高三高考文科数学《不等式》题型归纳与训练
- 格式:doc
- 大小:4.56 MB
- 文档页数:12
不等式练习题及讲解高中答案### 不等式练习题及讲解#### 一、基础不等式练习题1. 题目一:若 \( a, b, c \) 均为正数,证明不等式 \( a + b\geq 2\sqrt{ab} \) 成立。
2. 题目二:已知 \( x \) 和 \( y \) 均为实数,且 \( x^2 + y^2 = 1 \),求证 \( x + y \leq \sqrt{2} \)。
3. 题目三:若 \( a, b \) 均为正整数,证明 \( a^2 + b^2 \geq 2ab \)。
4. 题目四:对于任意实数 \( x \),证明 \( \frac{x^2}{2} +\frac{1}{2x^2} \geq 1 \)。
5. 题目五:若 \( x, y, z \) 均为正数,证明 \( \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \geq \frac{9}{xy + yz + zx} \)。
#### 二、不等式练习题讲解题目一讲解:利用算术平均数-几何平均数不等式(AM-GM不等式):\[ a + b \geq 2\sqrt{ab} \]这是因为对于任意非负实数 \( a \) 和 \( b \),它们的算术平均数总是大于或等于它们的几何平均数。
题目二讲解:由于 \( x^2 + y^2 = 1 \),我们有 \( (x + y)^2 \leq 2(x^2 +y^2) = 2 \),从而 \( x + y \leq \sqrt{2} \)。
题目三讲解:同样使用AM-GM不等式:\[ a^2 + b^2 \geq 2\sqrt{a^2b^2} = 2ab \]当且仅当 \( a = b \) 时,等号成立。
题目四讲解:利用AM-GM不等式:\[ \frac{x^2}{2} + \frac{1}{2x^2} \geq 2\sqrt{\frac{x^2}{2}\cdot \frac{1}{2x^2}} = 1 \]等号成立条件是 \( x^2 = 1 \),即 \( x = \pm 1 \)。
不等式的基本知识一、解不等式1、一元二次不等式的解法一元二次不等式ax2 bx c 0或ax2 bx c 0 a 0的解集:设相应的一元二次方程ax2 bx c 0 a 0的两根为x2且X! x2, b2 4ac,则标根法:其步骤是:1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿过偶弹回;2 3 3)根据曲线显现f(x)的符号变化规律,写出不等式的解集。
女口:x 1 x 1 x 2 0 1是偶重根3、分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。
解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。
f(x) f(x) f(x)g(x) 0七0 f(x)g(x) 0;七0g(x) g(x) g(x) 04、不等式的恒成立问题:常应用函数方程思想和“分离变量法”转化为最值问题若不等式f X A在区间D上恒成立,则等价于在区间D上f X皿山A若不等式f x B在区间D上恒成立,则等价于在区间D上f X max B二、线性规划1、用二兀一次不等式(组)表示平面区域二元一次不等式Ax+By+C> 0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)2、二元一次不等式表示哪个平面区域的判断方法由于对在直线Ax+By+C=0同一侧的所有点(x, y),把它的坐标(x, y)代入Ax+By+C,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点 (X。
, y。
),从Ax^+Bw+C的正负即可判断Ax+By+C> 0表示直线哪一侧的平面区域•(特殊地,当C M 0时,常把原点作为此特殊点)3、线性规划的有关概念:①线性约束条件:在上述问题中,不等式组是一组变量x、y的约束条件,这组约束条件都是关于x、y的一次不等式,故又称线性约束条件.②线性目标函数:关于x、y的一次式z=ax+by是欲达到最大值或最小值所涉及的变量x、y的解析式,叫线性目标函数.③线性规划问题:一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.④可行解、可行域和最优解:满足线性约束条件的解(x,y)叫可行解.由所有可行解组成的集合叫做可行域.使目标函数取得最大或最小值的可行解叫线性规划问题的最优解.4、求线性目标函数在线性约束条件下的最优解的步骤:1) 寻找线性约束条件,列出线性目标函数;2) 由二元一次不等式表示的平面区域做出可行域;3) 依据线性目标函数作参照直线a x+b y = 0,在可行域内平移参照直线求目标函数的最优解三、基本不等式.ab —21、若a,b € R,则a 2+ b 2>2ab,当且仅当a=b 时取等号2、如果a,b 是正数,那么 乞丄 .ab (当且仅当ab 时取""号).2a b 2变形: 有:a+b > 2.、ab ; ab< ---------- ,当且仅当a=b 时取等号.23、如果a,b € R+,a • b=P (定值),当且仅当a=b 时,a+b 有最小值 2 P ;如果a,b € R+,且a+b=S (定值),当且仅当a=b 时,ab 有最大值注:1)当两个正数的积为定值时,可以求它们和的最小值,当两个正数的和为定值时, 的积的最小值,正所谓“积定和最小,和定积最大” 求最值的重要条件“一正,二定,三取等” 常用不等式 可以求它们2) 4、 有:1)a 2b 2 2ab1(根据并不等式左右的运算结构选用 b2) a 、b 、c R,b 2c 2ab bc ca (当且仅当a b c 时,取3) 0,m 0,则-am(糖水的浓度问题)。
□▲○○○《不等式》考点及题型总结第一节 不等式一、知识要点:(一)不等式的定义:用符号“<”“>”“≤ ”“≥”表示大小关系的式子叫做不等式。
(二)不等式的解:使不等式成立的未知数的值,叫做不等式的解。
(三)不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
