2019届高三文科数学一轮复习22:基本不等式(解析版附后)
- 格式:doc
- 大小:184.55 KB
- 文档页数:12
第四节基本不等式[知识能否忆起]一、基本不等式ab ≤a +b21.基本不等式成立的条件:a>0,b>0. 2.等号成立的条件:当且仅当a =b 时取等号. 二、几个重要的不等式a 2+b 2≥2ab(a ,b ∈R);b a +a b≥2(a ,b 同号).ab ≤⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R);⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22(a ,b ∈R). 三、算术平均数与几何平均数设a>0,b>0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.四、利用基本不等式求最值问题 已知x>0,y>0,则:(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p.(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p24.(简记:和定积最大)[小题能否全取]1.(教材习题改编)函数y =x +1x (x >0)的值域为( )A .(-∞,-2]∪[2,+∞)B .(0,+∞)C .[2,+∞)D .(2,+∞)解析:选C ∵x >0,∴y =x +1x ≥2,当且仅当x =1时取等号.2.已知m>0,n>0,且mn =81,则m +n 的最小值为( ) A .18 B .36 C .81D .243解析:选A ∵m>0,n>0,∴m +n≥2mn =18.当且仅当m =n =9时,等号成立. 3.(教材习题改编)已知0<x<1,则x(3-3x)取得最大值时x 的值为( )A.13 B.12 C.34D.23解析:选B 由x(3-3x)=13×3x(3-3x)≤13×94=34,当且仅当3x =3-3x ,即x =12时等号成立.4.若x>1,则x +4x -1的最小值为________.解析:x +4x -1=x -1+4x -1+1≥4+1=5.当且仅当x -1=4x -1,即x =3时等号成立.答案:55.已知x >0,y >0,lg x +lg y =1,则z =2x +5y 的最小值为________.解析:由已知条件lg x +lg y =1,可得xy =10. 则2x +5y ≥2 10xy =2,故⎝ ⎛⎭⎪⎫2x +5y min =2,当且仅当2y =5x 时取等号.又xy =10,即x =2,y =5时等号成立. 答案:21.在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.2.对于公式a +b≥2ab ,ab≤⎝ ⎛⎭⎪⎫a +b 22,要弄清它们的作用和使用条件及内在联系,两个公式也体现了ab和a +b 的转化关系.3.运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+b 2≥2ab 逆用就是ab≤a 2+b22;a +b 2≥ab(a ,b>0)逆用就是ab≤⎝ ⎛⎭⎪⎫a +b 22(a ,b>0)等.还要注意“添、拆项”技巧和公式等号成立的条件等.典题导入[例1] (1)已知x <0,则f(x)=2+4x+x 的最大值为________.(2)(2018·浙江高考)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( ) A.245 B.285C .5D .6[自主解答] (1)∵x <0,∴-x >0,∴f(x)=2+4x +x =2-⎣⎢⎡⎦⎥⎤4-x+-.∵-4x +(-x)≥24=4,当且仅当-x =4-x,即x =-2时等号成立.∴f(x)=2-⎣⎢⎡⎦⎥⎤4-x+-≤2-4=-2, ∴f(x)的最大值为-2.(2)∵x >0,y >0,由x +3y =5xy 得15⎝ ⎛⎭⎪⎫1y +3x =1.∴3x +4y =15·(3x+4y)·⎝ ⎛⎭⎪⎫1y +3x =15⎝ ⎛⎭⎪⎫3xy +4+9+12y x =135+15⎝ ⎛⎭⎪⎫3x y +12y x ≥135+15×23x y ·12y x=5(当且仅当x =2y 时取等号),∴3x +4y 的最小值为5.[答案] (1)-2 (2)C本例(2)条件不变,求xy 的最小值.解:∵x >0,y >0,则5xy =x +3y≥2x·3y, ∴xy≥1225,当且仅当x =3y 时取等号.∴xy的最小值为1225.由题悟法用基本不等式求函数的最值,关键在于将函数变形为两项和或积的形式,然后用基本不等式求出最值.在求条件最值时,一种方法是消元,转化为函数最值;另一种方法是将要求最值的表达式变形,然后用基本不等式将要求最值的表达式放缩为一个定值,但无论哪种方法在用基本不等式解题时都必须验证等号成立的条件.以题试法1.(1)当x >0时,则f(x)=2xx 2+1的最大值为________. (2)(2018·天津高考)已知log 2a +log 2b≥1,则3a+9b的最小值为________.(3)已知x >0,y >0,xy =x +2y ,若xy≥m-2恒成立,则实数m 的最大值是________. 解析:(1)∵x >0,∴f(x)=2x x 2+1=2x +1x ≤22=1,当且仅当x =1x ,即x =1时取等号.(2)由log 2a +log 2b≥1得log 2(ab)≥1, 即ab≥2,∴3a+9b=3a+32b≥2×3a +2b 2(当且仅当3a =32b,即a =2b 时取等号). 又∵a +2b≥22ab ≥4(当且仅当a =2b 时取等号), ∴3a+9b≥2×32=18.即当a =2b 时,3a+9b有最小值18.(3)由x >0,y >0,xy =x +2y≥22xy ,得xy≥8,于是由m -2≤xy 恒成立,得m -2≤8,即m≤10.故m 的最大值为10.答案:(1)1 (2)18 (3)10典题导入[例2] (2018·江苏高考)如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米,某炮位于坐标原点.已知炮弹发射后的轨迹在方程y =kx -120(1+k 2)x 2(k >0)表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.[自主解答] (1)令y =0,得kx -120(1+k 2)x 2=0,由实际意义和题设条件知x >0,k >0, 故x =20k 1+k 2=20k +1k≤202=10,当且仅当k =1时取等号. 所以炮的最大射程为10千米.(2)因为a >0,所以炮弹可击中目标⇔存在k >0,使3.2=ka -120(1+k 2)a 2成立⇔关于k 的方程a 2k 2-20ak +a 2+64=0有正根 ⇔判别式Δ=(-20a)2-4a 2(a 2+64)≥0 ⇔a≤6.所以当a 不超过6千米时,可击中目标.由题悟法利用基本不等式求解实际应用题的方法(1)问题的背景是人们关心的社会热点问题,如“物价、销售、税收、原材料”等,题目往往较长,解题时需认真阅读,从中提炼出有用信息,建立数学模型,转化为数学问题求解.(2)当运用基本不等式求最值时,若等号成立的自变量不在定义域内时,就不能使用基本不等式求解,此时可根据变量的范围用对应函数的单调性求解.以题试法2.(2018·福州质检)某种商品原来每件售价为25元,年销售8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2 000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到x 元.公司拟投入16(x 2-600)万元作为技改费用,投入50万元作为固定宣传费用,投入15x 万元作为浮动宣传费用.试问:当该商品明年的销售量a 至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时每件商品的定价.解:(1)设每件定价为t 元,依题意,有⎝ ⎛⎭⎪⎫8-t -251×0.2t≥25×8,整理得t 2-65t +1 000≤0,解得25≤t≤40.因此要使销售的总收入不低于原收入,每件定价最多为40元. (2)依题意,x >25时,不等式ax≥25×8+50+16(x 2-600)+15x 有解,等价于x >25时,a≥150x +16x +15有解.∵150x +16x≥2150x ·16x =10(当且仅当x =30时,等号成立),∴a≥10.2. 因此当该商品明年的销售量a 至少应达到10.2万件时,才可能使明年的销售收入不低于原收入与总投入之和,此时该商品的每件定价为30元.1.已知f(x)=x +1x -2(x <0),则f(x)有 ( )A .最大值为0B .最小值为0C .最大值为-4D .最小值为-4解析:选C ∵x <0,∴f(x)=- ⎣⎢⎡⎦⎥⎤-+1--2≤-2-2=-4,当且仅当-x =1-x ,即x =-1时取等号.2.(2018·太原模拟)设a 、b ∈R ,已知命题p :a 2+b 2≤2ab;命题q :⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22,则p 是q 成立的( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件D .既不充分也不必要条件解析:选B3.函数y =x 2+2x -1(x>1)的最小值是( )A .23+2B .23-2C .2 3D .2解析:选A ∵x>1,∴x -1>0.∴y =x 2+2x -1=x 2-2x +2x +2x -1=x 2-2x +1+-+3x -1=-2+-+3x -1=x -1+3x -1+2≥2-3x -1+2=23+2. 当且仅当x -1=3x -1,即x =1+3时,取等号.4.(2018·陕西高考)小王从甲地到乙地往返的时速分别为a 和b(a<b),其全程的平均时速为v ,则( ) A .a<v<abB .v =ab C.ab<v<a +b2D .v =a +b 2解析:选A 设甲、乙两地的距离为s ,则从甲地到乙地所需时间为s a ,从乙地到甲地所需时间为sb ,又因为a<b ,所以全程的平均速度为v =2s s a +s b=2ab a +b <2ab2ab =ab ,2ab a +b >2ab2b=a ,即a<v<ab. 5.已知正项等比数列{a n }满足:a 7=a 6+2a 5,若存在两项a m ,a n 使得a m a n =4a 1,则1m +4n 的最小值为( )A.32 B.53 C.256D .不存在解析:选A 设正项等比数列{a n }的公比为q ,由a 7=a 6+2a 5,得q 2-q -2=0,解得q =2. 由a m a n =4a 1,即2m +n -22=4,得2m +n -2=24,即m +n =6. 故1m +4n =16(m +n)⎝ ⎛⎭⎪⎫1m +4n =56+16⎝ ⎛⎭⎪⎫4m n +n m ≥56+46=32,当且仅当4m n =n m 时等号成立. 6.设a>0,b>0,且不等式1a +1b +k a +b ≥0恒成立,则实数k 的最小值等于( )A .0B .4C .-4D .-2解析:选 C 由1a +1b +ka +b ≥0得k≥-+2ab,而+2ab=b a +ab+2≥4(a=b 时取等号),所以-+2ab≤-4,因此要使k≥-+2ab恒成立,应有k≥-4,即实数k 的最小值等于-4.7.已知x ,y 为正实数,且满足4x +3y =12,则xy 的最大值为________.解析:∵12=4x +3y≥24x×3y,∴xy≤3.当且仅当⎩⎪⎨⎪⎧4x =3y ,4x +3y =12,即⎩⎪⎨⎪⎧x =32,y =2时xy 取得最大值3.答案:38.已知函数f(x)=x +px -1(p 为常数,且p >0)若f(x)在(1,+∞)上的最小值为4,则实数p 的值为________.解析:由题意得x -1>0,f(x)=x -1+px -1+1≥2p +1,当且仅当x =p +1时取等号,因为f(x)在(1,+∞)上的最小值为4,所以2p +1=4,解得p =94.答案:949.(2018·朝阳区统考)某公司购买一批机器投入生产,据市场分析每台机器生产的产品可获得的总利润y(单位:万元)与机器运转时间x(单位:年)的关系为y =-x 2+18x -25(x ∈N *).则当每台机器运转________年时,年平均利润最大,最大值是________万元.解析:每台机器运转x 年的年平均利润为y x =18-⎝ ⎛⎭⎪⎫x +25x ,而x >0,故y x ≤18-225=8,当且仅当x =5时,年平均利润最大,最大值为8万元.答案:5 810.已知x >0,a 为大于2x 的常数, (1)求函数y =x(a -2x)的最大值; (2)求y =1a -2x -x 的最小值.解:(1)∵x >0,a >2x , ∴y =x(a -2x)=12×2x(a-2x)≤12×⎣⎢⎡⎦⎥⎤2x +-22=a 28,当且仅当x =a 4时取等号,故函数的最大值为a 28. (2)y =1a -2x +a -2x 2-a2≥2 12-a 2=2-a2. 当且仅当x =a -22时取等号.