工程数学练习题
- 格式:doc
- 大小:231.00 KB
- 文档页数:7
《工程数学(本)》期末综合练习一、单项选择题1.设B A ,均为n 阶可逆矩阵,则下列等式成立的是( ). A .()BAAB 11=- B .()111---+=+B A B A C .()111---=B A AB D .1111----+=+B A B A正确答案:A2.方程组⎪⎩⎪⎨⎧=+=+=-331232121a x xa x x a x x 相容的充分必要条件是( ),其中0≠i a ,)3,2,1(=i .A .0321=++a a aB .0321=-+a a aC .0321=+-a a aD .0321=++-a a a 正确答案:B3.设矩阵⎥⎦⎤⎢⎣⎡--=1111A 的特征值为0,2,则3A 的特征值为 ( ) .A .0,2B .0,6C .0,0D .2,6 正确答案:B4. 设A ,B 是两事件,则下列等式中( )是不正确的. A. )()()(B P A P AB P =,其中A ,B 相互独立 B. )()()(B A P B P AB P =,其中0)(≠B P C. )()()(B P A P AB P =,其中A ,B 互不相容 D. )()()(A B P A P AB P =,其中0)(≠A P 正确答案:C5.若随机变量X 与Y 相互独立,则方差)32(Y X D -=( ). A .)(3)(2Y D X D - B .)(3)(2Y D X D + C .)(9)(4Y D X D - D .)(9)(4Y D X D + 正确答案:D6.设A 是n m ⨯矩阵,B 是t s ⨯矩阵,且B C A '有意义,则C 是( )矩阵.A .s n ⨯B .n s ⨯C .t m ⨯D .m t ⨯ 正确答案:B7.若X 1、X 2是线性方程组AX =B 的解,而21ηη、是方程组AX = O 的解,则( )是AX =B 的解. A .213231X X + B .213231ηη+ C .21X X - D .21X X + 正确答案:A8.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=211102113A ,则A 的对应于特征值2=λ的一个特征向量α=( ) . A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101 B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-101 C .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡011 D .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100 正确答案:C9. 下列事件运算关系正确的是( ).A .AB BA B += B .A B BA B +=C .A B BA B +=D .B B -=1 正确答案:A10.若随机变量)1,0(~N X ,则随机变量~23-=X Y ( ). A .)3,2(-N B .)3,4(-N C .)3,4(2-N D .)3,2(2-N 正确答案:D11.设321,,x x x 是来自正态总体),(2σμN 的样本,则( )是μ的无偏估计. A .321525252x x x ++ B .321x x x ++ C .321535151x x x ++ D .321515151x x x ++ 正确答案:C12.对给定的正态总体),(2σμN 的一个样本),,,(21n x x x ,2σ未知,求μ的置信区间,选用的样本函数服从( ).A .χ2分布 B .t 分布 C .指数分布 D .正态分布 正确答案:B二、填空题1.设412211211)(22+-=x x x f ,则0)(=x f 的根是 .应该填写:2,2,1,1--2.设向量β可由向量组n ααα,,,21 线性表示,则表示方法唯一的充分必要条件是n ααα,,,21 .应该填写:线性无关3.若事件A ,B 满足B A ⊃,则 P (A - B )= . 应该填写:)()(B P A P -4..设随机变量的概率密度函数为⎪⎩⎪⎨⎧≤≤+=其它,010,1)(2x x kx f ,则常数k = .应该填写:π45.若样本n x x x ,,,21 来自总体)1,0(~N X ,且∑==ni i x n x 11,则~x .应该填写:)1,0(nN 6.行列式701215683的元素21a 的代数余子式21A 的值为= . 应该填写-567.设三阶矩阵A 的行列式21=A ,则1-A = . 应该填写:28.若向量组:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=2121α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1302α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=2003k α,能构成R 3一个基,则数k .应该填写:2≠9.设4元线性方程组AX =B 有解且r (A )=1,那么AX =B 的相应齐次方程组的基础解系含有 个解向量. 应该填写:310.设A B ,互不相容,且P A ()>0,则P B A ()= . 应该填写:011.若随机变量X ~ ]2,0[U ,则=)(X D . 应该填写:31 12.设θˆ是未知参数θ的一个估计,且满足θθ=)ˆ(E ,则θˆ称为θ的 估计. 