(四)不等式的性质:1、不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变2、不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
,3、不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
二、题型分析:题型一: 不等式的概念和表达例1: x 的21与5的差不小于3,用不等式可表示为__________. 答案:1532x -≥例2:设“○”、“□”、“△”分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图所示,那么每个“○”、“□”、“△”这样的物体,按质量从大到小的顺序排列为( )…A 、○□△B 、○△□C 、□○△D 、△□○ 答案:A题型二:不等式性质的考察]A 、1个B 、2个C 、3个D 、4个分析:由a﹤b﹤0得,a、b同为负数并且︱a︱﹥︱b︱。
可取特殊值代入,如取a=-2,b=-1代入式子中。
答案:C例2:若a﹥b,则下列式子一定成立的是()。
A、a+3﹥b+5,B、a-9﹥b-9,C、-10a﹥-10b,D、a2c﹥b2c分析:由于不等式的两边乘除同一个数时存在变号的问题,因此需要对a,b的符号进行分类讨论。
或者此题也可以取特殊值代入验证,通过排除法来求解。
A、C取0,-1即可排除,D将常数取0也可排除。
答案:B例3:下列结论:①若a﹤b,则a2c﹤b2c;②若a c﹥b c,则a﹥b;③若a﹥b且若c=d,则a c﹥b d;④若a2c﹤b2c,则a﹤b。
正确的有()。
'A、4个B、3个C、2个D、1个分析:①2c=0,即可排除;②若a、b、c都为负数即可否定;③任用前两种方法都可以排除;只有④正确。
高中数学求不等式解题技巧及题型练习(含答案解析)
放缩法证明不等式
干货全汇总
数列型不等式是高中数学绝对难点,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;
其放缩技巧主要有以下几种:
放缩法证明不等式的常见题型与基本策略1、添加或舍弃一些正项(或负项)
2、先放缩再求和(或先求和再放缩)
3、逐项放大或缩小
4、固定一部分项,放缩另外的项
5、函数放缩
6、裂项放缩
7、均值不等式放缩
8、二项放缩
常见题型练习与总结。
不等式的解题归纳第一部分 含参数不等式的解法 例1解关于x 的不等式022≤-+k kx x例2.解关于x 的不等式:(x-2x +12)(x+a)<0.例3、若不等式13642222<++++x x kkx x 对于x 取任何实数均成立,求k 的取值范围.例4若不等式ax 2+bx+1>0的解集为{x ︱-3<x<5},求a 、b 的值.例5 已知关于x 的二次不等式:a 2x +(a-1)x+a-1<0的解集为R ,求a 的取值范围.例6、1.定义在R 上的函数()x f 既是奇函数,又是减函数,且当⎪⎭⎫⎝⎛∈2,0πθ时,有 ()()022sin 2cos 2>--++m f m f θθ恒成立,求实数m 的取值范围.【课堂练习】1、已知(2a -1) 2x -(a-1)x-1<0的解集为R ,求实数a 的取值范围.2、解关于x 的不等式:.0)2(2>+-+a x a x3、解关于x 的不等式:.012<-+ax ax【课后练习】1.如果不等式x 2-2ax +1≥21(x -1)2对一切实数x 都成立,a 的取值范围是2.如果对于任何实数x ,不等式kx 2-kx +1>0 (k>0)都成立,那么k 的取值范围是3.对于任意实数x ,代数式 (5-4a -2a )2x -2(a -1)x -3的值恒为负值,求a 的取值范围4.设α、β是关于方程 2x -2(k -1)x +k +1=0的两个实根,求 y=2α +2β关于k 的解析式,并求y 的取值范围第二部分 绝对值不等式1.(2010年高考福建卷)已知函数f (x )=|x -a |.(1)若不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值;(2)在(1)的条件下,若f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围.2.设函数()|1|||f x x x a =-+-,(1)若1a =-,解不等式()3f x ≥; (2)如果x R ∀∈,()2f x ≥,求a 的取值范围3.设有关于x 的不等式()a x x >-++73lg(1)当1a =时,解此不等式; (2)当a 为何值时,此不等式的解集为R4.已知()|1||2|g x x x =---。
《不等式》常见考试题型总结一、高考与不等式高考试题,有关不等式的试题约占总分的12% 左右,主要考查不等式的基本知识,基本技能,以及学生的运算能力,逻辑思维能力,分析问题和解决问题的能力.选择题和填空题主要考查不等式的性质、比较大小和解简单不等式,还可能与函数、方程等内容相结合的小综合.解答题主要是解不等式或证明不等式或以其他知识为载体的综合题。
不等式常与下列知识相结合考查:①不等式的性质的考查常与指数函数、对数函数、三角函数的性质的考查相结合,一般多以选择题的形式出现,有时也与充要条件、函数单调性等知识结合,且试题难度不大;②解不等式的试题主要在解答中出现,常常是解含参不等式较多,且多与二次函数、指数、对数、可能还会出现导数相结合命题;③证明不等式是理科考查的重点,经常同一次函数、二次函数、数列、解析几何,甚至还可能与平面向量等结合起来考查.二、常见考试题型(1)求解不等式解集的题型(分式不等式的解法,根式不等式的解法,绝对值不等式的解法,含参不等式的解法,简单的一元高次不等式的解法) (2)不等式的恒成立问题(不等式恒成立问题的常规处理方式常应用函数方程思想,分离变量法,数形结合法) (3)不等式大小比较常用方法:1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式); 3.分析法; 4.平方法;5.分子(或分母)有理化; 6.利用函数的单调性; 7.寻找中间量或放缩法 ; 8.图象法。
(4)不等式求函数最值 技巧一:凑项 例:已知54x <,求函数14245y x x =-+-的最大值。
技巧二:凑系数例. 当时,求(82)y x x =-的最大值。