故y =1a -2x -x 的最小值为2-a2. 11.正数x ,y 满足1x +9y =1.(1)求xy 的最小值; (2)求x +2y 的最小值. 解:(1)由1=1x +9y≥21x ·9y 得xy≥36,当且仅当1x =9y,即y =9x =18时取等号,故xy 的最小值为36. (2)由题意可得x +2y =(x +2y)⎝ ⎛⎭⎪⎫1x +9y =19+2y x +9x y ≥19+22y x ·9x y =19+62,当且仅当2y x =9xy,即9x 2=2y 2时取等号,故x +2y 的最小值为19+6 2.12.为了响应国家号召,某地决定分批建设保障性住房供给社会.首批计划用100万元购得一块土地,该土地可以建造每层1 000平方米的楼房,楼房的每平方米建筑费用与建筑高度有关,楼房每升高一层,整层楼每平方米建筑费用提高20元.已知建筑第5层楼房时,每平方米建筑费用为800元.(1)若建筑第x 层楼时,该楼房综合费用为y 万元(综合费用是建筑费用与购地费用之和),写出y =f(x)的表达式;(2)为了使该楼房每平方米的平均综合费用最低,应把楼层建成几层?此时平均综合费用为每平方米多少元?解:(1)由题意知建筑第1层楼房每平方米建筑费用为720元, 建筑第1层楼房建筑费用为720×1 000=720 000(元)=72 (万元), 楼房每升高一层,整层楼建筑费用提高20×1 000=20 000(元)=2(万元), 建筑第x 层楼房的建筑费用为72+(x -1)×2=2x +70(万元), 建筑第x 层楼时,该楼房综合费用为 y =f(x)=72x +-2×2+100=x 2+71x +100,综上可知y =f(x)=x 2+71x +100(x≥1,x ∈Z). (2)设该楼房每平方米的平均综合费用为g(x),则g(x)=×10 0001 000x=x=2+71x +x=10x +1 000x+710≥2 10x·1 000x+710=910. 当且仅当10x =1 000x,即x =10时等号成立.综上可知应把楼层建成10层,此时平均综合费用最低,为每平方米910元.1.(2018·浙江联考)已知正数x ,y 满足x +22xy ≤λ(x +y)恒成立,则实数λ的最小值为( ) A .1 B .2 C .3D .4解析:选B 依题意得x +22xy ≤x+(x +2y)=2(x +y),即x +22xyx +y ≤2(当且仅当x =2y 时取等号),即x +22xy x +y 的最大值是2;又λ≥x +22xyx +y,因此有λ≥2,即λ的最小值是2.2.设x ,y ,z 为正实数,满足x -2y +3z =0,则y2xz 的最小值是________.解析:由已知条件可得y =x +3z2, 所以y 2xz =x 2+9z 2+6xz 4xz=14⎝ ⎛⎭⎪⎫x z +9z x +6 ≥14⎝⎛⎭⎪⎫2 x z ×9z x +6=3, 当且仅当x =y =3z 时,y2xz 取得最小值3.答案:33.某食品厂定期购买面粉,已知该厂每天需用面粉6吨,每吨面粉的价格为1 800元,面粉的保管等其他费用为平均每吨每天3元,购买面粉每次需支付运费900元.(1)求该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少?(2)某提供面粉的公司规定:当一次购买面粉不少于210吨时,其价格可享受9折优惠,问该厂是否考虑利用此优惠条件?请说明理由.解:(1)设该厂应每隔x 天购买一次面粉,其购买量为6x 吨,由题意可知,面粉的保管等其他费用为3[6x +6(x -1)+6(x -2)+…+6×1]=9x(x +1),设平均每天所支付的总费用为y 1元, 则y 1=++900]x+1 800×6=900x +9x +10 809≥2900x·9x+10 809=10 989, 当且仅当9x =900x,即x =10时取等号.即该厂应每隔10天购买一次面粉,才能使平均每天所支付的总费用最少. (2)因为不少于210吨,每天用面粉6吨,所以至少每隔35天购买一次面粉.设该厂利用此优惠条件后,每隔x(x≥35)天购买一次面粉,平均每天支付的总费用为y 2元, 则y 2=1x [9x(x +1)+900]+6×1 800×0.90=900x+9x +9 729(x≥35).令f(x)=x +100x (x≥35),x 2>x 1≥35,则f(x 1)-f(x 2)=⎝⎛⎭⎪⎫x 1+100x 1-⎝ ⎛⎭⎪⎫x 2+100x 2=2-x 1-x 1x 2x 1x 2.∵x 2>x 1≥35,∴x 2-x 1>0,x 1x 2>0,100-x 1x 2<0, 故f(x 1)-f(x 2)<0,f(x 1)<f(x 2), 即f(x)=x +100x ,当x≥35时为增函数.则当x =35时,f(x)有最小值,此时y 2<10 989. 因此该厂应接受此优惠条件.1.函数y =a 1-x(a >0,且a≠1)的图象恒过定点A ,若点A 在直线mx +ny -1=0(mn >0)上,则1m +1n的最小值为________.解析:因y =a x 恒过点(0,1),则A(1,1),又A 在直线上,所以m +n =1(mn >0). 故1m +1n =m +n mn =1mn ≥1⎝ ⎛⎭⎪⎫m +n 22=4,当且仅当m =n =12时取等号.答案:42.已知直线x +2y =2分别与x 轴、y 轴相交于A 、B 两点,若动点P(a ,b)在线段AB 上,则ab 的最大值是________.解析:∵A(2,0),B(0,1),∴0≤b≤1, 由a +2b =2,得a =2-2b , ab =(2-2b)b =2(1-b)·b≤2·⎣⎢⎡⎦⎥⎤-+b 22=12. 当且仅当1-b =b ,即b =12时等号成立,此时a =1,因此当b =12,a =1时,(ab)max =12.答案:123.若x ,y ∈(0,+∞),x +2y +xy =30. (1)求xy 的取值范围; (2)求x +y 的取值范围.解:由x +2y +xy =30,(2+x)y =30-x , 则2+x≠0,y =30-x2+x>0,0<x <30. (1)xy =-x 2+30xx +2=-x 2-2x +32x +64-64x +2=-x -64x +2+32=-⎣⎢⎡⎦⎥⎤++64x +2+34≤18,当且仅当x =6时取等号, 因此xy 的取值范围是(0,18]. (2)x +y =x +30-x 2+x =x +32x +2-1 =x +2+32x +2-3≥82-3,当且仅当⎩⎨⎧x =42-2,y =42-1时等号成立,又x +y =x +2+32x +2-3<30,因此x +y 的取值范围是[82-3,30).。
2019-2020年高三数学一轮复习 专项训练 基本不等式(含解析)1、(xx·山东卷)设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z 取得最大值时,2x +1y -2z 的最大值为 ( ). A .0 B .1 C.94D .3解析 (1)由x 2-3xy +4y 2-z =0,得z =x 2-3xy +4y 2, ∴xy z =xy x 2-3xy +4y 2=1x y +4yx -3. 又x ,y ,z 为正实数,∴x y +4yx ≥4,当且仅当x =2y 时取等号,此时z =2y 2. ∴2x +1y -2z =22y +1y -22y2=-⎝⎛⎭⎫1y 2+2y =-⎝⎛⎭⎫1y -12+1,当1y =1,即y =1时,上式有最大值1. 答案:B2、已知2x +2y =1,(x >0,y >0),则x +y 的最小值为A .1B .2C .4D .8解析:∵x >0,y >0,∴x +y =(x +y )·⎝⎛⎭⎫2x +2y = 4+2⎝⎛⎭⎫x y +y x ≥4+4x y ·yx=8. 当且仅当x y =yx ,即x =y =4时取等号.答案:D3、(1)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是A.245B.285 C .5D .6(2)若正数x ,y 满足4x 2+9y 2+3xy =30,则xy 的最大值是 A.43B.53C .2D.54解析 (1)由x +3y =5xy 可得15y +35x=1,∴3x +4y =(3x +4y )⎝⎛⎭⎫15y +35x =95+45+3x 5y +12y 5x ≥135+125=5(当且仅当3x 5y =12y 5x ,即x =1,y =12时,等号成立),∴3x +4y 的最小值是5.(2)由x >0,y >0,得4x 2+9y 2+3xy ≥2×(2x )×(3y )+3xy (当且仅当2x =3y 时等号成立),∴12xy +3xy ≤30,即xy ≤2,∴xy 的最大值为2. 答案 (1)C (2)C 4、设x ,y 均为正实数,且32+x +32+y=1,则xy 的最小值为A .4B .4 3C .9D .16解析 由32+x +32+y =1可化为xy =8+x +y ,∵x ,y 均为正实数,∴xy =8+x +y ≥8+2xy (当且仅当x =y 时等号成立),即xy -2xy -8≥0,解得xy ≥4,即xy ≥16,故xy 的最小值为16. 答案 D5.(xx·泰安一模)若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( ). A .a +b ≥2ab B.1a +1b >2abC.b a +ab≥2 D .a 2+b 2>2ab 解析 因为ab >0,即b a >0,a b >0,所以b a +ab ≥2b a ×ab=2. 答案 C6、设a >0,b >0.若a +b =1,则1a +1b 的最小值是( ).A .2 B.14C .4D .8解析 由题意1a +1b =a +b a +a +b b =2+b a +ab ≥2+2b a ×a b =4,当且仅当b a =a b ,即a =b =12时,取等号,所以最小值为4. 答案 C7.已知a >0,b >0,a ,b 的等比中项是1,且m =b +1a ,n =a +1b,则m +n 的最小值是( ).A .3B .4C .5D .6解析 由题意知:ab =1,∴m =b +1a =2b ,n =a +1b =2a ,∴m +n =2(a +b )≥4ab =4. 答案 B8.已知函数y =x -4+9x +1(x >-1),当x =a 时,y 取得最小值b ,则a +b =( ).A .-3B .2C .3D .8解析 y =x -4+9x +1=x +1+9x +1-5,由x >-1,得x +1>0,9x +1>0,所以由基本不等式得y=x +1+9x +1-5≥2x +1×9x +1-5=1,当且仅当x +1=9x +1,即(x +1)2=9,所以x +1=3,即x =2时取等号,所以a =2,b =1,a +b =3. 答案 C9.若正实数a ,b 满足ab =2,则(1+2a )·(1+b )的最小值为________.解析 (1+2a )(1+b )=5+2a +b ≥5+22ab =9.当且仅当2a =b ,即a =1,b =2时取等号. 答案 910.已知x ,y ∈R +,且满足x 3+y4=1,则xy 的最大值为______.解析 ∵x >0,y >0且1=x 3+y4≥2xy 12,∴xy ≤3.当且仅当x 3=y 4,即当x =32,y =2时取等号. 答案 311.函数y =a 1-x (a >0,a ≠1)的图象恒过定点A ,若点A 在直线mx +ny -1=0(mn >0)上,则1m +1n 的最小值为________.解析 ∵y =a 1-x 恒过点A (1,1),又∵A 在直线上,∴m +n =1.而1m +1n =m +n m +m +n n =2+n m +m n ≥2+2=4,当且仅当m =n =12时,取“=”,∴1m +1n 的最小值为4. 答案 412.已知x >0,y >0,且2x +5y =20.求u =lg x +lg y 的最大值; 解:∵x >0,y >0,∴由基本不等式,得2x +5y ≥210xy . ∵2x +5y =20,∴210xy ≤20,xy ≤10,当且仅当2x =5y 时,等号成立.因此有⎩⎪⎨⎪⎧ 2x +5y =20,2x =5y ,解得⎩⎪⎨⎪⎧x =5,y =2,此时xy 有最大值10.∴u=lg x+lg y=lg(xy)≤lg 10=1.13.已知x >0,y >0,且2x +1y =1,若x +2y >m 2+2m 恒成立,则实数m 的取值范围是( ).A .(-∞,-2]∪[4,+∞)B .(-∞,-4]∪[2,+∞)C .(-2,4)D .(-4,2)解析 ∵x >0,y >0且2x +1y =1,∴x +2y =(x +2y )⎝⎛⎭⎫2x +1y =4+4y x +x y ≥4+24y x ·x y =8,当且仅当4y x =xy, 即x =4,y =2时取等号,∴(x +2y )min =8,要使x +2y >m 2+2m 恒成立, 只需(x +2y )min >m 2+2m 恒成立, 即8>m 2+2m ,解得-4<m <2. 答案 D14.已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________. 解析 由已知,得xy =9-(x +3y ),即3xy =27-3(x +3y )≤⎝⎛⎭⎫x +3y 22,令x +3y =t ,则t 2+12t -108≥0,解得t ≥6,即x +3y ≥6. 