应该填写:无偏三、计算题1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=210211321,100110132B A ,求:(1)AB ;(2)1-A . 解:(1)因为210110132-=--=A 12111210211110210211321-=-===B 所以2==B A AB .(2)因为 []⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=100100010110001132I A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→10010011001012/32/1001100100110010101032所以 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-10011012/32/11A .2.求齐次线性方程组 ⎪⎩⎪⎨⎧=++--=++++=++++0233035962023353215432154321x x x x x x x x x x x x x x 的通解.解: A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--326001130012331203313596212331⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→100001130012331⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→100000130001031 一般解为 ⎪⎪⎩⎪⎪⎨⎧=-=--=0313543421x x x x x x ,其中x 2,x 4 是自由元令x 2 = 1,x 4 = 0,得X 1 =)0,0,0,1,3('-; x 2 = 0,x 4 = 3,得X 2 =)0,3,1,0,3('--所以原方程组的一个基础解系为 { X 1,X 2 }.原方程组的通解为: 2211X k X k +,其中k 1,k 2 是任意常数.3.设随机变量)1,4(~N X .(1)求)24(>-X P ;(2)若9332.0)(=>k X P ,求k 的值. (已知9332.0)5.1(,8413.0)1(,9775.0)2(=Φ=Φ=Φ).解:(1))24(>-X P =1-)24(≤-X P= 1-)242(≤-≤-X P =1-()2()2(-Φ-Φ) = 2(1-)2(Φ)=0.045. (2))44()(->-=>k X P k X P =1-)44(-≤-k X P=1-)5.1(9332.0)4(Φ==-Φk )5.1()5.1(1)4(-Φ=Φ-=-Φk即 k -4 = -1.5, k =2.5.4.某切割机在正常工作时,切割的每段金属棒长服从正态分布,且其平均长度为10.5 cm ,标准差为0.15cm.从一批产品中随机地抽取4段进行测量,测得的结果如下:(单位:cm )10.4,10.6,10.1,10.4问:该机工作是否正常(05.0=α, 96.1975.0=u )?解:零假设5.10:0=μH .由于已知15.0=σ,故选取样本函数nx U σμ-=~)1,0(N经计算得375.10=x ,075.0415.0==nσ,67.1075.05.10375.10=-=-nx σμ由已知条件96.121=-αu,且2196.167.1αμσμ-=<=-nx故接受零假设,即该机工作正常.5.已知矩阵方程B AX X +=,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=301111010A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=350211B ,求X . 解:因为B X A I =-)(,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-101210011110001011100201010101001011)(I A I ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→11100121010120001110100011110010101 即 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=--110121120)(1A I所以 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-=-334231350211110121120)(1B A I X .6.设向量组)1,421(1'--=,,α,)4,1684(2'--=,,α,)2,513(3'--=,,α,)1,132(4'-=,,α,求这个向量组的秩以及它的一个极大线性无关组. 解:因为(1α 2α 3α 4α)=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------12411516431822341 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----→1100770075002341⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→0000200011002341 所以,r (4321,,,αααα) = 3.它的一个极大线性无关组是 431,,ααα(或432,,ααα).7.设齐次线性方程组⎪⎩⎪⎨⎧=+-=+-=+-0830352023321321321x x x x x x x x x λ,λ为何值时方程组有非零解?