技巧三: 分离例. 求2710(1)1x x y x x ++=>-+的值域。
技巧四:换元例. 求2710(1)1x x y x x ++=>-+的值域。
技巧五:函数的单调性(注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()af x x x=+的单调性。
高中不等式试题及答案1. 若不等式\(2x-1 > 5\)成立,求\(x\)的取值范围。
答案:首先将不等式\(2x-1 > 5\)进行移项,得到\(2x > 6\)。
然后将不等式两边同时除以2,得到\(x > 3\)。
因此,\(x\)的取值范围是\(x > 3\)。
2. 已知\(a > 0\),求不等式\(\frac{1}{a} < \frac{1}{2}\)的解集。
答案:将不等式\(\frac{1}{a} < \frac{1}{2}\)进行交叉相乘,得到\(2 < a\)。
因为已知\(a > 0\),所以解集为\(a > 2\)。
3. 已知\(x\)和\(y\)满足\(x + y = 10\),且\(y > 0\),求\(x\)的取值范围。
答案:由\(x + y = 10\)可得\(x = 10 - y\)。
因为\(y > 0\),所以\(10 - y > 0\),即\(y < 10\)。
因此,\(x\)的取值范围是\(0 < x< 10\)。
4. 已知不等式\(3x - 2 > 7\),求\(x\)的取值范围。
答案:将不等式\(3x - 2 > 7\)进行移项,得到\(3x > 9\)。
然后将不等式两边同时除以3,得到\(x > 3\)。
因此,\(x\)的取值范围是\(x > 3\)。
5. 已知\(a\)和\(b\)满足\(a + b = 12\),且\(a > 0\)和\(b > 0\),求\(a\)的取值范围。
答案:由\(a + b = 12\)可得\(b = 12 - a\)。
因为\(a > 0\)和\(b > 0\),所以\(12 - a > 0\),即\(a < 12\)。
同时,\(a > 0\)。
因此,\(a\)的取值范围是\(0 < a < 12\)。
高考数学不等式压轴问题归纳总结一、不等式恒成立1.已知函数()()2ln R 1mf x x m m x =+-∈+. (1)试讨论函数()f x 的极值点情况;(2)当m 为何值时,不等式()()21ln 101x x m x x+--<-(0x >且1x ≠)恒成立?2.已知函数()21ln 2f x x ax x =-+,其中a R ∈. (1)讨论函数()f x 极值点的个数;(2)若函数()f x 有两个极值点,m n ,其中m n <且2m >,是否存在整数k 使得不等式 ()()()35ln2f n k f m f n k +<<++恒成立?若存在,求整数k 的值;若不存在,请说明理由.(参考数据: ln20.7,ln3 1.1≈≈) 2.设函数()21ln 2f x x ax bx =--. (1)当0a =, 1b =-时,方程()f x mx =在区间21,e ⎡⎤⎣⎦内有唯一实数解,求实数m 的取值范围.(2)令()()212a F x f x ax bx x =+++ (03)x <≤,其图象上任意一点()00,P x y 处切线的斜率12k ≤恒成立,求实数a 的取值范围. 3.已知函数()ex x af x +=,其中e 为自然对数的底数,若当[]1,1x ∈-时, ()f x 的最大值为()g a . (1)求函数()g a 的解析式; (2)若对任意的R a ∈,1e ek <<,不等式()g a ka t ≥+恒成立,求kt 的最大值. 4.已知函数()()()2ln 1f x x a x a R =--∈. (1)讨论函数()f x 的单调性;(2)当1x ≥时,不等式()0f x ≥恒成立,试求实数a 的取值范围. 5.已知函数()ln x mf x ex +=-.(1)设1x =是函数()f x 的极值点,求证: ln xe e x e -≥;(2)设0x x =是函数()f x 的极值点,且()0f x ≥恒成立,求实数m 的取值范围.(其中正 6.已知函数()()ln 1f x x x k x =--, k R ∈ (1)当1k =时,求函数()f x 的单调区间;(2)若函数()y f x =在区间()1,+∞上有1个零点,求实数k 的取值范围;(3)是否存在正整数k ,使得()0f x x +>在()1,x ∈+∞上恒成立?若存在,求出k 的最大值;若不存在,说明理由.7.已知函数()2ln f x ax bx x =-+,( a , b R ∈).(1)若1a =, 3b =,求函数()f x 的单调减区间;(2)若0b =时,不等式()0f x ≤在[1,+∞)上恒成立,求实数a 的取值范围; (3)当1a =, 92b >时,记函数()f x 的导函数()'f x 的两个零点是1x 和2x (12x x <),求证: ()()12633ln216f x f x ->-. 8.已知函数()()12ln 2(0)f x a x ax a x=-++<. ()1 讨论()f x 的单调性;()2 若对任意的()[]123213a x x ∈--∈,,,,,恒有()()()12ln32ln3m a f x f x +->- 成立,求实数m 的取值范围.9.已知()()ln xf x e a x a R =-∈.(1)求函数()f x 在点()()1,1f 处的切线方程;(2)当1a =-时,若不等式()()1f x e m x >+-对任意()1,x ∈+∞恒成立,求实数m 的取值范围. 10.已知函数()1ex f x x +=, ()()ln 1g x k x k x =++.(1)求()f x 的单调区间.(2)证明:当0k >时,方程()f x k =在区间()0,+∞上只有一个零点. (3)设()()()h x f x g x =-,其中0k >若()0h x ≥恒成立,求k 的取值范围. 11.已知0a ≥,函数()()22x f x x ax e =-+.(1)当x 为何值时, ()f x 取得最大值?证明你的结论; (2) 设()f x 在[]1,1-上是单调函数,求a 的取值范围;(3)设()()21xg x x e =-,当1x ≥时, ()()f x g x ≤恒成立,求a 的取值范围.12.