答案 615.设x ,y ∈R +,且x +4y =40,则lg x +lg y 的最大值是( ). A .40 B .10 C .4 D .2解析 ∵x ,y ∈R +,∴40=x +4y ≥24xy =4xy ,当x =4y =20时取等号, ∴xy ≤100,lg x +lg y =lg xy ≤lg 100=2. 答案 D16.某种生产设备购买时费用为10万元,每年的设备管理费共计9千元,这种生产设备的维修费为第一年2千元,第二年4千元,第三年6千元,而且以后以每年2千元的增量逐年递增,则这种生产设备最多使用多少年报废最合算(即使用多少年的年平均费用最少)( ). A .8 B .9 C .10 D .11解析 设使用x 年的年平均费用为y 万元.由已知,得y =10+0.9x +0.2x 2+0.2x2x ,即y =1+10x +x10(x ∈N *).由基本不等式知y ≥1+210x ·x 10=3,当且仅当10x =x10,即x =10时取等号.因此使用10年报废最合算,年平均费用为3万元.答案 C17.设x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -6≤0,x -y +2≥0,x ≥0,y ≥0.若目标函数z =ax +by (a >0,b >0)的最大值为12,则2a+3b的最小值为( ). A.256 B.83 C.113D .4 解析 不等式表示的平面区域如图所示阴影部分.当直线ax +by =z (a >0,b >0)过直线x -y +2=0与直线3x -y -6=0的交点(4,6)时,目标函数z =ax +by (a >0,b >0)取得最大值12,即4a +6b =12,即2a +3b =6.所以2a +3b =⎝⎛⎭⎫2a +3b ·2a +3b6=136+⎝⎛⎭⎫b a +a b ≥136+2=256(当且仅当a =b =65时等号成立). 答案 A18.已知向量a =(x -1,2),b =(4,y ),若a ⊥b ,则9x +3y 的最小值为________. 解析 由a ⊥b 得a ·b =4(x -1)+2y =0,即2x +y =2.所以9x +3y ≥29x ·3y =232x +y =6. 答案 6 19.已知f (x )=2xx 2+6. (1)若f (x )>k 的解集为{x |x <-3或x >-2},求k 的值; (2)若对任意x >0,f (x )≤t 恒成立,求实数t 的范围. 解 (1)f (x )>k ⇔kx 2-2x +6k <0, 由已知其解集为{x |x <-3或x >-2},得x 1=-3,x 2=-2是方程kx 2-2x +6k =0的两根, 所以-2-3=2k ,即k =-25.(2)∵x >0,f (x )=2x x 2+6=2x +6x≤66,由已知f (x )≤t 对任意x >0恒成立,故实数t 的取值范围是⎣⎡⎭⎫66,+∞.考点:基本不等式的实际应用1.如图,书的一页的面积为600 cm 2,设计要求书面上方空出2 cm 的边,下、左、右方都空出1 cm的边,为使中间文字部分的面积最大,这页书的长、宽应分别为________.解析 设长为a cm ,宽为b cm ,则ab =600,则中间文字部分的面积S =(a -2-1)(b -2)=606-(2a +3b )≤606-26×600=486,当且仅当2a =3b ,即a =30,b =20时,S max =486. 答案 30 cm 、20 cm2.某单位有员工1 000名,平均每人每年创造利润10万元.为了增加企业竞争力,决定优化产业结构,调整出x (x ∈N *)名员工从事第三产业,调整后他们平均每人每年创造利润为10⎝⎛⎭⎫a -3x500万元(a >0),剩下的员工平均每人每年创造的利润可以提高0.2x %.(1)若要保证剩余员工创造的年总利润不低于原来1 000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?(2)在(1)的条件下,若调整出的员工创造的年总利润始终不高于剩余员工创造的年总利润,则a 的取值范围是多少?解 (1)由题意得:10(1 000-x )(1+0.2x %)≥10×1 000, 即x 2-500x ≤0,又x >0,所以0<x ≤500. 即最多调整500名员工从事第三产业.(2)从事第三产业的员工创造的年总利润为10⎝⎛⎭⎫a -3x500x 万元,从事原来产业的员工的年总利润为10(1 000-x )(1+0.2x %)万元,则10⎝⎛⎭⎫a -3x 500x ≤10(1 000-x )(1+0.2x %),所以ax -3x2500≤1 000+2x -x -1500x 2,所以ax ≤2x 2500+1 000+x ,即a ≤2x 500+1 000x +1恒成立,因为2500x +1 000x≥22x 500×1 000x=4, 当且仅当2x 500=1 000x,即x =500时等号成立.所以a ≤5,又a >0,所以0<a ≤5,即a 的取值范围为(0,5].3.(xx·北京)某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( ).A .60件B .80件C .100件D .120件解析 若每批生产x 件产品,则每件产品的生产准备费用是800x ,存储费用是x 8,总的费用是800x +x8≥2 800x ·x 8=20,当且仅当800x =x8时取等号,即x =80. 答案 B4、 已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A ,B 两点,求△ABO 的面积的最小值及此时直线l 的方程.审题路线 根据截距式设所求直线l 的方程⇒把点P 代入,找出截距的关系式⇒运用基本不等式求S△ABO⇒运用取等号的条件求出截距⇒得出直线l 的方程.解 设A (a,0),B (0,b ),(a >0,b >0),则直线l 的方程为x a +yb =1,∵l 过点P (3,2),∴3a +2b =1.∴1=3a +2b≥26ab,即ab ≥24. ∴S △ABO =12ab ≥12.当且仅当3a =2b ,即a =6,b =4.△ABO 的面积最小,最小值为12. 此时直线l 的方程为:x 6+y4=1.即2x +3y -12=0.5、小王大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本为3万元,每生产x 万件,需另投入流动成本为W (x )万元,在年产量不足8万件时,W (x )=13x 2+x (万元).在年产量不小于8万件时,W (x )=6x +100x -38(万元).每件产品售价为5元.通过市场分析,小王生产的商品能当年全部售完.(1)写出年利润L (x )(万元)关于年产量x (万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少?解 (1)因为每件商品售价为5元,则x 万件商品销售收入为5x 万元,依题意得,当0<x <8时, L (x )=5x -⎝⎛⎭⎫13x 2+x -3=-13x 2+4x -3; 当x ≥8时,L (x )=5x -⎝⎛⎭⎫6x +100x -38-3=35-⎝⎛⎭⎫x +100x .所以L (x )=⎩⎨⎧-13x 2+4x -3,0<x <8,35-⎝⎛⎭⎫x +100x ,x ≥8.(2)当0<x <8时,L (x )=-13(x -6)2+9.此时,当x =6时,L (x )取得最大值L (6)=9万元, 当x ≥8时,L (x )=35-⎝⎛⎭⎫x +100x ≤35-2x ·100x=35-20=15, 此时,当且仅当x =100x时,即x =10时,L (x )取得最大值15万元.∵9<15,所以当年产量为10万件时,小王在这一商品的生产中所获利润最大.最大利润为15万元.6、为响应国家扩大内需的政策,某厂家拟在xx 年举行促销活动,经调查测算,该产品的年销量(即该厂的年产量)x 万件与年促销费用t (t ≥0)万元满足x =4-k 2t +1(k 为常数).如果不搞促销活动,则该产品的年销量只能是1万件.已知xx 年生产该产品的固定投入为6万元,每生产1万件该产品需要再投入12万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定投入和再投入两部分).(1)将该厂家xx 年该产品的利润y 万元表示为年促销费用t 万元的函数;(2)该厂家xx 年的年促销费用投入多少万元时,厂家利润最大?解 (1)由题意有1=4-k 1,得k =3,故x =4-32t +1. ∴y =1.5×6+12x x×x -(6+12x )-t =3+6x -t =3+6⎝⎛⎭⎫4-32t +1-t =27-182t +1-t (t ≥0). (2)由(1)知:y =27-182t +1-t =27.5-⎣⎢⎢⎡⎦⎥⎥⎤9t +12+ ⎝⎛⎭⎫t +12. 由基本不等式9t +12+⎝⎛⎭⎫t +12≥2 9t +12·⎝⎛⎭⎫t +12=6, 当且仅当9t +12=t +12, 即t =2.5时等号成立, 故y =27-182t +1-t =27.5-⎣⎢⎢⎡⎦⎥⎥⎤9t +12+ ⎝⎛⎭⎫t +12 ≤27.5-6=21.5. 当且仅当9t +12=t +12时,等号成立,即t =2.5时,y 有最大值21.5.所以xx 年的年促销费用投入2.5万元时,该厂家利润最大,最大利润为21.5万元.7.小王于年初用50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小王在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x 年年底出售,其销售价格为(25-x )万元(国家规定大货车的报废年限为10年).(1)大货车运输到第几年年底,该车运输累计收入超过总支出?(2)在第几年年底将大货车出售,能使小王获得的年平均利润最大?(利润=累计收入+销售收入-总支出)解(1)设大货车到第x年年底的运输累计收入与总支出的差为y万元,则y=25x-[6x+x(x-1)]-50(0<x≤10,x∈N),即y=-x2+20x-50(0<x≤10,x∈N),由-x2+20x-50>0,解得10-52<x<10+5 2.而2<10-52<3,故从第3年开始运输累计收入超过总支出.(2)因为利润=累计收入+销售收入-总支出,所以销售二手货车后,小王的年平均利润为y=1x[y+(25-x)]=1x(-x2+19x-25)=19-⎝⎛⎭⎫x+25x,而19-⎝⎛⎭⎫x+25x≤19-2x·25x=9,当且仅当x=5时等号成立,即小王应当在第5年将大货车出售,才能使年平均利润最大.8.某单位决定投资3 200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,求:仓库面积S 的最大允许值是多少?为使S达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?解设铁栅长为x米,一侧砖墙长为y米,则顶部面积S=xy,依题设,得40x+2×45y+20xy=3 200,由基本不等式,得3 200≥240x·90y+20xy=120 xy+20xy=120S+20S,则S+6S-160≤0,即(S-10)(S+16)≤0,故0<S≤10,从而0<S≤100,所以S的最大允许值是100平方米,取得此最大值的条件是40x=90y且xy=100,解得x=15,即铁栅的长应设计为15米..。