在有非零解时,求出通解. 解:因为A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---λ83352231⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→610110231λ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→500110101λ505==-λλ即当时,3)(<A r ,所以方程组有非零解.方程组的一般解为: ⎩⎨⎧==3231x x x x ,其中3x 为自由元.令3x =1得X 1=)1,1,1(',则方程组的基础解系为{X 1}. 通解为k 1X 1,其中k 1为任意常数.8.罐中有12颗围棋子,其中8颗白子,4颗黑子.若从中任取3颗,求:(1)取到3颗棋子中至少有一颗黑子的概率;(2)取到3颗棋子颜色相同的概率.解:设1A =“取到3颗棋子中至少有一颗黑子”,2A =“取到的都是白子”,3A =“取到的都是黑子”,B =“取到3颗棋子颜色相同”,则 (1))(1)(1)(211A P A P A P -=-=745.0255.01131238=-=-=C C .(2))()()()(3232A P A P A A P B P +=+=273.0018.0255.0255.031234=+=+C C .9.设随机变量X ~ N (3,4).求:(1)P (1< X < 7);(2)使P (X < a )=0.9成立的常数a . (8413.0)0.1(=Φ,9.0)28.1(=Φ,9973.0)0.2(=Φ). 解:(1)P (1< X < 7)=)23723231(-<-<-X P =)2231(<-<-X P =)1()2(-Φ-Φ = 0.9973 + 0.8413 – 1 = 0.8386 (2)因为 P (X < a )=)2323(-<-a X P =)23(-Φa = 0.9 所以28.123=-a ,a = 3 + 28.12⨯ = 5.56 10.从正态总体N (μ,9)中抽取容量为64的样本,计算样本均值得x = 21,求μ的置信度为95%的置信区间.(已知 96.1975.0=u ) 解:已知3=σ,n = 64,且nx u σμ-= ~ )1,0(N因为 x = 21,96.121=-αu,且735.064396.121=⨯=-nuσα所以,置信度为95%的μ的置信区间为: ]735.21,265.20[],[2121=+---nux nux σσαα.四、证明题1.设A 是n 阶矩阵,若3A = 0,则21)(A A I A I ++=--. 证明:因为 ))((2A A I A I ++-=322A A A A A I ---++ =3A I -= I所以 21)(A A I A I ++=--2.设n 阶矩阵A 满足0))((=+-I A I A ,则A 为可逆矩阵.证明: 因为 0))((2=-=+-I A I A I A ,即I A =2 所以,A 为可逆矩阵.3.设向量组321,,ααα线性无关,令2112ααβ+=,32223ααβ+=,1334ααβ-=,证明向量组321,,βββ线性无关。
工程问题1.小红做寒假作业,每天能做全部作业的1/12,那么小红完成全部作业的2/3需要多少天2.一项工程,甲单独做需要21天时间,甲、乙合作需要12天时间,如果乙单独做需要多少时间。
3.小王、小李和小张,同时各做120个同样的机器零件,当小王做完时,小李做了100个,小张做了60个,照这样计算,小李做完时,小张还差多少个没做4.一项工作,甲队单独做10天完成,乙队单独做15天完成,那么:(1)甲、乙两队合作,共需要多少天完成(2)甲、乙合作4天后,剩下的工作乙单独做,还需要多长时间完成?(3)如果甲、乙两队合作若干天之后,乙队停工休息,而甲队继续做了5天才完成,那么乙队一共做了多少天?5.一项工程,甲单独干需要20天完成,乙单独干需要12天完成,如果甲先干4天,剩下的工程由甲乙合干,那么还需要几天?6.一件工作,甲、乙两人合作30天可以完成,共同做了6天后,甲离开了,由乙继续做了40天才完成,如果这件工作由甲或乙单独完成各需多少天?7.一项工程,甲、乙合作需要9天完成,乙丙合作需要12天,由丙单独做需要36天完成,那么如果甲、丙合作、完成这项工程需要多少天?8.田田的姥姥家做“十个全覆盖”,有20户院墙要用砖砌好,甲单独做40天完成,乙单独做60天完成,现在两人合作,中间甲因病休息了若干天,所以经过了27天才完成,问:甲休息了几天?9.丁丁爸爸揽下了“十个全覆盖”拉水泥的工程,甲单独完成需要12天,乙单独完成需要9天,若甲先做若干天后乙接着做,共用10天完成,问:甲做了几天?10.一个蓄水池有1个进水管1个出水管,若进水管单独工作,需要5小时把蓄水池从空变满,若出水管单独工作,需要7小时把蓄水池从满变空。
如果进水管出水管一起工作,几小时才能注满这个蓄水池?11.乐乐老师家重新装修,如果甲、乙两队合作,恰好24天完成;如果乙队先做5天,然后甲队来帮忙,又共同做了10天后,全部工程才完成了一半.请问:甲队单独完成这项工程需要多少天?12.甲、乙合作一项工作需要30天完成,如果甲先做24天,然后两人合作12天,剩下工作乙还要做16天完成.求甲、乙单独做各需要几天?13.一项工程,甲队单独做要20天完成,乙队单独要12天完成,已知这项工程甲队做了几天后离开,乙队紧接着做,从开始到完成共用了14天,那么甲队做了多少天?14.甲、乙两队合作挖一条水渠要30天完成,若甲队先挖4天后,再由乙队单独挖16天,共挖了这条水渠的2/5。
工程数学练习题一、 判断题1. 若A 为集合,则A Φ={ф} ( ) 2. 设A ,B 为集合。
若B ≠ф,则A —B ⊂A 。