已知函数()32xf x xe ax bx c =+++(其中e 为自然对数的底, ,,a b c R ∈)的导函数为()'y f x =.(1)当0a c ==时,讨论函数()f x 在区间()0,+∞上零点的个数;(2)设点()()0,0A f , ()(),B m f m 是函数()f x 图象上两点,若对任意的0m >,割线AB 的斜率都大于'2m f ⎛⎫⎪⎝⎭,求实数a 的取值范围.. 13.已知函数()()()ln 1ln 1f x x x =+--. (1)证明:直线2y x =与曲线()y f x =相切;(2)若()()33f x k x x >-对()0,1x ∈恒成立,求k 的取值范围. 14.设函数.若曲线()y f x =在点()(),P e f e 处的切线方程为2y x e =-(e 为自然对数的底数). (1)求函数()f x 的单调区间; (2)若关于x 的不等式在上恒成立,求实数λ的取值范围.15.已知函数()ln b f x a x b x x ⎛⎫=++ ⎪⎝⎭(其中a , b R ∈). (1)当4b =-时,若()f x 在其定义域内为单调函数,求a 的取值范围;(2)当1a =-时,是否存在实数b ,使得当2,x e e ⎡⎤∈⎣⎦时,不等式()0f x >恒成立,如果存在,求b 的取值范围,如果不存在,说明理由. 16.已知函数()()21ln 12f x x x =+-. (1)判断()f x 的零点个数;(2)若函数()g x ax a =-,当1x >时, ()g x 的图象总在()f x 的图象的下方,求a 的取值范围. 17.设函数()ln mf x x x=+, m R ∈.(1)当m e =时,求函数()f x 的极小值; (2)讨论函数()()3xg x f x -'=零点的个数; (3)若对任意的0b a >>,()()1f b f a b a-<-恒成立,求实数m 的取值范围.18.已知函数()f x 是偶函数,且满足()()220f x f x +--=,当(]0,2x ∈时, ()(1)x f x e ax a =+>,当(]4,2x ∈--时, ()f x 的最大值为2416e +. (1)求实数a 的值; (2)函数()()344203g x bx bx b =-+≠,若对任意的()11,2x ∈,总存在()21,2x ∈,使不等式()()12f x g x <恒成立,求实数b 的取值范围.19.已知函数()()1xf x e ax a R =--∈.(1)求函数()y f x =的单调区间;(2)试探究函数()()F ln x f x x x =-在定义域内是否存在零点,若存在,请指出有几个零点;若不存在,请说明理由;(3)若()()ln 1ln x g x e x =--,且()()()f g x f x <在()0,x ∈+∞上恒成立,求实数a 的取值范围. 20.()()12ln f x x mx m R x=+-∈. (1)当1m =-时,求曲线()y f x =在点()()1,1f 处的切线方程. (2)若()f x 在()0,+∞上为单调递减,求m 的取值范围. (3)设0a b <<,求证:ln ln b ab a -<-21.已知函数()()()2ln ,.2a f x x x g x x x a a R ==+-∈ (1)若直线()()(0),,x t t y f x y g x A B =>==与曲线和分别交于两点且曲线()y f x =在A 处的切线与()y g x =在B 处的切线相互平行,求a 的取值范围;(2)设()()()h x f x g x =-在其定义域内有两个不同的极值点12,,x x 且12.0,x x λ已知若不等式112e x x λλ+<⋅恒成立,求λ的取值范围.22.已知函数()1,xf x e x x R =--∈(1)求函数()f x 的极值; (2)求证: *21111112,333n n N ⎛⎫⎛⎫⎛⎫+++<∈ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭; (3)()()()112(0)a F x a f x x a x+=+-+->,若对于任意的()0,x ∈+∞,恒有()0F x ≥成立,求a 的取值范围.23.已知各项都是正数的数列{}n a 的前n 项和为n S , 212n n n S a a =+, *n N ∈. (1)求数列{}n a 的通项公式;设数列{}n b 满足: 11b =, ()122n n n b b a n --=≥,求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T ;(2)若()4n T n λ≤+对任意*n N ∈恒成立,求λ的取值范围. 24.设()2-1f x x a x =-+.(1)当a=2时,求不等式()1f x ≤的解集;(2)若a>0,b>0,c>0且ab+bc+ac=1,求证:当x ∈R 时,f(x) 222b 2c a ≤++二、不等式能成立1.设f (x )=2x 2+bx+c ,已知不等式f (x )<0的解集是(1,5). (1)求f (x )的解析式;(2)若对于任意x ∈ []1,3,不等式f (x )≦2+t 有解,求实数t 的取值范围。
历年高三数学高考考点之〈不等式〉必会题型及答案体验高考体验高考1.已知函数f (x )=⎪⎪⎪⎪⎪⎪x -12+⎪⎪⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.(1)解 f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2得-2x <2,解得x >-1,所以-1<x ≤-12;当-12<x <12时,f (x )<2;当x ≥12时,由f (x )<2得2x <2,解得x <1, 所以,-12<x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明 由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1,从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1=(a 2-1)(1-b 2)<0,即(a +b )2<(1+ab )2, 因此|a +b |<|1+ab |.2.