高中数学:必修5 基本不等式一、基础知识1.重要不等式:a 2+b 2≥2ab (a ,b ∈R )一般地,对于任意实数a ,b ,有a 2+b 2≥2ab ,当且仅当______________时,等号成立.2.基本不等式如果a >0,b >0,那么2a bab +≤,当且仅当______________时,等号成立. 其中,2a b+叫做正数a ,b 的算术平均数,ab 叫做正数a ,b 的几何平均数. 因此基本不等式也可叙述为:两个正数的算术平均数不小于它们的几何平均数.3.基本不等式的证明(1)代数法:方法一 因为a >0,b >0,所以我们可以用a ,b 分别代替重要不等式中的a ,b ,得22()()2a b a b +≥⋅,当且仅当a b =时,等号成立.即2a bab +≥( a >0,b >0),当且仅当a =b 时,等号成立. 方法二 因为2222()()2()0a b ab a b ab a b +-=+-=-≥, 所以20a b ab +-≥,即2a b ab +≥,所以2a bab +≤. 方法三 要证2a bab +≥,只要证2a b ab +≥,即证20a b ab +-≥,即证2()0a b -≥,显然2()0a b -≥总是成立的,当且仅当a =b 时,等号成立.(2)几何法:如图,AB 是圆的直径,C 是AB 上一点,AC =a ,BC =b ,过点C 作垂直于AB 的弦DE ,连接AD ,BD .易证Rt Rt ACD DCB △∽△,则CD 2=CA ·CB ,即CD =______________.这个圆的半径为2a b +,显然它大于或等于CD ,即2a bab +≥,当且仅当点C 与圆心重合,即a =b 时,等号成立.2a bab +≤的几何意义:半径不小于半弦.4.重要不等式和均值不等式的常用变形公式及推广公式(1)2b a a b +≥(a ,b 同号);2b aa b +≤-(a ,b 异号). (2)12a a +≥(a >0);12a a+≤-(a <0). (3)114a b a b +≥+(a >0,b >0);22a a b b≥-(a >0,b >0).(4)222a b ab +≤,2()2a b ab +≤,4ab ≤a 2+b 2+2ab ,2(a 2+b 2)≥(a +b )2(,)a b ∈R . (5)12212(,,,,2)nn n a a a a a a a n n n+++≥∈≥∈R N ,.(6)2121212111()()(,,,n n na a a n a a a a a a ++++++≥为正实数,且2)n n ≥∈N ,.5.均值不等式链若a >0,b >0,则2112a b a b+≤≤≤+,当且仅当a =b 时,等号成立.其中211a b +分别叫做a ,b 的调和平均数和平方平均数.6.最值定理已知x >0,y >0,则若x+y 为定值s ,则当且仅当x =y 时,积xy 有最大值24s (简记:和定积最大); 若xy 为定值t ,则当且仅当x =y 时,和x +y有最小值简记:积定和最小).参考答案:重难易错点:一、利用基本不等式判断不等式是否成立要判断不等式是否成立,关键是把握其运用基本不等式时能否严格遵循“一正、二定、三相等”这三个条件.例1.(1)设f (x )=ln x ,0<a <b ,若p =f ),q =()2a b f +,r =12(f (a )+f (b )),则下列关系式中正确的是 A .q =r <pB .p =r <qC .q =r >pD .p =r >q(2)给出下列不等式:①12x x +≥;②1||2x x+≥;③21(0)4x x x +>>;④1sin 2sin x x +≥;⑤若0<a <1<b ,则log a b +log b a ≤-2.其中正确的是______________. 【答案】(1)B ;(2)②⑤.【点析】基本不等式常用于有条件的不等关系的判断、比较代数式的大小等.一般地,结合所给代数式的特征,将所给条件进行转换(利用基本不等式可将整式和根式相互转化),使其中的不等关系明晰即可解决问题.二、利用基本不等式证明不等式利用基本不等式证明不等式的一般思路:先观察题中要证明的不等式的结构特征,若不能直接使用基本不等式证明,则考虑对代数式进行拆项、变形、配凑等,使之达到能使用基本不等式的形式;若题目中还有其他条件,则先观察已知条件和所证不等式之间的联系,当已知条件中含有“1”时,要注意“1”的代换.另外,解题时要时刻注意等号能否取到.例2.(1)已知a >0,b >0,c >0,求证:222a b c a b c b c a++≥++;(2)已知a >b ,ab =2,求证:224a b a b+≥-.观察a-b,a2+b2,可联想到通过加减2ab的方法配凑出(a-b)2,从而化为可使用基本不等式的形式,结合ab =2可使问题得到解决.三、利用基本不等式求最值(1例3.(1)已知f(x)=x+1x+2(x<0),则f(x)有A.最大值为4B.最小值为4 C.最小值为0 D.最大值为0(2)已知0<x<4,则x(4-x)取得最大值时x的值为A.0 B.2 C.4 D.16(3)已知函数f(x)=2x(x>0),若f(a+b)=16,则f(ab)的最大值为_______________;(4)已知a,b∈R,且ab=8,则|a+2b|的最小值是_______________.【答案】(1)D;(2)C;(3)16;(4)8.【点析】利用基本不等式求最值要牢记三个关键词:一正、二定、三相等,即①一正:各项必须为正;②二定:各项之和或各项之积为定值;③三相等:必须验证取等号时条件是否具备.(2使用基本不等式条件的可通过“变形”来转换,常见的变形技巧有:拆项、凑项、凑系数等.例4.(1)已知x>0,则函数y=231x xx++的最小值为_______________;(2)若x>1,则函数y=11xx+-的最小值为_______________;(3)若0<x<125,则函数y=x(12-5x)的最大值为_______________.(31”的替换,或构造不等式求解.例5.(1)已知a>0,b>0,a+b=1,则11a b+的最小值为_______________;(2)已知a>0,b>0,11a b+=2,则a+b的最小值为_______________;(3)若正实数x,y满足x+y+3=xy,则xy的最小值是_______________;(4)已知x >0,y >0,x +y +xy =3,则x +y 的最小值是_______________. 【答案】(1)4;(2)2;(3)9;(4)2.【点析】在构造不等式求最值时,既要掌握公式的正用,也要注意公式的逆用.例如,当a >0,b >0时,a 2+b 2≥2ab 逆用就是ab ≤222a b +;2a b+≥ab 逆用就是ab ≤2()2a b +等.还要注意“添项、拆项、凑系数”的技巧和等号成立的条件等.四、基本不等式在实际中的应用利用基本不等式解决应用问题的关键是构建模型,一般来说,都是从具体的几何图形,通过相关的关系建立关系式.在解题过程中尽量向模型2bax ab x+≥(a >0,b >0,x >0)上靠拢. 例6.如图,要规划一个矩形休闲广场,该休闲广场含有大小相等的左右两个矩形草坪(如图中阴影部分所示),且草坪所占面积为18 000 m 2,四周道路的宽度为10 m ,两个草坪之间的道路的宽度为5 m .试问,怎样确定该矩形休闲广场的长与宽的尺寸(单位:m ),能使矩形休闲广场所占面积最小?【答案】当矩形休闲广场的长为140 m ,宽为175 m 时,可使休闲广场的面积最小.【点析】本题容易出现的思维误区:①未能理清草坪边长与休闲广场边长之间的关系;②求出目标函数后不会运用基本不等式求最值,缺乏必要的配凑、转化变形能力,从而无法利用基本不等式求最值,或者不会利用基本不等式等号成立的条件求变量的取值.五、忽略等号成立的条件导致错误例7、函数22()2f x x =+的最小值为_______________.【错解】2222223211()22222x x f x x x x x +++===++≥+++,所以函数()f x 的最小值为2.【错因分析】错解中使用基本不等式时,等号成立的条件为22122x x +=+,即22x +=1,显然x 2≠-1,即等号无法取到,函数()f x 的最小值为2是不正确的. 【正解】()21222+++=x x x f ,令()()t t t g t x t 1,2,22+=≥+=.易知函数()tt t g 1+=在[)∞+,2上六、忽略等号成立的一致性导致错误例8、若x>0,y>0,且x+2y=1,则11x y+的最小值为_______________.基本不等式:基础习题强化1.已知01x <<,则(1)x x -取最大值时x 的值为A B C D 2.若实数,a b 满足323a b +=,则84a b +的最小值是A .B .4C .D .3.若0,0,x y >>且22x y +=,则21x y+的最小值是A .3BC .3D .924.若1a >,则211a a a -+-的最小值是A .2B .4C .1D .35.已知2212,202b m a a n b a -=+>=≠-()(),则m ,n 之间的大小关系是 A .m >nB .m <nC .m =nD .不能确定6.己知,a b 均为正实数,且直线60ax by +-=与直线()3250b x y --+=互相垂直,则23a b +的最小值为 A .12B .13C .24D .257.已知0a >,0b >,11a b a b +=+,则12a b+的最小值为A .4B .C .8D .168.若正数a ,b 满足3ab a b =++,则ab 的取值范围为________________. 9.已知,,a b c +∈R ,且3a b c ++=,则111a b c++的最小值是________________.10.若实数a ,b 满足12a b+=ab 的最小值为________________. 11.设230<<x ,则函数4(32)y x x =-的最大值为________________. 12.已知a >0,b >0,ab =8,则当a 的值为________________时,22log log (2)a b ⋅取得最大值.能力提升13.已知a ,b 都是正实数,且满足2a b ab +=,则2a b +的最小值为A .12B .10C .8D .614.已知1,1a b >>,且11111a b +=--,则4a b +的最小值为 A .13B .14C .15D .1615.已知不等式1)()9ax y x y++≥(对任意正实数x ,y 恒成立,则正实数a 的最小值为 A .8B .6C .4D .216.若正实数,a b 满足1a b +=,则A .11a b+有最大值4 B .ab 有最小值14C .a b +有最大值2D .22a b +有最小值2217.已知0,0a b >>,若不等式3103m a b a b--≤+恒成立,则m 的最大值为 A .4B .16C .9D .318.设实数x ,y 满足2102146x y x y x y +≤⎧⎪+≤⎨⎪+≥⎩,则xy 的最大值为A .252B .492C .12D .1419.已知a >0,b >0,c >0,且a +b +c =1,则111a b c++的最小值为_________________. 20.在4×+9×=60的两个中,分别填入一个自然数,使它们的倒数之和最小,则中应分别填入____________和____________.21.若a ,b ,c >0且(a +c )(a +b )=423-,则2a +b +c 的最小值为________________. 22.已知正实数a ,b 满足:1a b +=,则222a ba b a b +++的最大值是________________.其他23.某校要建一个面积为450平方米的矩形球场,要求球场的一面利用旧墙,各面用钢筋网围成,且在矩形一边的钢筋网的正中间要留一个3米的进出口(如图所示).设矩形的长为x 米,钢筋网的总长度为y 米. (1)列出y 与x 的函数关系式,并写出其定义域;(2)问矩形的长与宽各为多少米时,所用的钢筋网的总长度最小?24.(1)求函数2710(1)1x x y x x ++=>-+的最小值;(2)已知正数a ,b 和正数x ,y ,若a +b =10,1a bx y+=,且x +y 的最小值是18,求a ,b 的值.25.已知函数2()21,f x x ax a a =--+∈R .(1)若2a =,试求函数()(0)f x y x x=>的最小值; (2)对于任意的[0,2]x ∈,不等式()f x a ≤成立,试求a 的取值范围.26.(天津文理)已知a ,b ∈R ,且360a b -+=,则128ab+的最小值为_______________. 27.(江苏)在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,120ABC ∠=︒,ABC ∠的平分线交AC于点D ,且1BD =,则4a c +的最小值为_______________.28.(山东理)若0a b >>,且1ab =,则下列不等式成立的是A .()21log 2aba ab b +<<+ B .()21log 2a b a b a b<+<+ C .()21log 2a b a a b b +<+<D .()21log 2a ba b a b +<+< 29.(天津文理)若,a b ∈R ,0ab >,则4441a b ab++的最小值为________________.30.(江苏)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________________. 31.(山东文)若直线1(0,0)x ya b a b+=>>过点(1,2),则2a b +的最小值为________________.【参考答案】1.【答案】B 2.【答案】C 3.【答案】D 4.【答案】D 5.【答案】A 6.【答案】D 7.【答案】B8.【答案】[)+∞,9 9.【答案】3 10.【答案】 11.【答案】9212.【答案】4 13.【答案】C 14.【答案】B 15.【答案】C 16.【答案】C 17.【答案】B 18.【答案】A19.【答案】9 20.【答案】6 4 21.【答案】2 22.23.【答案】(1)9003(0150)y x x x=+-<<;(2)长为30米,宽为15米时,所用的钢筋网的总长度最小. 24.【答案】(1)9;(2)28a b =⎧⎨=⎩或82a b =⎧⎨=⎩. 25.【答案】(1)2-;(2)3[,)4+∞.26.【答案】0.25 27.【答案】9 28.【答案】B 29.【答案】4 30.【答案】30 31.【答案】8。