( ) 3. 若R 为集合A 上的反对称关系,则R 2亦然。
( ) 4. 若R 1,R 2为集合A 上的相容关系,则R1·R2亦然。
( ) 5. 若g ·f 为内射且f 为满射,则g 为内射。
( )6. 若f:X →Y 且A ,B ⊆Y ,则f -1[A ⋂B ]=f -1[A] ⋂f -1[B] ( )7. 若P 为命题变元,则P ∧—P 为主合取范式。
( ) 8. 若P ,Q 为命题变元,则(P Q ) (-P Q )为可满足的。
( ) 9. 简单无向图的邻接矩阵是一个对角线元素全为“0”的0-1矩阵。
( ) 10.若V 为有向图G 的结点集,则∑∑∈-∈-=Vv Vv v G d v G d )()(。
( )11.π是无理数,并且如果3是无理数,则2也是无理数。
( ) 12.只有6能2整除,6才能被4整除。
( ) 13.用真值表判断下列公式类型1))(r q p p ∨∨→ ( ) 2)q p p 7)7(→→ ( ) 3)r r q ∧→)(7 ( ) 4))77()(p q q p →→→ ( ) 5))77()(q p r p ∧↔∧ ( ) 6))())()((r p r q q p →→→∧→ ( ) 7))()(s r q p ↔↔→ ( ) 14.判断下述命题的真假1))()()(C A B A C B A ⨯=⨯ ( ) 2))()()(C A B A C B A ⨯⨯=⨯⨯ ( ) 3)存在集合A 使得A A A ⨯⊆ ( ) 4))()()(A A P A P A P ⨯=⨯⨯ ( ) 二、单项选择题1.1、一个连通的无向图G ,如果它的所有结点的度数都是偶数,那么它具有一条 ( ) A 、汉密尔顿回路 B 、欧拉回路C 、汉密尔顿通路D 、初级回路2、设G 是连通简单平面图,G 中有11个顶点5个面,则G 中的边是( ) A 、10 B 、12 C 、16 D 、143、设i 是虚数,·是复数乘法运算,则G=({}+--i i ,,1,1·)是群,下列是G 的子群是( ) A 、({},1·) B 、({},1-·) C 、({},i ·) D 、({},i -·)4、设Z 为整数集,A 为集合,A 的幂集为P (A ),+、-、/为数的加、减、除运算, 为集合的交运算,下列系统中是代数系统的有( ) A 、(Z , + , /) B 、(Z , /) C 、(z , -, /) D 、(P (A ), )5、设A=(1,2,3),A 上二元关系R 的关系图如下:R 具有的性质是 ( ) A 、自反性 B 、对称性 C 、传递性 D 、反自反性6、设A=|a,b,c|A 上二元关系R=|〈a,a 〉〈b,b 〉〈a,c 〉|,则关系R 的对称闭包S (R )是( ) A 、R I A B 、RC 、R |〈c,a 〉|D 、R I A 7、设X=|a,b,c|,1X 上恒等关系,要使1X |〈a,b 〉,〈b,c 〉,〈c,a 〉, 〈b,a 〉| R 为X 上的等价关系,R 应取 ( ) A 、|〈c,a 〉, 〈a,c 〉| B 、|〈c,b 〉, 〈b ,a 〉| C 、|〈c,a 〉, 〈b,a 〉| D 、|〈a,c 〉, 〈c,b 〉| 8、下列式子正确的是( )A 、Ø∈ØB 、Ø⊆ØC 、|Ø|⊆ ØD 、|Ø|∈Ø9、若P:他聪明:Q:他用功:则“他虽聪明,但不用功”,可符号化为 ( ) A 、PVQ B 、PA|Q C 、P ΓQ D 、PV –Q10、以下命题公式中,为永假式的是 ( ) A 、p →(pVqV r ) B 、(p →Γp )→Γp C 、|(q →p )∧pD 、|(pV Γp) →(p ∧Γp )11、M 未知时,求Q 2的置信区间,应选择统计量为( ) A .)1,0(/~N nQ M x - B .)1(/--n ~t nS M x C .)1,0(~N QM x -D .)1(122--n ~n xQ12、)3)(2)(1()(+++=S S S SS F 不解析点有( )个。
小学数学工程问题练习题第一题:某工程队准备砌筑一条长墙,长度为120米。
如果一名工人每天平均砌砖10米,那么需要多少天才能完成这条长墙?解析:根据题目可知,每天砌砖10米,工程长墙长度为120米。
所以可以用长度除以每天砌砖的长度,得出所需的天数。
答案:完成这条长墙需要12天。
第二题:某工程队完成装修一间教室的任务,从早上8点开始工作,下午4点结束。
工程队每位工人每小时穿过房间的次数为30次,每次穿过需要5秒钟。
请问,这间教室共有多少道门?解析:根据题目可得,工作时间为8小时,每小时穿过房间的次数为30次,每次穿过需要5秒钟。
所以可以将总穿行时间除以每一小时的穿行次数,得出总共的穿行小时数。
然后将总穿行小时数乘以每小时的穿行次数,即可得出总共的穿行次数。
最后将总共的穿行次数除以每侧房间的门数,即可得出这间教室共有多少道门。
答案:这间教室共有40道门。
第三题:某工程队准备搭建一个9米高的脚手架。
每个工人每天可以搭建3米高的脚手架,需要几个工人才能在一天内完成搭建任务?解析:根据题目可知,每个工人每天可以搭建3米高的脚手架,所需要搭建的脚手架高度为9米。
所以可以将脚手架的总高度除以每个工人每天可以搭建的脚手架高度,得出所需的工人数量。
答案:完成这个搭建任务需要3个工人。
第四题:某工程队需要将1,500个砖块搬运至施工现场。
每个工人每小时搬运120个砖块,那么需要多少个工人才能在1小时内完成搬运任务?解析:根据题目可知,每个工人每小时搬运120个砖块,所需搬运的砖块数为1,500个。
所以可以将所需搬运的砖块数除以每个工人每小时搬运的砖块数,得出所需的工人数量。
答案:需要13个工人才能在1小时内完成搬运任务。
第五题:某工程队完成一项挖掘任务,挖掘总量为2,400立方米。