已知函数f (x )=|2x -a |+a .(1)当a =2时,求不等式f (x )≤6的解集;(2)设函数g (x )=|2x -1|.当x ∈R 时,f (x )+g (x )≥3,求a 的取值范围. 解 (1)当a =2时,f (x )=|2x -2|+2. 解不等式|2x -2|+2≤6得-1≤x ≤3.因此f (x )≤6的解集为{x |-1≤x ≤3}. (2)当x ∈R 时,f (x )+g (x )=|2x -a |+a +|1-2x |≥|2x -a +1-2x |+a =|1-a |+a , 当x =12时等号成立,所以当x ∈R 时,f (x )+g (x )≥3等价于|1-a |+a ≥3.①当a ≤1时,①等价于1-a +a ≥3,无解. 当a >1时,①等价于a -1+a ≥3, 解得a ≥2.所以a 的取值范围是[2,+∞).高考必会题型题型一 含绝对值不等式的解法 含有绝对值的不等式的解法(1)|f (x )|>a (a >0)⇔f (x )>a 或f (x )<-a ; (2)|f (x )|<a (a >0)⇔-a <f (x )<a ;(3)对形如|x -a |+|x -b |≤c ,|x -a |+|x -b |≥c 的不等式,可利用绝对值不等式的几何意义求解.例1 已知函数f (x )=|x -a |,其中a >1. (1)当a =2时,求不等式f (x )≥4-|x -4|的解集;(2)已知关于x 的不等式|f (2x +a )-2f (x )|≤2的解集为{x |1≤x ≤2},求a 的值. 解 (1)当a =2时,f (x )+|x -4|=⎩⎪⎨⎪⎧-2x +6,x ≤2,2,2<x <4,2x -6,x ≥4.当x ≤2时,由f (x )≥4-|x -4| 得-2x +6≥4, 解得x ≤1;当2<x <4时,f (x )≥4-|x -4|无解; 当x ≥4时,由f (x )≥4-|x -4| 得2x -6≥4,解得x ≥5;所以f (x )≥4-|x -4|的解集为{x |x ≤1或x ≥5}.(2)记h (x )=f (2x +a )-2f (x ), 则h (x )=⎩⎪⎨⎪⎧-2a ,x ≤0,4x -2a ,0<x <a ,2a ,x ≥a .由|h (x )|≤2,解得a -12≤x ≤a +12.又已知|h (x )|≤2的解集为{x |1≤x ≤2},所以⎩⎪⎨⎪⎧a -12=1,a +12=2,于是a =3.点评 (1)用零点分段法解绝对值不等式的步骤:①求零点;②划区间、去绝对值号;③分别解去掉绝对值的不等式;④取每个结果的并集,注意在分段时不要遗漏区间的端点值.(2)用图象法、数形结合可以求解含有绝对值的不等式,使得代数问题几何化,既通俗易懂,又简洁直观,是一种较好的方法.变式训练1 已知函数f (x )=|x -2|-|x -5|. (1)证明:-3≤f (x )≤3;(2)求不等式f (x )≥x 2-8x +15的解集.(1)证明 f (x )=|x -2|-|x -5|=⎩⎪⎨⎪⎧-3,x ≤2,2x -7,2<x <5,3,x ≥5.当2<x <5时,-3<2x -7<3. 所以-3≤f (x )≤3. (2)解 由(1)可知,当x ≤2时,f (x )≥x 2-8x +15的解集为空集;当2<x <5时,f (x )≥x 2-8x +15的解集为{x |5-3≤x <5}; 当x ≥5时,f (x )≥x 2-8x +15的解集为 {x |5≤x ≤6}.综上,不等式f (x )≥x 2-8x +15的解集为{x |5-3≤x ≤6}. 题型二 不等式的证明 1.含有绝对值的不等式的性质 |a |-|b |≤|a ±b |≤|a |+|b |. 2.算术—几何平均不等式定理1:设a ,b ∈R ,则a 2+b 2≥2ab .当且仅当a =b 时,等号成立. 定理2:如果a 、b 为正数,则a +b2≥ab ,当且仅当a =b 时,等号成立.定理3:如果a 、b 、c 为正数,则a +b +c3≥3abc ,当且仅当a =b =c 时,等号成立.定理4:(一般形式的算术—几何平均不等式)如果a 1,a 2,…,a n 为n 个正数,则a 1+a 2+…+a nn≥na 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立. 例2 (1)已知x ,y 均为正数,且x >y .求证:2x +1x 2-2xy +y 2≥2y +3.(2)已知实数x ,y 满足:|x +y |<13,|2x -y |<16,求证:|y |<518.证明 (1)因为x >0,y >0,x -y >0, 2x +1x 2-2xy +y 2-2y=2(x -y )+1x -y2=(x -y )+(x -y )+1x -y2≥33x -y21x -y2=3,所以2x +1x 2-2xy +y 2≥2y +3.(2)因为3|y |=|3y |=|2(x +y )-(2x -y )|≤2|x +y |+|2x -y |, 由题设知|x +y |<13,|2x -y |<16,从而3|y |<23+16=56,所以|y |<518.点评 (1)作差法应该是证明不等式的常用方法.作差法证明不等式的一般步骤:①作差;②分解因式;③与0比较;④结论.关键是代数式的变形能力. (2)在不等式的证明中,适当“放”“缩”是常用的推证技巧. 变式训练2 (1)若a ,b ∈R ,求证:|a +b |1+|a +b |≤|a |1+|a |+|b |1+|b |.(2)已知a ,b ,c 均为正数,a +b =1,求证:a 2b +b 2c +c 2a≥1.证明 (1)当|a +b |=0时,不等式显然成立. 当|a +b |≠0时,由0<|a +b |≤|a |+|b |⇒1|a +b |≥1|a |+|b |,所以|a +b |1+|a +b |=11|a +b |+1≤11+1|a |+|b |=|a |+|b |1+|a |+|b |≤|a |1+|a |+|b |1+|b |. (2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c ,故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a ≥a +b +c , 所以a 2b +b 2c +c 2a≥1.