高三数学基本不等式试题答案及解析1. [2014·兰州调研]设x、y、z>0,a=x+,b=y+,c=z+,则a、b、c三数()A.至少有一个不大于2B.都小于2C.至少有一个不小于2D.都大于2【答案】C【解析】假设a、b、c都小于2,则a+b+c<6.而事实上a+b+c=x++y++z+≥2+2+2=6与假设矛盾,∴a,b,c中至少有一个不小于2.2.若方程有实根,则实数的取值范围是___________.[【答案】【解析】原方程可变为:,【考点】方程及重要不等式.3.阅读:已知、,,求的最小值.解法如下:,当且仅当,即时取到等号,则的最小值为.应用上述解法,求解下列问题:(1)已知,,求的最小值;(2)已知,求函数的最小值;(3)已知正数、、,,求证:.【答案】(1)9;(2)18;(3)证明见解析.【解析】本题关键是阅读给定的材料,弄懂弄清给定材料提供的方法(“1”的代换),并加以运用.主要就是,展开后就可应用基本不等式求得最值.(1);(2)虽然没有已知的“1”,但观察求值式子的分母,可以凑配出“1”:,因此有,展开后即可应用基本不等式;(3)观察求证式的分母,结合已知有,因此有此式中关键是凑配出基本不等式所需要的两项,如与合并相加利用基本不等式有,从而最终得出. (1),2分而,当且仅当时取到等号,则,即的最小值为. 5分(2), 7分而,,当且仅当,即时取到等号,则,所以函数的最小值为. 10分(3)当且仅当时取到等号,则. 16分【考点】阅读材料问题,“1”的代换,基本不等式.4.在如图所示的锐角三角形空地中, 欲建一个面积最大的内接矩形花园(阴影部分), 则其边长x 为 (m).【答案】20【解析】利用均值不等式解决应用问题。
设矩形高为y, 由三角形相似得:.5.设A、B、C、D是半径为2的球面上的四点,且满足,的最大值是 _______ .【答案】8【解析】由已知得,,当且仅当时等号成立,因此最大值为8.【考点】球的性质.6.设a、b、c均为正数,且a+b+c=1.证明:(1)ab+bc+ca≤;(2)≥1【答案】(1)见解析(2)见解析【解析】(1)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,得a2+b2+c2≥ab+bc+ca.由题设得(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1.所以3(ab+bc+ca)≤1,即ab+bc+ca≤.(2)因为+b≥2a,+c≥2b,+a≥2c,故+(a+b+c)≥2(a+b+c),即≥a+b+c.所以≥1.7.若,其中为虚数单位,则_________.【答案】【解析】,所以.【考点】复数基本运算.8.已知函数在时取得最小值,则____________.【答案】【解析】由题意得时取得最小值,所以.【考点】重要不等式.9.若(其中,),则的最小值等于.【答案】.【解析】,因此的最小值等于.【考点】基本不等式10.设均为正实数,且,则的最小值为____________.【答案】16【解析】由,化为,整理为,∵均为正实数,∴,∴,解得,即,当且仅当时取等号,∴的最小值为16,故答案为:16.【考点】基本不等式.11.若a、b∈R,且ab>0,则下列不等式中,恒成立的是()A.a2+b2>2ab B.a+b≥2C.+>D.+≥2【答案】D【解析】对于选项A,a2+b2≥2ab,所以选项A错;对于选项B、C,虽然ab>0,只能说明a、b同号,若a、b都小于0时,选项B、C错;对选项D,∵ab>0,∴>0,>0,则+≥2.故选D.12.若直线ax-by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0截得的弦长为4,则+的最小值为() A.B.C.+D.+2【答案】C【解析】圆的标准方程为(x+1)2+(y-2)2=4,所以圆心坐标为(-1,2),半径为r=2.因为直线被圆截得的弦长为4,所以直线ax-by+2=0过圆心,所以-a-2b+2=0,即a+2b=2,所以+b=1,所以+=(+)(+b)=+1++≥+2=+.当且仅当=,a=b时取等号,所以+的最小值为+.故选C.13.在实数集中定义一种运算“”,对任意,为唯一确定的实数,且具有性质:(1)对任意,;(2)对任意,.则函数的最小值为()A.B.C.D.【答案】B【解析】依题意可得,当且仅当时“=”成立,所以函数的最小值为,选.【考点】基本不等式,新定义问题.14.若a,b∈R,且ab>0,则下列不等式中,恒成立的是()A.a+b≥2 B.>C.≥2D.a2+b2>2ab【答案】C【解析】因为ab>0,所以>0,>0,即≥2 =2,所以选C.15.设x,y∈R,a>1,b>1,若a x=b y=3,a+b=2,则的最大值为() A.B.1C.D.2【答案】B【解析】由a x=b y=3得=log3a,=log3b,所以=log3ab≤log3=log3=1.16.设a+b=2,b>0,则当a=________时,+取得最小值.【答案】-2【解析】因为+=+=++≥+2=+1≥-+1=,当且仅当=,a<0,即a=-2,b=4时取等号,故+取得最小值时,a=-2.17.已知函数f(x)=4x+ (x>0,a>0)在x=3时取得最小值,则a=________.【答案】36【解析】∵x>0,a>0,∴f(x)=4x+≥2=4 ,当且仅当4x=(x>0)即x=时f(x)取得最小值,由题意得=3,∴a=36.18.某公司购买一批机器投入生产,据市场分析每台机器生产的产品可获得的总利润y(单位:万元)与机器运转时间x(单位:年)的关系为y=-x2+18x-25(x∈N*).则当每台机器运转______年时,年平均利润最大,最大值是______万元.【答案】58【解析】由题意知每台机器运转x年的年平均利润为=18-(x+),而x>0,故≤18-=8,当且仅当x=5时,年平均利润最大,最大值为8万元.19.设,若,则的最大值为()A.2B.3C.4D.【答案】B【解析】由得,,∴,又,∴,即,当且仅当,即时取等号,所以. 故.【考点】基本不等式.20.已知当取得最小值时,直线与曲线的交点个数为【答案】2【解析】∵,∴当且仅当,即时,取得最小值8,故曲线方程为时,方程化为;当时,方程化为,当时,方程化为,当时,无意义,由圆锥曲线可作出方程和直线与的图象,由图象可知,交点的个数为2.【考点】基本不等式,直线与圆锥曲线的位置关系.21.如图,某小区拟在空地上建一个占地面积为2400平方米的矩形休闲广场,按照设计要求,休闲广场中间有两个完全相同的矩形绿化区域,周边及绿化区域之间是道路(图中阴影部分),道路的宽度均为2米.怎样设计矩形休闲广场的长和宽,才能使绿化区域的总面积最大?并求出其最大面积.【答案】当休闲广场的长为米,宽为米时,绿化区域总面积最大值,最大面积为平方米.【解析】先将休闲广场的长度设为米,并将宽度也用进行表示,并将绿化区域的面积表示成的函数表达式,利用基本不等式来求出绿化区域面积的最大值,但是要注意基本不等式适用的三个条件.试题解析:设休闲广场的长为米,则宽为米,绿化区域的总面积为平方米,6分, 8分因为,所以,当且仅当,即时取等号 12分此时取得最大值,最大值为.答:当休闲广场的长为米,宽为米时,绿化区域总面积最大值,最大面积为平方米.14分【考点】矩形的面积、基本不等式22.若,且,则下列不等式中,恒成立的是()A.B.C.D.【答案】C【解析】因为,则或,则排除与;由于恒成立,当且仅当时,取“=”,故错;由于,则,即,所以选.【考点】基本不等式.23.在矩形ABCD中,|AB|=2,|AD|=2,E、F、G、H分别为矩形四条边的中点,以HF、GE所在直线分别为x,y轴建立直角坐标系(如图所示).若R、R′分别在线段0F、CF上,且.(Ⅰ)求证:直线ER与GR′的交点P在椭圆:+=1上;(Ⅱ)若M、N为椭圆上的两点,且直线GM与直线GN的斜率之积为,求证:直线MN过定点;并求△GMN面积的最大值.【答案】详见解析;直线MN过定点(0,-3),△GMN面积的最大值.【解析】先计算出E、R、G、R′各点坐标,得出直线ER与GR′的方程,解得其交点坐标代入满足椭圆方程即可; 先讨论直线MN的斜率不存在时的情况;再讨论斜率存在时,用斜截式设出直线MN方程.与椭圆方程联立,用“设而不求”的方法通过韦达定理得出b为定值-3或1,又当b=1时,直线GM与直线GN的斜率之积为0,所以舍去.从而证明出MN过定点(0,-3).最后算出点到直线的距离及MN的距离,得出△GMN面积是一个关于的代数式,由及知:,用换元法利用基本不等式求出△GMN面积的最大值是.试题解析:(Ⅰ)∵,∴, 1分又则直线的方程为① 2分又则直线的方程为②由①②得∵∴直线与的交点在椭圆上 4分(Ⅱ)①当直线的斜率不存在时,设不妨取∴ ,不合题意 5分②当直线的斜率存在时,设联立方程得则7分又即将代入上式得解得或(舍)∴直线过定点 10分∴,点到直线的距离为∴由及知:,令即∴当且仅当时, 13分【考点】1.直线的方程;2.解析几何;3.基本不等式.24.已知不等式2|x-3|+|x-4|<2a.(Ⅰ)若a=1,求不等式的解集;(Ⅱ)若已知不等式的解集不是空集,求a的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)先令,得,再分类去绝对值解不等式;(Ⅱ)设,去绝对值得,根据原不等式解集为空集得,从而求得.试题解析:(Ⅰ)当时,不等式即为,若,则,,舍去;若,则,;若,则,.综上,不等式的解集为.(5分)(Ⅱ)设,则,,,,即的取值范围为.(10分)【考点】含绝对值不等式的解法.25.已知,且满足,则的最小值为【答案】【解析】∵,且满足,∴,=,当且仅当时,的最小值为。
§7.3 基本不等式及其应用1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ). (2)b a +ab ≥2(a ,b 同号). (3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R ).(4)a 2+b 22≥⎝⎛⎭⎫a +b 22 (a ,b ∈R ). 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大)1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)函数y =x +1x 的最小值是2.( × )(2)ab ≤(a +b 2)2成立的条件是ab >0.( × )(3)函数f (x )=cos x +4cos x ,x ∈(0,π2)的最小值等于4.( × )(4)x >0且y >0是x y +yx ≥2的充要条件.( × )(5)若a >0,则a 3+1a 2的最小值为2a .( × )(6)a 2+b 2+c 2≥ab +bc +ca (a ,b ,c ∈R ).( √ )2.当x >1时,关于函数f (x )=x +1x -1,下列叙述正确的是( )A.函数f (x )有最小值2B.函数f (x )有最大值2C.函数f (x )有最小值3D.函数f (x )有最大值3答案 C3.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( ) A.a 2+b 2>2ab B.a +b ≥2ab C.1a +1b >2ab D.b a +a b ≥2 答案 D解析 ∵a 2+b 2-2ab =(a -b )2≥0,∴A 错误. 对于B 、C ,当a <0,b <0时,明显错误. 对于D ,∵ab >0,∴b a +ab≥2b a ·a b=2. 4.设x ,y ∈R ,a >1,b >1,若a x =b y =3,a +b =23,则1x +1y 的最大值为( )A.2B.32C.1D.12答案 C解析 由a x =b y =3,得:x =log a 3,y =log b 3,由a >1,b >1知x >0,y >0,1x +1y =log 3a +log 3b=log 3ab ≤log 3⎝⎛⎭⎪⎫a +b 22=1,当且仅当a =b =3时“=”成立,则1x +1y 的最大值为1. 5.(2013·天津)设a +b =2,b >0,则当a =________时,12|a |+|a |b取得最小值. 答案 -2解析 由于a +b =2,所以12|a |+|a |b =a +b 4|a |+|a |b =a 4|a |+b 4|a |+|a |b ,由于b >0,|a |>0,所以b 4|a |+|a |b≥2 b 4|a |·|a |b =1,因此当a >0时,12|a |+|a |b 的最小值是14+1=54;当a <0时,12|a |+|a |b的最小值是-14+1=34.故12|a |+|a |b 的最小值为34,此时⎩⎪⎨⎪⎧b 4|a |=|a |b,a <0,即a =-2.题型一 利用基本不等式求最值例1 (1)已知x >0,y >0,且2x +y =1,则1x +1y 的最小值为________;(2)当x >0时,则f (x )=2xx 2+1的最大值为________.思维启迪 利用基本不等式求最值可以先对式子进行必要的变换.如第(1)问把1x +1y 中的“1”代换为“2x +y ”,展开后利用基本不等式;第(2)问把函数式中分子分母同除“x ”,再利用基本不等式. 答案 (1)3+22 (2)1解析 (1)∵x >0,y >0,且2x +y =1, ∴1x +1y =2x +y x +2x +y y=3+y x +2x y ≥3+2 2.当且仅当y x =2xy 时,取等号.(2)∵x >0,∴f (x )=2x x 2+1=2x +1x≤22=1, 当且仅当x =1x,即x =1时取等号.