一辆挖掘机每小时可以挖掘40立方米,挖掘完成这项任务需要多少小时?解析:根据题目可知,挖掘总量为2,400立方米,一辆挖掘机每小时可以挖掘40立方米。
六年级数学工程问题专项练习(含参考答案)1.一件工作,甲独做需要2天,乙单独做需要4天,两人合做几小时,可以完成这件工作的?2.一项工程,甲单独做需要21天时间,甲、乙合作需要12天时间,如果乙单独做需要多少时间?3.一水池装有一个进水管和一个排水管。
如果单开进水管,5小时可将空池灌满;如果单开排水管,7小时可将整池水排完。
现在先打开进水管,2小时后打开排水管。
请问:再过多长时间池内将恰好存有半池水?4.蓄水池有甲、乙两个进水管,单开甲管需12小时注满水,单开乙管需18小时注满水。
现要求10小时注水池,那么甲、乙两管至少要合开多长时间?5.修一条路,甲队每天修8小时,5天完成;乙队每天修10小时,6天完成。
两队合作,每天工作6小时,几天可以完成?6.甲、乙、丙三人同时分别在3个条件和工作量相同的仓库工作,搬完货物甲用10小时,乙用12小时,丙用15小时.第二天三人又到两个大仓库工作,这两个仓库的工作量相同.甲在A仓库,乙在B仓库,丙先帮甲后帮乙,用了16个小时将两个仓库同时搬完.丙在A仓库搬了多长时间?7.甲、乙合作一件工程,由于配合得好,甲的工作效率比单独做时提高,乙的工作效率比单独做时提高.甲、乙两人合作6小时,完成全部工作的,第二天乙又单独做了6小时,还留下这件工作的尚未完成,如果这件工作始终由甲一人单独来做,需要多少小时?8.有甲乙两个工程,张三单独做完甲工程需要12天,单独做完乙工程需要15天;李四单独做完甲工程需要8天,单独做完乙工程20天.张三李四二人共同完成这个工程最少需要多少天?9.单独完成一件工程,甲需要24天,乙需要32天.若甲先独做若干天后乙单独做,则共用26天完成工作.问甲做了多少天?10.一项工程,甲队单独做需30天完成,乙队单独做需40天完成。
甲队单独做若干天后,由乙队接着做,共用35天完成了任务。
甲、乙两队各做了多少天?11.甲、乙两人合作加工一批零件,8天可以完成。
综合练习一、单项选择题1.设为阶矩阵,则下列等式成立的是().A.B.C.D.正确答案:A2.方程组相容的充分必要条件是(),其中,.A.B.C.D.正确答案:B3.下列命题中不正确的是().A.A与有相同的特征多项式B.若是A的特征值,则的非零解向量必是A对应于的特征向量C.若=0是A的一个特征值,则必有非零解D.A的特征向量的线性组合仍为A的特征向量正确答案:D4.若事件与互斥,则下列等式中正确的是().A.B.C.D.正确答案:A5.设是来自正态总体的样本,则检验假设采用统计量U =().A.B.C.D.正确答案:C6.若是对称矩阵,则等式()成立.A.B。
C.D。
正确答案:B7.( ).A。
B。
C。
D。
正确答案:D8.若()成立,则元线性方程组有唯一解.A。
B。
C。
D。
的行向量线性相关正确答案:A9. 若条件()成立,则随机事件,互为对立事件.A.或B。
或C。
且D。
且正确答案:C10.对来自正态总体(未知)的一个样本,记,则下列各式中()不是统计量.A。
B。
C.D.正确答案: C二、填空题1.设,则的根是.应该填写:1,—1,2,—22.设4元线性方程组AX=B有解且r(A)=1,那么AX=B的相应齐次方程组的基础解系含有个解向量.应该填写:33.设互不相容,且,则.应该填写:04.设随机变量X ~ B(n,p),则E(X)= .应该填写:np5.若样本来自总体,且,则.应该填写:6.设均为3阶方阵,,则.应该填写:87.设为n阶方阵,若存在数λ和非零n维向量,使得,则称为相应于特征值λ的特征向量.应该填写:8.若,则.应该填写:0.39.如果随机变量的期望,,那么.应该填写:2010.不含未知参数的样本函数称为.应该填写:统计量三、计算题1.设矩阵,求.解:由矩阵乘法和转置运算得利用初等行变换得即2.求下列线性方程组的通解.解利用初等行变换,将方程组的增广矩阵化成行简化阶梯形矩阵,即→→→方程组的一般解为:,其中,是自由未知量.令,得方程组的一个特解.方程组的导出组的一般解为:,其中,是自由未知量.令,,得导出组的解向量;令,,得导出组的解向量.所以方程组的通解为:,其中,是任意实数.3.设随机变量X ~ N(3,4).求:(1)P(1< X〈7);(2)使P(X〈a)=0。
工程数学练习题一、 判断题1. 若A 为集合,则A Φ={ф} ( ) 2. 设A ,B 为集合。
若B ≠ф,则A —B ⊂A 。
( ) 3. 若R 为集合A 上的反对称关系,则R 2亦然。
( ) 4. 若R 1,R 2为集合A 上的相容关系,则R1·R2亦然。
( ) 5. 若g ·f 为内射且f 为满射,则g 为内射。
( )6. 若f:X →Y 且A ,B ⊆Y ,则f -1[A ⋂B ]=f -1[A] ⋂f -1[B] ( ) 7. 若P 为命题变元,则P ∧—P 为主合取范式。
( ) 8. 若P ,Q 为命题变元,则(P Q ) (-P Q )为可满足的。
( ) 9. 简单无向图的邻接矩阵是一个对角线元素全为“0”的0-1矩阵。
( ) 10.若V 为有向图G 的结点集,则∑∑∈-∈-=Vv Vv v G d v G d )()(。
( )11.π是无理数,并且如果3是无理数,则2也是无理数。
( ) 12.只有6能2整除,6才能被4整除。