题型三 柯西不等式的应用 柯西不等式(1)设a ,b ,c ,d 均为实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时等号成立. (2)设a 1,a 2,a 3,…,a n ,b 1,b 2,b 3,…,b n 是实数,则(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2,当且仅当b i =0(i =1,2,…,n )或存在一个数k ,使得a i =kb i (i =1,2,…,n )时,等号成立.例3 (2015·福建)已知a >0,b >0,c >0,函数f (x )=|x +a |+|x -b |+c 的最小值为4.(1)求a +b +c 的值; (2)求14a 2+19b 2+c 2的最小值.解 (1)因为f (x )=|x +a |+|x -b |+c ≥|(x +a )-(x -b )|+c =|a +b |+c ,当且仅当-a ≤x ≤b 时,等号成立.又a >0,b >0,所以|a +b |=a +b . 所以f (x )的最小值为a +b +c . 又已知f (x )的最小值为4, 所以a +b +c =4.(2)由(1)知a +b +c =4,由柯西不等式得⎝ ⎛⎭⎪⎫14a 2+19b 2+c 2(4+9+1) ≥⎝ ⎛⎭⎪⎫a 2×2+b3×3+c ×12=(a +b +c )2=16, 即14a 2+19b 2+c 2≥87. 当且仅当12a 2=13b 3=c1,即a =87,b =187,c =27时等号成立.故14a 2+19b 2+c 2的最小值为87. 点评 (1)使用柯西不等式证明的关键是恰当变形,化为符合它的结构形式,当一个式子与柯西不等式的左边或右边具有一致形式时,就可使用柯西不等式进行证明. (2)利用柯西不等式求最值的一般结构为(a 21+a 22+…+a 2n )(1a 21+1a 22+…+1a 2n)≥(1+1+…+1)2=n 2.在使用柯西不等式时,要注意右边为常数且应注意等号成立的条件.变式训练3 已知定义在R 上的函数f (x )=|x +1|+|x -2|的最小值为a . (1)求a 的值;(2)若p ,q ,r 是正实数,且满足p +q +r =a ,求证:p 2+q 2+r 2≥3.(1)解 因为|x +1|+|x -2|≥|(x +1)-(x -2)|=3,当且仅当-1≤x ≤2时,等号成立, 所以f (x )的最小值等于3,即a =3. (2)证明 由(1)知p +q +r =3, 又因为p ,q ,r 是正实数,所以(p 2+q 2+r 2)(12+12+12)≥(p ×1+q ×1+r ×1)2=(p +q +r )2=9, 即p 2+q 2+r 2≥3.高考题型精练1.如果关于x 的不等式|x -3|-|x -4|<a 的解集不是空集,求实数a 的取值范围. 解 设y =|x -3|-|x -4|, 则y =⎩⎪⎨⎪⎧-1,x ≤3,2x -7,3<x <4,1,x ≥4的图象如图所示:若|x -3|-|x -4|<a 的解集不是空集, 则(|x -3|-|x -4|)min <a .由图象可知当a >-1时,不等式的解集不是空集. 即实数a 的取值范围是(-1,+∞).2.设x >0,y >0,若不等式1x +1y +λx +y ≥0恒成立,求实数λ的最小值.解 ∵x >0,y >0,∴原不等式可化为-λ≤(1x +1y )·(x +y )=2+y x +xy.∵2+y x +x y ≥2+2y x ·xy=4, 当且仅当x =y 时等号成立. ∴[(1x +1y)(x +y )]min =4,∴-λ≤4,λ≥-4.即实数λ的最小值是-4.3.若不等式|2x -1|+|x +2|≥a 2+12a +2对任意实数x 恒成立,求实数a 的取值范围.解 设y =|2x -1|+|x +2|=⎩⎪⎨⎪⎧-3x -1,x <-2,-x +3,-2≤x <12,3x +1,x ≥12.当x <-2时,y =-3x -1>5; 当-2≤x <12时,y =-x +3>52;当x ≥12时,y =3x +1≥52,故函数y =|2x -1|+|x +2|的最小值为52.因为不等式|2x -1|+|x +2|≥a 2+12a +2对任意实数x 恒成立,所以52≥a 2+12a +2.解不等式52≥a 2+12a +2,得-1≤a ≤12,故a 的取值范围为[-1,12].4.设不等式|x -2|<a (a ∈N *)的解集为A ,且32∈A ,12∉A ,(1)求a 的值;(2)求函数f (x )=|x +a |+|x -2|的最小值.解 (1)因为32∈A ,且12∉A ,所以⎪⎪⎪⎪⎪⎪32-2<a ,且⎪⎪⎪⎪⎪⎪12-2≥a ,解得12<a ≤32.又因为a ∈N *,所以a =1.(2)因为|x +1|+|x -2|≥|(x +1)-(x -2)|=3, 当且仅当(x +1)(x -2)≤0,即-1≤x ≤2时取到等号,所以f (x )的最小值为3. 5.已知f (x )=|x +1|+|x -1|,不等式f (x )<4的解集为M . (1)求M ;(2)当a ,b ∈M 时,证明:2|a +b |<|4+ab |. (1)解 f (x )=|x +1|+|x -1|=⎩⎪⎨⎪⎧-2x ,x <-1,2,-1≤x ≤1,2x ,x >1.当x <-1时,由-2x <4,得-2<x <-1; 当-1≤x ≤1时,f (x )=2<4; 当x >1时,由2x <4,得1<x <2. ∴综上可得-2<x <2,即M =(-2,2). (2)证明 ∵a ,b ∈M , 即-2<a <2,-2<b <2,∴4(a +b )2-(4+ab )2=4(a 2+2ab +b 2)-(16+8ab +a 2b 2)=(a 2-4)(4-b 2)<0, ∴4(a +b )2<(4+ab )2, ∴2|a +b |<|4+ab |.6.已知a 2+2b 2+3c 2=6,若存在实数a ,b ,c ,使得不等式a +2b +3c >|x +1|成立,求实数x 的取值范围.解 由柯西不等式知[12+(2)2+(3)2][a 2+(2b )2+(3c )2] ≥(1·a +2·2b +3·3c )2即6×(a 2+2b 2+3c 2)≥ (a +2b +3c )2. 