思维升华 (1)利用基本不等式求函数最值时,注意“一正、二定、三相等,和定积最大,积定和最小”.(2)在求最值过程中若不能直接使用基本不等式,可以考虑利用拆项、配凑、常数代换、平方等技巧进行变形,使之能够使用基本不等式.(1)已知正实数x ,y 满足xy =1,则(x y +y )·(yx+x )的最小值为________.(2)已知x ,y ∈R +,且满足x 3+y 4=1,则xy 的最大值为________.答案 (1)4 (2)3解析 (1)依题意知,(x y +y )(y x +x )=1+y 2x +x 2y +1≥2+2y 2x ×x 2y=4,当且仅当x =y =1时取等号,故(x y +y )·(yx +x )的最小值为4.(2)∵x >0,y >0且1=x 3+y4≥2xy 12,∴xy ≤3.当且仅当x 3=y4时取等号. 题型二 不等式与函数的综合问题例2 (1)已知f (x )=32x -(k +1)3x +2,当x ∈R 时,f (x )恒为正值,则k 的取值范围是( ) A.(-∞,-1)B.(-∞,22-1) C.(-1,22-1)D.(-22-1,22-1)(2)已知函数f (x )=x 2+ax +11x +1(a ∈R ),若对于任意x ∈N *,f (x )≥3恒成立,则a 的取值范围是________.思维启迪 对不等式恒成立问题可首先考虑分离题中的常数,然后通过求最值得参数范围. 答案 (1)B (2)[-83,+∞)解析 (1)由f (x )>0得32x -(k +1)·3x +2>0,解得k +1<3x +23x ,而3x +23x ≥22(当且仅当3x =23x ,即x =log 32时,等号成立),∴k +1<22,即k <22-1.(2)对任意x ∈N *,f (x )≥3恒成立,即x 2+ax +11x +1≥3恒成立,即知a ≥-(x +8x )+3.设g (x )=x +8x ,x ∈N *,则g (2)=6,g (3)=173.∵g (2)>g (3),∴g (x )min =173.∴-(x +8x )+3≤-83, ∴a ≥-83,故a 的取值范围是[-83,+∞).思维升华 (1)a >f (x )恒成立⇔a >(f (x ))max , a <f (x )恒成立⇔a <(f (x ))min ;(2)求最值时要注意其中变量的条件,有些不能用基本不等式的问题可考虑利用函数的单调性.若不等式x 2+ax +1≥0对于一切x ∈(0,12)成立,则a 的最小值是( ) A.0B.-2C.-52D.-3答案 C解析 方法一 设f (x )=x 2+ax +1, 则对称轴为x =-a2.当-a 2≥12,即a ≤-1时,f (x )在(0,12)上是减函数,应有f (12)≥0⇒a ≥-52,∴-52≤a ≤-1.当-a 2≤0,即a ≥0时,f (x )在(0,12)上是增函数,应有f (0)=1>0恒成立,故a ≥0. 当0<-a 2<12,即-1<a <0时,应有f (-a 2)=a 24-a 22+1=1-a 24≥0恒成立,故-1<a <0.综上,a ≥-52,故选C.方法二 当x ∈(0,12)时,不等式x 2+ax +1≥0恒成立转化为a ≥-(x +1x )恒成立.又φ(x )=x +1x 在(0,12)上是减函数,∴φ(x )min =φ(12)=52,∴[-(x +1x )]max =-52,∴a ≥-52.题型三 基本不等式的实际应用例3 某单位决定投资3 200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,求:仓库面积S 的最大允许值是多少?为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?思维启迪 把铁栅长、砖墙长设为未知数,由投资3 200元列等式,利用基本不等式即可求解.解 设铁栅长为x 米,一侧砖墙长为y 米,则顶部面积S =xy ,依题设,得40x +2×45y +20xy =3 200,由基本不等式得3 200≥240x ·90y +20xy =120xy +20xy =120S +20S ,则S +6S -160≤0,即(S -10)(S +16)≤0,故0<S ≤10,从而0<S ≤100,所以S 的最大允许值是100平方米,取得此最大值的条件是40x =90y 且xy =100,解得x =15,即铁栅的长应设计为15米.思维升华 对实际问题,在审题和建模时一定不可忽略对目标函数定义域的准确挖掘,一般地,每个表示实际意义的代数式必须为正,由此可得自变量的范围,然后再利用基本不等式求最值.(1)某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( ) A.60件B.80件C.100件D.120件(2)某种饮料分两次提价,提价方案有两种,方案甲:第一次提价p %,第二次提价q %;方案乙:每次都提价p +q2%,若p >q >0,则提价多的方案是________.答案 (1)B (2)乙解析 (1)设每件产品的平均费用为y 元,由题意得 y =800x +x 8≥2800x ·x8=20. 当且仅当800x =x8(x >0),即x =80时“=”成立,故选B.(2)设原价为1,则提价后的价格为 方案甲:(1+p %)(1+q %), 方案乙:(1+p +q2%)2,因为(1+p %)(1+q %)≤1+p %2+1+q %2=1+p +q2%,且p >q >0,所以(1+p %)(1+q %)<1+p +q2%,即(1+p %)(1+q %)<(1+p +q2%)2,所以提价多的方案是乙.忽视基本不等式等号成立的条件致误典例:(10分)(1)(2012·浙江)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( ) A.245B.285C.5D.6 (2)函数y =1-2x -3x(x <0)的最小值为________.易错分析 (1)对x +3y 运用基本不等式得xy 的范围,再对3x +4y 运用基本不等式,利用不等式的传递性得最值;(2)没有注意到x <0这个条件误用基本不等式得2x +3x ≥2 6.解析 (1)由x +3y =5xy 可得15y +35x =1,所以3x +4y =(3x +4y )(15y +35x )=95+45+3x 5y +12y 5x ≥135+2 3x 5y ·12y 5x =135+125=5, 当且仅当x =1,y =12时取等号,故3x +4y 的最小值是5.(2)∵x <0,∴y =1-2x -3x =1+(-2x )+(-3x )≥1+2(-2x )·3-x=1+26,当且仅当x=-62时取等号,故y 有最小值1+2 6. 答案 (1)C (2)1+2 6温馨提醒 (1)利用基本不等式求最值,一定要注意应用条件;(2)尽量避免多次使用基本不等式,若必须多次使用,一定要保证等号成立的条件一致.方法与技巧1.基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,常常用于比较数(式)的大小或证明不等式,解决问题的关键是分析不等式两边的结构特点,选择好利用基本不等式的切入点.2.对于基本不等式,不仅要记住原始形式,而且还要掌握它的几种变形形式及公式的逆用等,例如:ab≤(a+b2)2≤a2+b22,ab≤a+b2≤a2+b22(a>0,b>0)等,同时还要注意不等式成立的条件和等号成立的条件.失误与防范1.使用基本不等式求最值,“一正、二定、三相等”三个条件缺一不可.2.连续使用基本不等式求最值要求每次等号成立的条件一致.A 组 专项基础训练(时间:40分钟)一、选择题1.已知0<x <1,则x (3-3x )取得最大值时x 的值为( )A.13B.12C.34D.23答案 B解析 ∵0<x <1,∴1-x >0.∴x (3-3x )=3x (1-x )≤3⎝ ⎛⎭⎪⎫x +1-x 22=34.当且仅当x =1-x ,即x =12时取等号.2.若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a 等于() A.1+2B.1+ 3C.3D.4答案 C解析 f (x )=x +1x -2=x -2+1x -2+2.∵x >2,∴x -2>0.∴f (x )=x -2+1x -2+2≥2 (x -2)·1x -2+2=4,当且仅当x -2=1x -2,即x =3时,“=”成立.又f (x )在x =a 处取最小值.∴a =3.3.小王从甲地到乙地往返的时速分别为a 和b (a <b ),其全程的平均时速为v ,则( )A.a <v <abB.v =abC.ab <v <a +b 2D.v =a +b 2答案 A解析 设甲、乙两地相距s ,则小王往返两地用时为s a +s b, 从而v =2ss a +s b =2ab a +b . ∵0<a <b ,∴ab <a +b 2,2ab a +b >2ab 2b=a , ∴2a +b <1ab ,即2ab a +b<ab ,∴a <v <ab . 4.若a >0,b >0,且ln(a +b )=0,则1a +1b的最小值是( ) A.14B.1C.4D.8 答案 C解析 由a >0,b >0,ln(a +b )=0得⎩⎪⎨⎪⎧ a +b =1a >0b >0.故1a +1b =a +b ab =1ab ≥1(a +b 2)2=1(12)2=4. 当且仅当a =b =12时上式取“=”. 5.(2012·福建)下列不等式一定成立的是( )A.lg ⎝⎛⎭⎫x 2+14>lg x (x >0) B.sin x +1sin x≥2(x ≠k π,k ∈Z ) C.x 2+1≥2|x |(x ∈R )D.1x 2+1>1(x ∈R ) 答案 C解析 应用基本不等式:x ,y ∈R +,x +y 2≥xy (当且仅当x =y 时取等号)逐个分析,注意基本不等式的应用条件及取等号的条件.当x >0时,x 2+14≥2·x ·12=x , 所以lg ⎝⎛⎭⎫x 2+14≥lg x (x >0),故选项A 不正确; 运用基本不等式时需保证一正二定三相等,而当x ≠k π,k ∈Z 时,sin x 的正负不定,故选项B 不正确;由基本不等式可知,选项C 正确;当x =0时,有1x 2+1=1,故选项D 不正确.二、填空题6.设x ,y ∈R ,且xy ≠0,则(x 2+1y 2)(1x 2+4y 2)的最小值为________. 答案 9解析 (x 2+1y 2)(1x 2+4y 2)=5+1x 2y 2+4x 2y 2≥5+21x 2y 2·4x 2y 2=9,当且仅当x 2y 2=12时“=”成立.7.已知函数f (x )=x +p x -1(p 为常数,且p >0),若f (x )在(1,+∞)上的最小值为4,则实数p 的值为________.答案 94解析 由题意得x -1>0,f (x )=x -1+p x -1+1≥2p +1,当且仅当x =p +1时取等号,因为f (x )在(1,+∞)上的最小值为4,所以2p +1=4,解得p =94. 8.某公司一年需购买某种货物200吨,平均分成若干次进行购买,每次购买的运费为2万元,一年的总存储费用数值(单位:万元)恰好为每次的购买吨数数值,要使一年的总运费与总存储费用之和最小,则每次购买该种货物的吨数是__________________.答案 20解析 设每次购买该种货物x 吨,则需要购买200x 次,则一年的总运费为200x ×2=400x ,一年的总存储费用为x ,所以一年的总运费与总存储费用为400x +x ≥2400x ·x =40,当且仅当400x=x ,即x =20时等号成立,故要使一年的总运费与总存储费用之和最小,每次应购买该种货物20吨.三、解答题9.(1)已知0<x <25,求y =2x -5x 2的最大值; (2)已知x >0,y >0,且x +y =1,求8x +2y的最小值. 解 (1)y =2x -5x 2=x (2-5x )=15·5x ·(2-5x ). ∵0<x <25,∴5x <2,2-5x >0, ∴5x (2-5x )≤(5x +2-5x 2)2=1,∴y ≤15,当且仅当5x =2-5x ,即x =15时,y max =15. (2)∵x >0,y >0,且x +y =1,∴8x +2y =(8x +2y)(x +y ) =10+8y x +2x y ≥10+2 8y x ·2x y =18, 当且仅当8y x =2x y ,即x =23,y =13时等号成立, ∴8x +2y的最小值是18. 10.某造纸厂拟建一座底面图形为矩形且面积为162平方米的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400元/米,中间两道隔墙建造单价为248元/米,池底建造单价为80元/平方米,水池所有墙的厚度忽略不计.(1)(2)若由于地形限制,该池的长和宽都不能超过16米,试设计污水处理池的长和宽,使总造价最低,并求出最低总造价.解 (1)设污水处理池的宽为x 米,则长为162x米. 总造价f (x )=400×(2x +2×162x)+248×2x +80×162 =1 296x +1 296×100x +12 960=1 296(x +100x)+12 960 ≥1 296×2 x ·100x+12 960=38 880(元), 当且仅当x =100x(x >0),即x =10时取等号. ∴当污水处理池的长为16.2米,宽为10米时总造价最低,总造价最低为38 880元.