( ) 13.用真值表判断下列公式类型1))(r q p p ∨∨→ ( ) 2)q p p 7)7(→→ ( ) 3)r r q ∧→)(7 ( ) 4))77()(p q q p →→→ ( ) 5))77()(q p r p ∧↔∧ ( ) 6))())()((r p r q q p →→→∧→ ( ) 7))()(s r q p ↔↔→ ( ) 14.判断下述命题的真假1))()()(C A B A C B A ⨯=⨯ ( ) 2))()()(C A B A C B A ⨯⨯=⨯⨯ ( ) 3)存在集合A 使得A A A ⨯⊆ ( ) 4))()()(A A P A P A P ⨯=⨯⨯ ( )二、单项选择题1.1、一个连通的无向图G ,如果它的所有结点的度数都是偶数,那么它具有一条 ( ) A 、汉密尔顿回路 B 、欧拉回路 C 、汉密尔顿通路D 、初级回路2、设G 是连通简单平面图,G 中有11个顶点5个面,则G 中的边是( ) A 、10 B 、12 C 、16 D 、143、设i 是虚数,·是复数乘法运算,则G=({}+--i i ,,1,1·)是群,下列是G 的子群是( )A 、({},1·)B 、({},1-·)C 、({},i ·)D 、({},i -·)4、设Z 为整数集,A 为集合,A 的幂集为P (A ),+、-、/为数的加、减、除运算, 为集合的交运算,下列系统中是代数系统的有( )A 、(Z , + , /)B 、(Z , /)C 、(z , -, /)D 、(P (A ), )5、设A=(1,2,3),A 上二元关系R 的关系图如下: R 具有的性质是 ( )A 、自反性B 、对称性C 、传递性D 、反自反性 6、设A=|a,b,c|A 上二元关系R=|〈a,a 〉〈b,b 〉〈a,c 〉|,则关系R 的对称闭包S (R )是( ) A 、R I A B 、R C 、R |〈c,a 〉| D 、R I A 7、设X=|a,b,c|,1X 上恒等关系,要使1X |〈a,b 〉,〈b,c 〉,〈c,a 〉, 〈b,a 〉| R 为X 上的等价关系,R 应取 ( ) A 、|〈c,a 〉, 〈a,c 〉| B 、|〈c,b 〉, 〈b,a 〉| C 、|〈c,a 〉, 〈b,a 〉| D 、|〈a,c 〉, 〈c,b 〉| 8、下列式子正确的是( )A 、Ø∈ØB 、Ø⊆ØC 、|Ø|⊆ ØD 、|Ø|∈Ø9、若P:他聪明:Q:他用功:则“他虽聪明,但不用功”,可符号化为 ( ) A 、PVQ B 、PA|Q C 、P ΓQ D 、PV –Q10、以下命题公式中,为永假式的是 ( ) A 、p →(pVqVr ) B 、(p →Γp )→Γp C 、|(q →p )∧pD 、|(pV Γp) →(p ∧Γp )11、M 未知时,求Q 2的置信区间,应选择统计量为( ) A .)1,0(/~N nQ M x -B .)1(/--n ~t nS M xC .)1,0(~N QMx - D .)1(122--n ~n x Q12、)3)(2)(1()(+++=S S S SS F 不解析点有( )个。
小学六年级数学工程问题练习题及答案1.一项工程需要甲、乙两队合作15天才能完成。
如果甲队做了5天,乙队做了3天,只完成了工程的7/30,那么乙队单独完成这项工程需要多少天?答案:首先需要求出甲、乙两队的工作效率和,即1/15.然后可以使用“组合法”来计算甲队2天的工作量,即7/30 -1/15 × 3 = 1/30.由此可以求出甲队的工作效率为1/10.因此,乙队单独完成这项工程需要1 ÷ [1/15 - (7/30 - 1/15 × 3) ÷ (5 - 3)] = 20天。
2.师、徒两人合作完成一批零件需要12天。
如果师傅先做了3天,然后因事外出,由徒弟接着做1天,共完成任务的3/20,那么师傅单独完成这批零件需要多少天?答案:由于师、徒两人合作完成这批零件需要12天,因此他们每天的工作效率和为1/12.根据题目条件,师傅做了3天,徒弟做了1天,共完成了任务的3/20,因此他们完成任务的效率为3/20 ÷ 4 = 3/80.因此,师傅单独完成这批零件需要1 ÷ (1/12 - 3/80) = 30天。
3.甲、乙两队合作1天可以完成一项工程的5/24.如果甲队先独自做2天,然后乙队再独自做3天,可以完成全部工程的13/24.那么甲、乙两队单独完成这项工程各需要多少天?答案:由于甲、乙两队合作1天可以完成工程的5/24,因此他们每天的工作效率和为5/24.根据题目条件,甲队先独自做2天,乙队再独自做3天,可以完成全部工程的13/24,因此他们完成任务的效率为(13/24 - 5/24 × 5) ÷ (2 + 3) = 1/24.因此,甲队单独完成这项工程需要5 ÷ (5/24 - 1/24) = 12天,乙队单独完成这项工程需要3 ÷ (5/24 - 1/24) = 8天。
4.甲、乙两队合作20天可以完成一项工程。
(一)一、单项选择题(每小题2分,共12分)1. 设四阶行列式bccad c d b b c a ddc b aD =,则=+++41312111A A A A ( ).A.abcdB.0C.2)(abcd D.4)(abcd2. 设(),0ij m n A a Ax ⨯==仅有零解,则 ( )(A) A 的行向量组线性无关; (B) A 的行向量组线性相关; (C) A 的列向量组线性无关; (D) A 的列向量组线性相关;3. 设8.0)(=A P ,8.0)|(=B A P ,7.0)(=B P ,则下列结论正确的是( ).A.事件A 与B 互不相容;B.B A ⊂;C.事件A 与B 互相独立;D.)()()(B P A P B A P +=4. 从一副52张的扑克牌中任意抽5张,其中没有K 字牌的概率为( ).A.552548C CB.5248 C.554855C D.5555485. 复数)5sin 5(cos5ππi z --=的三角表示式为( )A .)54sin 54(cos 5ππi +-B .)54sin 54(cos 5ππi -C .)54sin 54(cos 5ππi +D .)54sin 54(cos 5ππi --6. 