又∵a 2+2b 2+3c 2=6, ∴6×6≥(a +2b +3c )2, ∴-6≤a +2b +3c ≤6,∵存在实数a ,b ,c ,使得不等式a +2b +3c >|x +1|成立.∴|x +1|<6,∴-7<x <5. ∴x 的取值范围是{x |-7<x <5}. 7.设函数f (x )=|x -a |+3x ,其中a >0. (1)当a =1时,求不等式f (x )≥3x +2的解集; (2)若不等式f (x )≤0的解集为{x |x ≤-1},求a 的值. 解 (1)当a =1时,f (x )≥3x +2可化为|x -1|≥2. 由此可得x ≥3或x ≤-1.故不等式f (x )≥3x +2的解集为{x |x ≥3或x ≤-1}. (2)由f (x )≤0得|x -a |+3x ≤0.此不等式化为不等式组⎩⎪⎨⎪⎧x ≥a ,x -a +3x ≤0或⎩⎪⎨⎪⎧x <a ,a -x +3x ≤0,即⎩⎪⎨⎪⎧x ≥a ,x ≤a 4或⎩⎪⎨⎪⎧x <a ,x ≤-a 2.因为a >0,所以不等式组的解集为{x |x ≤-a2}.由题设可得-a2=-1,故a =2.8.(2015·课标全国Ⅰ)已知函数f (x )=|x +1|-2|x -a |,a >0. (1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值范围. 解 (1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0.当x ≤-1时,不等式化为x -4>0,无解; 当-1<x <1时,不等式化为3x -2>0, 解得23<x <1;当x ≥1时,不等式化为-x +2>0,解得1≤x <2.所以f (x )>1的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪23<x <2. (2)由题设可得,f (x )=⎩⎪⎨⎪⎧x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图象与x 轴围成的三角形的三个顶点分别为A ⎝⎛⎭⎪⎫2a -13,0,B (2a +1,0),C (a ,a +1),△ABC 的面积为23(a +1)2.由题设得23(a +1)2>6,故a >2.所以a 的取值范围为(2,+∞).。
高考文科数学题型分类汇总《不等式》篇经典试题大汇总目录【题型归纳】题型一一元二次不等式解法及其应用 (3)题型二应用基本不等式求函数最值 (4)题型三线性规划 (5)题型四基本不等式的应用 (7)【巩固训练】题型一一元二次不等式解法及其应用 (7)题型二应用基本不等式求函数最值 (8)题型三线性规划 (9)题型四基本不等式的应用 (11)高考文科数学《不等式》题型归纳与训练【题型归纳】题型一 一元二次不等式解法及其应用例1 若0a b >>,0c d <<,则一定有( )A .a b c d >B .a b c d <C .a b d c >D .a b d c< 【答案】D【解析】由1100c d d c<<⇒->->,又 0a b >>,由不等式性质知:0a b d c ->->,所以a b d c< 例2 关于x 的不等式22280x ax a --<(0a >)的解集为12(,)x x ,且2115x x -=,则a =( )A .52B .72C .154D .152【答案】A【解析】∵由22280x ax a --< (0a >),得(4)(2)0x a x a -+<,即24a x a -<<,∴122,4x a x a =-=.∵214(2)615x x a a a -=--==,∴15562a ==.故选A .例3 不等式2902x x ->-的解集是___________. 【答案】(3,2)(3,)-⋃+∞【解析】不等式可化为(3)(2)(3)0x x x +-->采用穿针引线法解不等式即可.例4 已知函数,1)(2-+=mx x x f 若对于任意]1,[+∈m m x ,都有0)(<x f 成立,则实数m 的取值范围是 .【答案】( 【解析】由题意可得()0f x <对于[,1]x m m ∈+上恒成立,即22()210(1)230f m m f m m m ⎧=-<⎨+=+<⎩,解得202m -<<. 题型二 应用基本不等式求函数最值 例1 已知54x <,则函数14245y x x =-+-的最大值 . 【答案】1【解析】因450x -<,所以首先要“调整”符号,又1(42)45x x --不是常数, 所以对42x -要进行拆、凑项. 5,5404x x <∴->,11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+= 当且仅当15454x x -=-,即1x =时,上式等号成立,故当1x =时,max 1y =. 【易错点】注意54x <,则4x-5为负数,要提“-”使其变“+”. 【思维点拨】本题需要调整项的符号,又要配凑项的系数,使其积为定值.例 2 当40<<x 时,则(82)y x x =-的最大值是 .【答案】8.【解析】因为8)2282(21)]28(2[21)28(y 2=-+≤-=-=x x x x x x 当且仅当x x 282-=,即2=x 时取等号,所以当2=x 时,(82)y x x =-的最大值为8.【思维点拨】由40<<x 知,028>-x ,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。
注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可.例3 函数2710(1)1x x y x x ++=>-+的值域为 。
【答案】[)+∞,9【解析】当1->x ,即01>+x 时,41)591y x x ≥+⨯=+((当且仅当x =1时取“=”号). 【思维点拨】本题看似无法运用均值不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离.例4 已知0,0x y >>,且191x y +=,则x y +的最小值为 . 【答案】16 【解析】190,0,1x y x y >>+=,()1991061016y x x y x y x y x y⎛⎫∴+=++=++≥+= ⎪⎝⎭ 当且仅当9y x x y =时,上式等号成立,又191x y+=,可得4,12x y ==时,()min 16x y +=. 【易错点】错解..:0,0x y >>,且191x y +=,∴()1912x y x y x y ⎛⎫+=++≥= ⎪⎝⎭ 故 ()min 12x y +=错因:解法中两次连用均值不等式,在x y +≥x y =,在19x y +≥19x y=即9y x =,取等号的条件的不一致,产生错误。