(2)由限制条件知⎩⎪⎨⎪⎧0<x ≤160<162x ≤16,∴818≤x ≤16. 设g (x )=x +100x (818≤x ≤16), g (x )在[818,16]上是增函数, ∴当x =818时(此时162x =16),g (x )有最小值,即f (x )有最小值,即为1 296×(818+80081)+12 960=38 882(元). ∴当污水处理池的长为16米,宽为818米时总造价最低,总造价最低为38 882元. B 组 专项能力提升(时间:30分钟)1.已知a >0,b >0,若不等式m 3a +b -3a -1b≤0恒成立,则m 的最大值为( ) A.4B.16C.9 D.3答案 B解析 因为a >0,b >0,所以由m 3a +b -3a -1b≤0恒成立得m ≤(3a +1b )(3a +b )=10+3b a +3a b 恒成立.因为3b a +3a b ≥2 3b a ·3a b =6, 当且仅当a =b 时等号成立,所以10+3b a +3a b≥16, 所以m ≤16,即m 的最大值为16,故选B.2.(2013·山东)设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z 取得最大值时,2x +1y -2z 的最大值为( )A.0B.1C.94D.3 答案 B解析 由已知得z =x 2-3xy +4y 2(*)则xy z =xy x 2-3xy +4y 2=1x y +4y x-3≤1,当且仅当x =2y 时取等号,把x =2y 代入(*)式,得z =2y 2,所以2x +1y -2z =1y +1y -1y 2=-⎝⎛⎭⎫1y -12+1≤1. 3.定义“*”是一种运算,对于任意的x ,y ,都满足x *y =axy +b (x +y ),其中a ,b 为正实数,已知1].答案 1解析 ∵1]6ab ),∴ab ≤23.当且仅当2a =3b ,即a =1时等号成立,所以当a =1时,ab 取最大值23. 4.(1)若正实数x 、y 满足2x +y +6=xy ,求xy 的最小值.(2)求函数y =x 2+7x +10x +1(x >-1)的最小值. 解 (1)xy =2x +y +6≥22xy +6,令xy =t 2,可得t 2-22t -6≥0,注意到t >0,解得t ≥32,故xy 的最小值为18.(2)设x +1=t ,则x =t -1(t >0),∴y =(t -1)2+7(t -1)+10t=t +4t +5≥2 t ·4t+5=9. 当且仅当t =4t,即t =2,且此时x =1时,取等号, ∴y min =9.5.经市场调查,某旅游城市在过去的一个月内(以30天计),第t 天(1≤t ≤30,t ∈N +)的旅游人数f (t )(万人)近似地满足f (t )=4+1t,而人均消费g (t )(元)近似地满足g (t )=120-|t -20|. (1)求该城市的旅游日收益W (t )(万元)与时间t (1≤t ≤30,t ∈N +)的函数关系式;(2)求该城市旅游日收益的最小值.解 (1)W (t )=f (t )g (t )=(4+1t)(120-|t -20|) =⎩⎨⎧ 401+4t +100t , 1≤t ≤20,559+140t-4t , 20<t ≤30. (2)当t ∈[1,20]时,401+4t +100t ≥401+24t ·100t=441(t =5时取最小值). 当t ∈(20,30]时,因为W (t )=559+140t-4t 递减, 所以t =30时,W (t )有最小值W (30)=44323,所以t∈[1,30]时,W(t)的最小值为441万元.。
2019届高三文科数学一轮复习22:基本不等式(解析版附后)1.已知a ,b ∈(0,1)且a ≠b ,下列各式中最大的是( )A .a 2+b 2B .2abC .2abD .a +b2.下列函数中,最小值为4的是( )A .y =x +4xB .y =sinx +4sinx (0<x<π)C .y =4e x +e -x D .y =log 3x +log x 3(0<x<1)3.设0<a<b ,则下列不等式中正确的是 ( )A. a<b<ab<a +b 2 B .a<ab<a +b 2<b C .a<ab<b<a +b 2 D. ab<a<a +b2<b 4.若2x +2y =1,则x +y 的取值范围是( )A .[0,2]B .[-2,0]C .[-2,+∞)D .(-∞,-2] 5.若x ,y 是正数,则(x +12y )2+(y +12x)2的最小值是( ) A .3 B.72C .4D.926.已知a>0,且b>0,若2a +b =4,则1ab的最小值为( )A.14 B .4 C.12 D .27.若x<0,则函数y =x 2+1x 2-x -1x的最小值是( )A .-94B .0C .2D .4 8.(2015·湖南,文)若实数a ,b 满足1a +2b=ab ,则ab 的最小值为( )A. 2 B .2 C .2 2D .49.(2017·金山模拟)函数y =x 2+2x -1(x>1)的最小值是( )A .23+2B .23-2C .2 3D .215.若a>0,b>0,a +b =1,则ab +1ab 的最小值为________.16.已知a>b>0,求a 2+16b (a -b )的最小值.17.(2017·江西重点中学盟校联考)设x ,y 均为正实数,且12+x +12+y =13,求xy 的最小值.18.(2018·辽宁抚顺一中月考)某健身器材厂研制了一种足浴气血生机,具体原理是:在足浴盆右侧离中心x(0<x<20)厘米处安装臭氧发生孔,产生的臭氧对双脚起保健作用.根据检测发现,该臭氧发生孔工作时会对泡脚的舒适程度起到干扰作用.已知臭氧发生孔工作时,对左脚的干扰度与x 2成反比,比例系数为4;对右脚的干扰度与400-x 2成反比,比例系数为k ,且当x =102时,对左脚和右脚的干扰度之和为0.065.(1)将臭氧发生孔工作时对左脚和右脚的干扰度之和y 表示为x 的函数; (2)求臭氧发生孔对左脚和右脚的干扰度之和y 的最小值.1.下列命题中正确的是( )A .函数y =x +1x 的最小值为2 B .函数y =x 2+3x 2+2的最小值为2C .函数y =2-3x -4x (x>0)的最小值为2-4 3D .函数y =2-3x -4x (x>0)的最大值为2-4 32.(2014·重庆)若log 4(3a +4b)=log 2ab ,则a +b 的最小值是( )A .6+2 3B .7+2 3C .6+4 3D .7+4 33.(2016·人大附中月考)设a ,b ,c 均大于0,则“abc =1”是“1a +1b +1c≤a +b +c ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.(2017·山东师大附中月考)已知a ,b ,c ∈R +,且ab +bc +ca =1,那么下列不等式中正确的是( )A .a 2+b 2+c 2≥2B .(a +b +c)2≥3 C.1a +1b +1c ≥2 3 D .abc(a +b +c)≤135.已知a>0,b>0,a ,b 的等比中项是1,且m =b +1a ,n =a +1b,则m +n 的最小值是( )A .3B .4C .5D .66.已知x ,y 为正实数,3x +2y =10,则W =3x +2y 的最大值为________. 7.已知三个正数a ,b ,c 成等比数列,则a +c b +ba +c的最小值为________.8.(2018·河南郑州外国语学校月考)某城镇人口第二年比第一年增长m%,第三年比第二年增长n%,若这两年的平均增长率为p%,则p 与m +n2的大小关系为( )A .p>m +n 2B .p =m +n 2C .p ≤m +n 2D .p ≥m +n 29.已知不等式x 2-5ax +b>0的解集为{x|x>4或x<1}. (1)求实数a ,b 的值;(2)若0<x<1,f(x)=a x +b1-x ,求f(x)的最小值.10.如图所示,为处理含有某种杂质的污水,要制造一个底宽2 m 的无盖长方体的沉淀箱,污水从A孔流入,经沉淀后从B孔流出,设箱体的长度为a m,高度为b m,已知流出的水中该杂质的质量分数与a,b的乘积ab成反比.现有制箱材料60 m2,问a,b 各为多少m时,经沉淀后流出的水中该杂质的质量分数最小(A,B孔面积忽略不计).11.某食品厂定期购买面粉,已知该厂每天需用面粉6吨,每吨面粉的价格为1 800元,面粉的保管等其他费用为平均每吨每天3元,每次购买面粉需支付运费900元.(1)该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少?(2)若提供面粉的公司规定:当一次性购买面粉不少于210吨时,其价格可享受9折优惠(即原价的90%),该厂是否应考虑接受此优惠条件?请说明理由.高三数学一轮复习22:基本不等式(解析版)1.已知a,b∈(0,1)且a≠b,下列各式中最大的是()A .a 2+b 2B .2abC .2abD .a +b答案 D 解析 只需比较a 2+b 2与a +b.由于a ,b ∈(0,1),∴a 2<a ,b 2<b ,∴a 2+b 2<a +b. 2.下列函数中,最小值为4的是( )A .y =x +4xB .y =sinx +4sinx (0<x<π)C .y =4e x +e -x D .y =log 3x +log x 3(0<x<1)答案 C 解析 注意基本不等式等号成立的条件是“a =b ”,同时考虑函数的定义域,A 中x 的定义域为{x|x ∈R ,且x ≠0},函数没有最小值;B 中若sinx =4sinx取到最小值4,则sin 2x =4,显然不成立.D 中没有最小值.故选C. 3.设0<a<b ,则下列不等式中正确的是 ( )A. a<b<ab<a +b 2 B .a<ab<a +b 2<b C .a<ab<b<a +b 2 D. ab<a<a +b2<b 答案 B 解析 方法一(特值法):代入a =1,b =2,则有0<a =1<ab =2<a +b2=1.5<b =2.方法二(直接法):我们知道算术平均数a +b2与几何平均数ab 的大小关系,其余各式作差(作商)比较即可,答案为B.4.若2x +2y =1,则x +y 的取值范围是( )A .[0,2]B .[-2,0]C .[-2,+∞)D .(-∞,-2]答案 D 解析 ∵2x +2y ≥22x ·2y =22x +y (当且仅当2x =2y 时等号成立),∴2x +y ≤12,∴2x +y ≤14,得x +y ≤-2,故选D.5.若x ,y 是正数,则(x +12y )2+(y +12x)2的最小值是( ) A .3 B.72C .4D.92答案 C 解析 原式=x 2+x y +14y 2+y 2+y x +14x 2≥4.当且仅当x =y =12时取“=”号.6.已知a>0,且b>0,若2a +b =4,则1ab的最小值为( )A.14 B .4 C.12D .2答案 C 解析 ∵4=2a +b ≥22ab ,∴ab ≤2,1ab ≥12,当且仅当a =1,b =2时取等号.7.若x<0,则函数y =x 2+1x 2-x -1x的最小值是( )A .-94 B .0 C .2D .4答案 D 解析 y =x 2+1x 2-x -1x ≥2x 2·1x2+2(-x )(-1x)=4,当且仅当x =-1时取等号.8.(2015·湖南,文)若实数a ,b 满足1a +2b=ab ,则ab 的最小值为( )A. 2 B .2 C .2 2D .4答案 C 解析 方法一:由已知得1a +2b =b +2aab =ab ,且a>0,b>0,∴ab ab =b +2a ≥22ab ,∴ab ≥2 2.方法二:由题设易知a>0,b>0,∴ab =1a +2b ≥22ab,即ab ≥22,当且仅当b =2a 时取“=”号,9.(2017·金山模拟)函数y =x 2+2x -1(x>1)的最小值是( )A .23+2B .23-2C .2 3D .2答案 A 解析 ∵x>1,∴x -1>0.∴y =x 2+2x -1=x 2-2x +2x +2x -1=x 2-2x +1+2(x -1)+3x -1=(x -1)2+2(x -1)+3x -1=x -1+3x -1+2≥2(x -1)(3x -1)+2=23+2.当且仅当x -1=3x -1,即x =1+3时,取等号.10.已知不等式(x +y)(1x +ay)≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( )A .2B .4C .6D .8答案 B 解析 (x +y)(1x +a y )=1+a·x y +yx+a ≥1+a +2a =(a +1)2,当且仅当a·x y =y x ,即ax 2=y 2时“=”成立.∴(x +y)(1x +ay )的最小值为(a +1)2≥9.∴a ≥4.11.设实数x ,y ,m ,n 满足x 2+y 2=1,m 2+n 2=3,那么mx +ny 的最大值是( )A. 3 B .2 C. 5 D.102答案 A解析 方法一:设x =sin α,y =cos α,m =3sin β,n =3cos β,其中α,β∈R . ∴mx +ny =3sin βsin α+3cos βcos α=3cos (α-β).