设C 为正向圆周|z+1|=2,n 为正整数,则积分⎰+-c n i z dz1)(等于( )A .1;B .2πi ;C .0;D .iπ21 二、填空题(每空3分,共18分) 1. 设A 、B 均为n 阶方阵,且3||,2||==B A ,则=-|2|1BA .2. 设向量组()()()1231,1,1,1,2,1,2,3,TTTt α=α=α=则当t = 时,123,,ααα线性相关.3. 甲、乙向同一目标射击,甲、乙分别击中目标概率为0.8, 0.4,则目标被击中的概率为4. 已知()1,()3E X D X =-=,则23(2)E X ⎡⎤-=⎣⎦______.5. 设)(t f 是定义在实数域上的有界函数,且在0=t 处连续,则=⎰+∞∞-dt t f t )()(δ .6. 函数)2)(1(15)(-+-=s s s s F 的Laplace 逆变换为()f t = .三、计算题(每小题10分,共70分)1. 设423110123A ⎛⎫ ⎪= ⎪ ⎪-⎝⎭, 而B 满足关系式2AB A B =+,试求矩阵B .2.当λ为何值时,⎪⎩⎪⎨⎧+=+++=++=+324622432132131λλλx x x x x x x x 无解,有解,并在有解时求出其解.3、设在15只同类型的零件中有两只是次品,在其中取3次,每次任取一只,作不放回抽样,以 X 表示取出次品的只数,求X 的分布律。
工程数学练习题一、 判断题1. 若A 为集合,则A Φ={ф} ( ) 2. 设A ,B 为集合。
若B ≠ф,则A —B ⊂A 。
( ) 3. 若R 为集合A 上的反对称关系,则R 2亦然。
( ) 4. 若R 1,R 2为集合A 上的相容关系,则R1·R2亦然。
( ) 5. 若g ·f 为内射且f 为满射,则g 为内射。
( )6. 若f:X →Y 且A ,B ⊆Y ,则f -1[A ⋂B ]=f -1[A] ⋂f -1[B] ( ) 7. 若P 为命题变元,则P ∧—P 为主合取范式。
( ) 8. 若P ,Q 为命题变元,则(P Q ) (-P Q )为可满足的。
( ) 9. 简单无向图的邻接矩阵是一个对角线元素全为“0”的0-1矩阵。
( ) 10.若V 为有向图G 的结点集,则∑∑∈-∈-=Vv Vv v G d v G d )()(。
( )11.π是无理数,并且如果3是无理数,则2也是无理数。
( ) 12.只有6能2整除,6才能被4整除。
( ) 13.用真值表判断下列公式类型1))(r q p p ∨∨→ ( ) 2)q p p 7)7(→→ ( ) 3)r r q ∧→)(7 ( ) 4))77()(p q q p →→→ ( ) 5))77()(q p r p ∧↔∧ ( ) 6))())()((r p r q q p →→→∧→ ( ) 7))()(s r q p ↔↔→ ( ) 14.判断下述命题的真假1))()()(C A B A C B A ⨯=⨯ ( ) 2))()()(C A B A C B A ⨯⨯=⨯⨯ ( ) 3)存在集合A 使得A A A ⨯⊆ ( ) 4))()()(A A P A P A P ⨯=⨯⨯ ( )二、单项选择题1.1、一个连通的无向图G ,如果它的所有结点的度数都是偶数,那么它具有一条 ( ) A 、汉密尔顿回路 B 、欧拉回路 C 、汉密尔顿通路D 、初级回路2、设G 是连通简单平面图,G 中有11个顶点5个面,则G 中的边是( ) A 、10 B 、12 C 、16 D 、143、设i 是虚数,·是复数乘法运算,则G=({}+--i i ,,1,1·)是群,下列是G 的子群是( ) A 、({},1·) B 、({},1-·) C 、({},i ·) D 、({},i -·) 4、设Z 为整数集,A 为集合,A 的幂集为P (A ),+、-、/为数的加、减、除运算, 为集合的交运算,下列系统中是代数系统的有( ) A 、(Z , + , /) B 、(Z , /) C 、(z , -, /) D 、(P (A ), )5、设A=(1,2,3),A 上二元关系R 的关系图如下: R 具有的性质是 ( )A 、自反性B 、对称性C 、传递性D 、反自反性 6、设A=|a,b,c|A 上二元关系R=|〈a,a 〉〈b,b 〉〈a,c 〉|,则关系R 的对称闭包S (R )是( ) A 、R I A B 、R C 、R |〈c,a 〉| D 、R I A 7、设X=|a,b,c|,1X 上恒等关系,要使1X |〈a,b 〉,〈b,c 〉,〈c,a 〉, 〈b,a 〉| R 为X 上的等价关系,R 应取 ( ) A 、|〈c,a 〉, 〈a,c 〉| B 、|〈c,b 〉, 〈b,a 〉| C 、|〈c,a 〉, 〈b,a 〉| D 、|〈a,c 〉, 〈c,b 〉| 8、下列式子正确的是( )A 、Ø∈ØB 、Ø⊆ØC 、|Ø|⊆ ØD 、|Ø|∈Ø9、若P:他聪明:Q:他用功:则“他虽聪明,但不用功”,可符号化为 ( ) A 、PVQ B 、PA|Q C 、P ΓQ D 、PV –Q10、以下命题公式中,为永假式的是 ( ) A 、p →(pVqVr ) B 、(p →Γp )→Γp C 、|(q →p )∧pD 、|(pV Γp) →(p ∧Γp )11、M 未知时,求Q 2的置信区间,应选择统计量为( ) A .)1,0(/~N nQ M x -B .)1(/--n ~t nS M xC .)1,0(~N QMx - D .)1(122--n ~n xQ12、)3)(2)(1()(+++=S S S SS F 不解析点有( )个。
A .1B .2C .3D .4三、填空题1.n{ (a ;b) ;(b ;c);(a ;c);(a .b .c)}=_____________。