因此,在利用均值不等式处理问题时,列出等号成立条件是解题的必要步骤,而且是检验转换是否有误的一种方法。
【思维点拨】多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错.例5 已知a ,b 为正实数,302=++b ab b ,则函数ab y 1=的最小值是 . 【答案】 181 【易错点】①本题考查不等式ab b a ≥+2)(+∈R b a ,的应用、不等式的解法及运算能力;②如何由已知不等式230ab a b =++)(+∈R b a ,出发求得ab 的范围,关键是寻找到ab b a 与+之间的关系,由此想到不等式ab b a ≥+2)(+∈R b a ,,这样将已知条件转换为含ab 的不等式,进而解得ab 的范围. 【思维点拨】这是一个二元函数的最值问题,通常有两个途径,一是通过消元,转化为一元函数问题,再用单调性或基本不等式求解,对本题来说,这种途径是可行的;二是直接用基本不等式,对本题来说,因已知条件中既有和的形式,又有积的形式,不能一步到位求出最值,考虑用基本不等式放缩后,再通过解不等式的途径进行。
题型三 线性规划例1 已知⎪⎩⎪⎨⎧≤--≥-+≥+-0520402y x y x y x ,则:(1)42-+=y x z 的最大值 ; (2)251022+-+=y y x z 的最小值 ;(3)112++=x y z 的取值范围是 . 【答案】(1)21; (2)29 ; (3)⎥⎦⎤⎢⎣⎡27,43. 【解析】作出可行域如图所示,并求出顶点的坐标A (1,3),B (3,1),C (7,9).(1)易知直线z y x =-+42过点C 时,z 最大. 所以x =7,y =9时,z 取最大值21.(2)()225-+=y x z 表示可行域内任一点()y x ,到定点M (0,5)的距离的平方, 过点M 作直线AC 的垂线,易知垂足N 在线段AC 上,故z 的最小值是29. (3)()1212--⎪⎭⎫ ⎝⎛--⋅=x y z 表示可行域内任一点()y x ,与定点⎪⎭⎫ ⎝⎛--21,1Q 连线斜率的2倍.因为47=QA k ,83=QB k ,所以z 的取值范围为⎥⎦⎤⎢⎣⎡27,43. 【易错点】作出直线图像后要熟练掌握如何找到满足条件的可行域.【思维点拨】(1)把直线直线z y x =-+42变形为421++-=z x y 可知在y 轴上你的截距越大z 就越大; (2)根据点线距离求即可;(3)先确定定点⎪⎭⎫ ⎝⎛--21,1Q 再利用斜率求. 例2 已知1,10,220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩则22x y +的最小值是 .【答案】5【解析】如图,只要画出满足约束条件的可行域,而22x y +表示可行域内一点到原点的距离的平方,由图易知()2,1A 是满足条件的最优解, 22x y +的最小值是为5.【思维点拨】本题属非线性规划最优解问题。
求解关键是在挖掘目标关系几何意义的前提下,作出可行域,寻求最优解。
题型四 基本不等式的应用例1 已知a 、b 、c R +∈,且1a b c ++=。
求证:1111118a b c ⎛⎫⎛⎫⎛⎫---≥ ⎪⎪⎪⎝⎭⎝⎭⎝⎭.【答案】a 、b 、c R +∈,1a b c ++=∴111a b c a a a -+-==≥同理11b -≥11c -≥:111221118ac ab a b c ⎛⎫⎛⎫⎛⎫---≥= ⎪⎪⎪⎝⎭⎝⎭⎝⎭,当且仅当13a b c ===时取等号. 【思维点拨】不等式右边数字8,使我们联想到左边因式分别使用均值不等式可得三个“2”连乘,又111a b c a a a -+-==≥,可由此变形入手. 例2 若)2lg(),lg (lg 21,lg lg ,1b a R b a Q b a P b a +=+=⋅=>>,则R Q P ,,的大小关系是 . 【答案】P Q R >> 【解析】∵1>>b a ∴0lg ,0lg >>b a ,则21=Q (p b a b a =⋅>+lg lg )lg lg Q ab ab b a R ==>+=lg 21lg )2lg( ∴P Q R >>. 【思维点拨】因为0lg ,0lg >>b a 所以可以利用均值不等式进行判断大小.【巩固训练】题型一 一元二次不等式解法及其应用1.不等式220x x +-<的解集为___________.【答案】()1,2-【解析】易得不等式220x x +-<的解集为()1,2-.2.已知关于x 的不等式220x ax a -+>在R 上恒成立,则实数a 的取值范围是_________.【答案】()8,0【解析】因为不等式220x ax a -+>在R 上恒成立.∴△=2()80a a --<,解得80<<a .3.已知函数2()()f x x ax b a b =++∈R ,的值域为[0)+∞,,若关于x 的不等式()f x c <的解集为(6)m m +,,则实数c 的值为 .【答案】9=c【解析】因为()f x 的值域为[0,+∞),所以,0=∆即24a b =, 所以2204a x ax c ++-=的两根,由韦达定理得,4)6(,622c a m m a m -=+-=+解得9=c . 4.已知函数21,0()1,0x x f x x ⎧+≥=⎨<⎩,则满足不等式2(1)(2)f x f x ->的x 的范围是_____.【答案】(1)-【解析】2212(1)10x x x x ⎧->⎪⇒∈-⎨->⎪⎩. 5.已知)(x f 的定义域为R 的偶函数,当0≥x 时,x x x f 4)(2-=,那么,不等式5)2(<+x f 的解集_____.【答案】(-7,3)【解析】当x ≥0时,令245x x -<,解得,05x <≤.又因为)(x f 为定义域为R 的偶函数,则不等式(2)5f x +<等价于525x -<+<,即-7<x <3;故解集为(-7,3).题型二 应用基本不等式求函数最值1.已知28,,0,1x y x y >+=,则xy 的最小值是 。