)1+2AEG a △的周长为(,(3)222BE DG EG += (4)218EAF a △的面积的最大值是,其正确的结论是 .(填写所有正确结论的序号){答案}(1)和(4){解析}本题考查了正方形和勾股定理,因此本题是(1)和(4). {分值}34{章节: 第18章}{考点: 正方形和勾股定理} {类别:高度原创} {难度:4-较高难度}{题型:4-解答题}三、解答题:本大题共3小题,合计18分.{题目}17.(2019年广州市第17题)解方程组139 x y x y -=⎧⎨+=⎩①②{解析}本题考查了二元一次方程组.{答案}解:由②-①得:48y =解得:2y =将2y =代入①得21x -=解得3x =∴原方程组的解为32x y =⎧⎨=⎩{分值9}{章节:[1-8-2]消元--解二元一次方程组}{难度:2-简单}{类别:常考题}{考点:解二元一次方程组}{题目}18.(2019年广州市第18题)如图8,D 是AB 上一点,DF 交AC 于点E ,DE FE =,FC//AB求证:ADE ∆≌CFE ∆{解析}本题考查了全等三角形的判定方法,以及平行线的性质.{答案}解:∵ FC//AB∴A ACF ∠=∠,ADF F ∠=∠在ADE ∆和CFE ∆中A ACF ADF F DE FE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ADE ∆≌CFE ∆{分值9}{章节:[1-12-2]全等三角形的判定}{难度:2-简单}{类别:常考题}{类别:易错题}{考点:全等三角形的判定}{考点:全等三角形的判定SSS}{考点:全等三角形的判定SAS}{考点:全等三角形的判定ASA,AAS}{考点:平行线的性质与判定}{题目}19.(2019年广州第19题) 已知)(1222b a ba b a a P ±≠+--= (1)化简p(2)若点),(b a 在一次函数2-=x y 的图象上,求p 的值.{解析}本题考查了因式分解、分式通分约分和分式运算、一次函数图象上点的坐标与解析式的关系、代数式的运算、分母有理化.(1)对第一个分式的分母因式分解后,确定两个分式的最简公分母,然后进行通分,把异分母分式化成同分母分式进行减法运算,最后把算得的结果进行约分.(2)将点的的坐标代入一次函数的解析式,得到一个关于字母b a ,的式子,把字母b 或者a 用含另一个字母的式子来表示后,代入第一问化简后的结果,就可以消去a 和b ,得到一个具体的数22,也可以把2-=a b 化成2=-b a ,整体代入第一问化简的结果.{答案}解: (1)))(())((2b a b a b a b a b a a p -+---+= ()()()b a b a b a a -+--=2 ()()b a b a b a -++=ba -=1 (2)将点),(b a 代入2-=x y 得 2-=a b则()2221211==--=-=a ab a p {分值}10分{章节:[1-15-2-2]分式的加减}{难度:3-中等难度}{类别:常考题}{考点:因式分解-平方差}{考点:约分}{考点:通分}{考点:一次函数的图象}{题目}20.(2019年广州第20题)某中学抽取了40名学生参加“平均每周课外阅读时间”的调查,由调查结果绘制了如下不完整的频数分布表和扇形统计图.频数分布表 扇形统计图请根据图表中的信息解答下列问题:(1)求频数分布表中的m 的值;(2)求B 组,C 组在扇形统计图中分别对应扇形的圆心角的度数,并补全扇形统计图;(3)已知F 组的学生中,只有1名男生,其余都是女生.用列举法求以下事件的概率;从F 组中随机选取2名学生,恰好都是女生.{解析}本题第一问和第二问考查了统计常见的频数分布表和扇形统计图,第三问考查了“分两层”的“不放回”的概率,用列表法和树形图法都可以.(1)用总数减去已知的各组的频数就可以得出B 组的频数m 的值;(2)B 组人数占了总人数的81,所以对应的扇形的圆心角占360°的81;C 组的人数占总人数的41,所以对应的扇形的圆心角占360°的41;(3)用列表法或树形图法列出2名学生所以可能的组合情况,找出恰好都是女生的所有情况,()所有可能的情况数恰好都是女生的情况数恰好都是女生=P .{答案}解: (1)5471210240=-----=m(2)B 组:︒=︒⨯45360405;C 组:︒=︒⨯903604010(3)共有12种等可能的情况,其中恰好都是女生的共有6中,分别是女1 女2、女1 女3、女2 女1、女2女3、女3 女1、女3 女2。