2.D (<ф;1>)=_____________。
3.若集合A={1,2,3}上的二元关系R 1和R 2的关系图如下:①→②←③ ①←②→③ R 1 R 24.用Q 和Q P ∧同时代入公式P →⌝(Q P ∨)中的P 和Q 所得代换实例为________.5.f:A →A 为满射且f 4=f,则f 为_______射,且f 3=f A 。
6.设A ,A1,A ??????????????????/ 7.设A 为集合,P (A )为A 的幂集,则(P (A ),⊆)是格,若x,y ∈P(A),则x,y 最大下界是______________,最小上界是________________。
8.设函数f:X →Y ,如果对X 中的任意两个不同的x 1和 x 2,它们的象y 1和y 2也不同,我们说f 是____________函数,如果ranf=Y,则称f 是 ___________函数。
9.设M(x):x 是人,D(x):x 是要死的,则命题“所有人都是要死的”可符号化为:)(x ∀____________,其中量词)(x ∀的辖域是10.判断一个语句是否为命题,首先要看它是否为_____________,然后再看它是否具有唯一的____________.11.单个命题变项是合式公式,并称为__________公式。
12.若公式A 是单个的命题变项,则称____________公式。
13.将命题公式A 在所有赋值下取值情况列成表,称作__________真值表。
14.设A ;B 为集合,如果f 为函数且f=A, ranf ⊆B,则f 称为___________.15.设f:A →B 则有:______________________.16.设f:A →是双射的则_____________也是双射的。
17.设V=<S;0>是代数系统,0为二元运算,如果0是可结合的则称_________为半群。
18.设V=<5,0>是半群;若e ∈S 是关于0运算的单位元,则称________是_____半群,也叫做独异点,有时也将独异点V 记作:______________. 19.设H 是群G 的子群:a ∈G 令Ha={ha/h ∈H}称_____________子群H 在G 中的有限集。
称____________Ha 的代表元素。
20.(拉格朗日定理)设G 是有限,H 是G 的子群,则G =_______________.21.设(∨∧,,τ)是格, S 是τ的非空子集,若S 关于τ中的运算∨∧和仍然构成格则称___________子格。
22.设L 1和L 2是格,21:I I →ϕ,若1,L b a ∈∀有)(b a ∧ϕ=_____________。
23.如果一个格是有补分配格,则称它为_____________代数。
24.任何等势的有限___________都是同构的。
25.设G=<V,E>为任意无向图}2;1{Un U U V =;m E =则∑=ni iv d 1)(=__________。
26.设A 是任意的公式,若A 中不含自由出现的个体变项,则称__________公式简称闭式。
27.设A ,B 是一阶逻辑中任意的两个公式,若B A ↔是永真式,则称________是等值的,记作B A ⇔,称___________是等值式。
28.设R 为A 上的关系,则A I R ∙=_________________.29.设F ,G 为函数,则F=__________________________,⊆F 。
30.设A ,B 为集合,如果f 为函数,且domf=A ;ranf ⊆B ,则f 称_________函数。
31、若A ·B=φ,则-p(A+B)=p(A)+ 。
32、加工某一零件须经三道工序,设第一、二、三道工序的次品率是2%、3%、5%,求加工的零件是次品的概率p= 。
33、设x 服从参数为a 的泊松分布,则E(x)= 。
34、设x 服从N (M ,Q 2)正态分布,则D(x)= 。
35、设X,Y 为两个随机变量,若对任意实数x,y 有}{}}{{y Y p x X p y Y x X p ≤⋅≤=≤≤,,则称X ,Y 相互 。
36、设(X ,Y )服从二维正态分布),,,,(22121P N Q Q M M ,则相关系数为 。
37、指数分布λe -λb,t>0的参数a 的最大似然估计 λ = 。
38、E (θ-θ)=0或E θ=θ。
合于这个要求的θ称为θ的无偏 。
39、Z 1(Z 2+Z 3)=Z 1Z 2+ 。
40、解析函数必可导,可导函数必 。
41、傅氏级数中傅里叶系数 ⎰∏∏-∏=1b n 。
(注T=2∏)42、)()()(ϖϖϖK X i H =为定常线性系统的 。
四、计算题1、某厂产品的合格率为96%,合格品中一级品率为75%,从产品中任取一种为一级品的概率是多少?2、设X ~N(5.32),求P (2<x<10)。
注(8413.0)1(,95.0)67.1(=Φ=Φ)3、设随机变量X ,Y 的联合概率密度函数为⎪⎩⎪⎨⎧≥≥=+-其它00,0),()(y x y x f e y x ,求fX (x),fY (y),并判断X ,Y 的独立性。
4、求函数)3)(1(3)(-++=S S S S F 的拉氏反变换。
5、z z z z i i 2121,31,3求+=+=。
五、证明题1前提:┒s r q p q q p →∨∧→;;)(,结论1:r 结论2:S 结论3:rvS 1) 证明从此前提出发推任何结论1、结论2、结论3的推理都是正确的 2) 证明从此前提出发推任何结论的推理都是正确的 2.在自然推理系统P 中构造下面的推理证明如果小张守第一垒并且小李的B 队投球则A 队将取胜或者A 队未取胜或者A 队成为联赛第一名,A 队没有成为联赛的第一名,小张守第一垒,因此,小李没向B 队投球。