故选A.方法二:由已知(x 2+y 2)·(m 2+n 2)=3,即m 2x 2+n 2y 2+n 2x 2+m 2y 2=3,∴m 2x 2+n 2y 2+2(nx)·(my)≤3,即(mx +ny)2≤3,∴mx +ny ≤ 3.12.已知x ,y ,z ∈(0,+∞),且满足x -2y +3z =0,则y 2xz的最小值为( )A .3B .6C .9D .12答案 A13.(2017·四川成都外国语学校)若正数a ,b 满足:1a +1b =1,则1a -1+9b -1的最小值为( )A .16B .9C .6D .1 答案 C 解析 方法一:因为1a +1b =1,所以a +b =ab ,即(a -1)·(b -1)=1,所以1a -1+9b -1≥21a -1×9b -1=2×3=6. 方法二:因为1a +1b =1,所以a +b =ab ,1a -1+9b -1=b -1+9a -9ab -a -b +1=b +9a -10=(b +9a)(1a +1b)-10≥16-10=6. 方法三:因为1a +1b =1,所以a -1=1b -1,所以1a -1+9b -1=(b -1)+9b -1≥29=2×3=6.14.(1)当x>1时,x +4x -1的最小值为________;(2)当x ≥4时,x +4x -1的最小值为________.答案 (1)5 (2)163 解析 (1)∵x>1,∴x -1>0.∴x +4x -1=x -1+4x -1+1≥24+1=5.(当且仅当x -1=4x -1.即x =3时“=”号成立)∴x +4x -1的最小值为5. (2)∵x ≥4,∴x -1≥3.∵函数y =x +4x 在[3,+∞)上为增函数,∴当x -1=3时,y =(x -1)+4x -1+1有最小值163.15.若a>0,b>0,a +b =1,则ab +1ab 的最小值为________.答案 174解析 ab ≤(a +b 2)2=14,当且仅当a =b =12时取等号.y =x +1x 在x ∈(0,14]上为减函数.∴ab +1ab 的最小值为14+4=174.16.已知a>b>0,求a 2+16b (a -b )的最小值.答案 16思路 由b(a -b)求出最大值,从而去掉b ,再由a 2+64a2,求出最小值.解析 ∵a>b>0,∴a -b>0.∴b(a -b)≤[b +(a -b )2]2=a 24.∴a 2+16b (a -b )≥a 2+64a 2≥2a 2·64a 2=16. 当a 2=64a 2且b =a -b ,即a =22,b =2时等号成立.∴a 2+16b (a -b )的最小值为16.17.(2017·江西重点中学盟校联考)设x ,y 均为正实数,且12+x +12+y =13,求xy 的最小值.答案 16解析 由12+x +12+y =13,化为3(2+y)+3(2+x)=(2+y)·(2+x),整理为xy =x +y +8.∵x ,y 均为正实数,∴xy =x +y +8≥2xy +8,∴(xy)2-2xy -8≥0,解得xy ≥4,即xy ≥16,当且仅当x =y =4时取等号,∴xy 的最小值为16.18.(2018·辽宁抚顺一中月考)某健身器材厂研制了一种足浴气血生机,具体原理是:在足浴盆右侧离中心x(0<x<20)厘米处安装臭氧发生孔,产生的臭氧对双脚起保健作用.根据检测发现,该臭氧发生孔工作时会对泡脚的舒适程度起到干扰作用.已知臭氧发生孔工作时,对左脚的干扰度与x 2成反比,比例系数为4;对右脚的干扰度与400-x 2成反比,比例系数为k ,且当x =102时,对左脚和右脚的干扰度之和为0.065.(1)将臭氧发生孔工作时对左脚和右脚的干扰度之和y 表示为x 的函数; (2)求臭氧发生孔对左脚和右脚的干扰度之和y 的最小值. 答案 (1)y =4x 2+9400-x 2(0<x<20) (2)116解析 (1)由题意得y =4x 2+k 400-x 2(0<x<20),当x =102时,y =0.065,代入上式,得k =9.所以y =4x 2+9400-x 2(0<x<20).(2)y =4x 2+9400-x 2=1400(4x 2+9400-x 2)[(400-x 2)+x 2]=1400[4+9+4(400-x 2)x 2+9x 2400-x 2]≥1400[13+24(400-x 2)x 2·9x 2400-x2]=116, 当且仅当4(400-x 2)x 2=9x 2400-x 2,即x =410时取“=”.所以臭氧发生孔对左脚和右脚的干扰度之和y 的最小值为116.1.下列命题中正确的是( )A .函数y =x +1x 的最小值为2 B .函数y =x 2+3x 2+2的最小值为2C .函数y =2-3x -4x (x>0)的最小值为2-4 3D .函数y =2-3x -4x (x>0)的最大值为2-4 3 答案 D解析 y =x +1x 的定义域为{x|x ≠0},当x>0时,有最小值2,当x<0时,有最大值-2,故A 项不正确; y =x 2+3x 2+2=x 2+2+1x 2+2≥2, ∵x 2+2≥2,∴取不到“=”,故B 项不正确; ∵x>0时,3x +4x≥2·3x·4x =43,当且仅当3x =4x ,即x =233时取“=”, ∴y =2-(3x +4x )有最大值2-43,故C 项不正确,D 项正确.2.(2014·重庆)若log 4(3a +4b)=log 2ab ,则a +b 的最小值是( )A .6+2 3B .7+2 3C .6+4 3D .7+4 3答案 D 解析 因为log 4(3a +4b)=log 2ab ,所以log 4(3a +4b)=log 4(ab),即3a +4b =ab ,且⎩⎪⎨⎪⎧3a +4b>0,ab>0,即a>0,b>0,所以4a +3b =1(a>0,b>0),a +b =(a +b)(4a +3b )=7+4b a +3a b ≥7+24b a ·3a b =7+43,当且仅当4b a =3ab时取等号,选择D 项. 3.(2016·人大附中月考)设a ,b ,c 均大于0,则“abc =1”是“1a +1b +1c≤a +b +c ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 A 解析 1a +1b +1c =bc +ca +ab abc, 当abc =1时,bc +ca +ab abc≤12[(b +c)+(c +a)+(a +b)]=a +b +c. 故abc =1⇒1a +1b +1c≤a +b +c. 反过来,若a =b =1,c =4,有1a +1b +1c≤a +b +c ,但abc ≠1, ∴“abc =1”是“1a +1b +1c≤a +b +c ”的充分不必要条件. 4.(2017·山东师大附中月考)已知a ,b ,c ∈R +,且ab +bc +ca =1,那么下列不等式中正确的是( )A .a 2+b 2+c 2≥2B .(a +b +c)2≥3 C.1a +1b +1c ≥2 3 D .abc(a +b +c)≤13答案 B 解析 ∵a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac ,三式相加可知2(a 2+b 2+c 2)≥2(bc +ab +ac),∴a 2+b 2+c 2≥1.∴a 2+b 2+c 2+2ab +2bc +2ca ≥1+2.∴(a +b +c)2≥3.5.已知a>0,b>0,a ,b 的等比中项是1,且m =b +1a ,n =a +1b,则m +n 的最小值是( )A .3B .4C .5D .6答案 B 解析 由题意知ab =1,则m =b +1a =2b ,n =a +1b =2a ,∴m +n =2(a +b)≥4ab =4(当且仅当a =b =1时,等号成立).6.已知x ,y 为正实数,3x +2y =10,则W =3x +2y 的最大值为________. 答案 25解析 方法一:由a +b2≤a 2+b 22可得3x +2y ≤2(3x )2+(2y )2=23x +2y =25,当且仅当3x =2y ,即x =53,y =52时等号成立.方法二:易知W>0,W 2=3x +2y +23x ·2y =10+23x ·2y ≤10+(3x)2+(2y)2=10+(3x +2y)=20,∴W ≤25,当且仅当3x =2y ,即x =53,y =52时等号成立.7.已知三个正数a ,b ,c 成等比数列,则a +c b +ba +c的最小值为________.答案 52解析 由条件可知a ,b ,c>0且b 2=ac ,即b =ac ,故a +c b ≥2ac b =2,当且仅当a=b =c 时取等号,令a +c b =t ,则y =t +1t 在[2,+∞)上单调递增,故其最小值为2+12=52,即a +c b +b a +c的最小值为52.8.(2018·河南郑州外国语学校月考)某城镇人口第二年比第一年增长m%,第三年比第二年增长n%,若这两年的平均增长率为p%,则p 与m +n 2的大小关系为( )A .p>m +n 2B .p =m +n 2C .p ≤m +n 2D .p ≥m +n 2答案 C 解析 依题意得(1+m%)(1+n%)=(1+p%)2,所以1+p%=(1+m%)(1+n%)≤1+m%+1+n%2=1+m%+n%2,当且仅当m =n 时等号成立,所以p ≤m +n2,故选C.9.已知不等式x 2-5ax +b>0的解集为{x|x>4或x<1}. (1)求实数a ,b 的值;(2)若0<x<1,f(x)=a x +b 1-x,求f(x)的最小值. 答案 (1)a =1,b =4 (2)9解析 (1)因为不等式x 2-5ax +b>0的解集为{x|x>4或x<1}, 所以x 2-5ax +b =0的两根分别为1和4,由根与系数的关系得5a =1+4,b =1×4,所以a =1,b =4.(2)由(1)知f(x)=1x +41-x, 所以f(x)=1x +41-x =(1x +41-x )[x +(1-x)]=5+1-x x +4x 1-x,因为0<x<1,所以0<1-x<1,所以1-x x >0,4x 1-x>0,所以f(x)≥5+21-x x ×4x 1-x =9,当且仅当1-x x =4x 1-x,即x =13时等号成立.所以f(x)的最小值为9.10.如图所示,为处理含有某种杂质的污水,要制造一个底宽2 m 的无盖长方体的沉淀箱,污水从A 孔流入,经沉淀后从B 孔流出,设箱体的长度为a m ,高度为b m ,已知流出的水中该杂质的质量分数与a ,b 的乘积ab 成反比.现有制箱材料60 m 2,问a ,b 各为多少m 时,经沉淀后流出的水中该杂质的质量分数最小(A ,B 孔面积忽略不计).答案 a =6 m ,b =3 m解析 设y 为流出的水中杂质的质量分数,根据题意可知:y =k ab,其中k 是比例系数且k>0. 依题意要使y 最小,只需求ab 的最大值.由题设,得4b +2ab +2a =60(a>0,b>0), 即a +2b +ab =30(a>0,b>0).∵a +2b ≥22ab ,∴22·ab +ab ≤30.当且仅当a =2b 时取“=”号,ab 有最大值. ∴当a =2b 时有22·ab +ab =30,即b 2+2b -15=0.解之得b 1=3,b 2=-5(舍去),∴a =2b =6.故当a =6 m ,b =3 m 时经沉淀后流出的水中杂质的质量分数最小.11.某食品厂定期购买面粉,已知该厂每天需用面粉6吨,每吨面粉的价格为1 800元,面粉的保管等其他费用为平均每吨每天3元,每次购买面粉需支付运费900元.(1)该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少?(2)若提供面粉的公司规定:当一次性购买面粉不少于210吨时,其价格可享受9折优惠(即原价的90%),该厂是否应考虑接受此优惠条件?请说明理由.答案 (1)10天 (2)应该接受此优惠条件解析 (1)设该厂应每隔x 天购买一次面粉,则其购买量为6x 吨.由题意知,面粉的保管等其他费用为3[6x +6(x -1)+…+6×2+6×1]=9x(x +1).设每天所支付的总费用为y 1元,则y 1=1x [9x(x +1)+900]+6×1 800=900x+9x +10 809≥2900x·9x +10 809=10 989, 当且仅当9x =900x ,即x =10时取等号. 所以该厂每隔10天购买一次面粉,才能使平均每天所支付的总费用最少.(2)若该厂家接受此优惠条件,则至少每隔35天购买一次面粉.设该厂接受此优惠条件后,每隔x(x ≥35)天购买一次面粉,平均每天支付的总费用为y 2,则y 2=1x [9x(x +1)+900]+6×1 800×0.90=900x +9x +9 729(x ≥35).令f(x)=x +100x(x ≥35),x 2>x 1≥35,则f(x 1)-f(x 2)=(x 1+100x 1)-(x 2+100x 2)=(x 1-x 2)(x 1x 2-100)x 1x 2.因为x 2>x 1≥35, 所以x 1-x 2<0,x 1·x 2>100,即x 1x 2-100>0.所以f(x 1)-f(x 2)<0,即f(x 1)<f(x 2).所以f(x)=x +100x在[35,+∞)上为增函数.所以当x =35时,y 2有最小值,约为10 069.7. 此时y 2<10 989,所以该厂应该接受此优惠条件.。