2018年最新电大工程数学复习题精选及答案
- 格式:docx
- 大小:20.84 KB
- 文档页数:2
工程数学(本)网上形考作业1—3参考答案每个题序号里是两个题型,做题时对应抽题序号核对题和答案形成性考核作业11、n阶行列式中元素的代数余子式与余子式之间的关系是().1、三阶行列式的余子式M23=().2、若A为3×4矩阵,B为2×5矩阵,且乘积AC'B'有意义,则C为(5×4 )矩阵.2、设A为3×4矩阵,B为4×3矩阵,则下列运算可以进行的是(AB).3、设,则().3、设,则BA-1().4、设A,B均为n阶可逆矩阵,则下列运算关系正确的是().4、设A,B均为n阶方阵,k>0且,则下列等式正确的是().5、下列结论正确的是(对任意方阵A,A+A'是对称矩阵).5、设A,B均为n阶方阵,满足AB=BA,则下列等式不成立的是().6、方阵A可逆的充分必要条件是().6、设矩阵A可逆,则下列不成立的是().7、二阶矩阵().7、二阶矩阵().8、向量组的秩为(3).8、向量组的秩是(3).9、设向量组为,则()是极大无关组.9、向量组的极大线性无关组是().10、用消元法得的解为().10、方程组的解为().11、行列式的两行对换,其值不变.(错)11、两个不同阶的矩阵可以相加.(错)12、设A是对角矩阵,则A=A'.(对)12、同阶对角矩阵的乘积仍然是对角矩阵.(对)13、若为对称矩阵,则a=-3.(错)13、若为对称矩阵,则x=0.(对)14、设,则.(错)14、设,则.(对)15、零矩阵是可逆矩阵.(错)15、设A是n阶方阵,则A可逆的充要条件是r(A)=n.(对)16、 7 .16、设行列式,则 -6 .17、若行列式,则a= 1 .17、是关于x的一个一次多项式,则该多项式一次项的系数是 2 .18、乘积矩阵中元素C23=10 .18、乘积矩阵中元素C21= -16 .19、设A,B均为3阶矩阵,且,则 -72 .19、设A,B均为3阶矩阵,且,则 9 .20、矩阵的秩为 1 .20、矩阵的秩为 2 .形成性考核作业21、设线性方程组的两个解,则下列向量中()一定是的解.1、设线性方程组的两个解,则下列向量中()一定是的解.2、设与分别代表非齐次线性方程组的系数矩阵和增广矩阵,若这个方程组有解,则().2、设与分别代表非齐次线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则().3、若某个非齐次线性方程组相应的齐次线性方程组只有零解,则该线性方程组(可能无解).3、以下结论正确的是(齐次线性方程组一定有解).4、若向量组线性相关,则向量组内(至少有一个向量)可被该向量组内其余向量线性表出.4、若向量组线性无关,则齐次线性方程组(只有零解).5、矩阵的特征值为(-1,4).5、矩阵A的特征多项式,则A的特征值为().6、设矩阵的特征值为0,2,则3A的特征值为(0,6 ).6、已知可逆矩阵A的特征值为-3,5,则A-1的特征值为().7、设A,B为n阶矩阵,既是A又是B的特征值,x既是A又是B的特征向量,则结论(x是A+B 的特征向量)成立.7、设是矩阵A的属于不同特征值的特征向量,则向量组的秩是(3).8、设A,B为两个随机事件,则()成立.8、设A,B为两个随机事件,下列事件运算关系正确的是().9、如果(且)成立,则事件A与B互为对立事件.9、若事件A,B满足,则A与B一定(不互斥).10、袋中有5个黑球,3个白球,一次随机地摸出4个球,其中恰有3个白球的概率为().10、某购物抽奖活动中,每人中奖的概率为0.3. 则3个抽奖者中恰有1人中奖的概率为().11、线性方程组可能无解.(错)11、非齐次线性方程组相容的充分必要条件是.(对)12、当1时,线性方程组只有零解.(对)12、当1时,线性方程组有无穷多解.(错)13、设A是三阶矩阵,且r(A)=3,则线性方程组AX=B有唯一解.(对)13、设A是三阶矩阵,且,则线性方程组AX=B有无穷多解.(错)14、若向量组线性相关,则也线性相关.(错)14、若向量组线性无关,则也线性无关.(对)15、特征向量必为非零向量.(对)15、若A矩阵可逆,则零是A的特征值.(错)16、当 1 时,齐次线性方程组有非零解.16、若线性方程组有非零解,则-1 .17、向量组线性相关.18、设齐次线性方程组的系数行列式,则这个方程组有非零解。
试卷代号:1080中央广播电视大学2018~2018学年度第一学期“开放本科”期末考试(半开卷)工程数学(本) 试卷2018年1月一、单项选择题(每小题3分,共15分)1. 设A ,B 为三阶可逆矩阵,且0k >,则下列( )成立. A .A B A B +=+B .AB A B '=C . 1AB A B -= D .kA k A =2. 设A 是n 阶方阵,当条件( )成立时,n 元线性方程组AX b =有惟一解.3.设矩阵1111A -⎡⎤=⎢⎥-⎣⎦的特征值为0,2,则3A 的特征值为( )。
A .0,2B .0,6C .0,0D .2,6 4.若随机变量(0,1)XN ,则随机变量32Y X =- ( ).5. 对正态总体方差的检验用( ).二、填空题(每小题3分,共15分)6. 设,A B 均为二阶可逆矩阵,则111OA B O ---⎡⎤=⎢⎥⎣⎦.8. 设 A , B 为两个事件,若()()()P AB P A P B =,则称A 与B . 9.若随机变量[0,2]XU ,则()D X =.10.若12,θθ都是θ的无偏估计,且满足 ______ ,则称1θ比2θ更有效。
三、计算题(每小题16分,共64分)11. 设矩阵234123231A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,111111230B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,那么A B -可逆吗?若可逆,求逆矩阵1()A B --.12.在线性方程组123121232332351x x x x x x x x λλ++=⎧⎪-+=-⎨⎪++=⎩ 中λ取何值时,此方程组有解。
在有解的情况下,求出通解。
13. 设随机变量(8,4)XN ,求(81)P X -<和(12)P X ≤。
(已知(0.5)0.6915Φ=,(1.0)0.8413Φ=,(2.0)0.9773Φ=)14. 某切割机在正常工作时,切割的每段金属棒长服从正态分布,且其平均长度为10.5cm ,标准差为0.15cm 。
12018电大工程数学(本)期末复习辅导一、单项选择题1.若100100200001000=aa ,则=a (12). ⒊乘积矩阵⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡1253014211中元素=23c (10). ⒋设A B ,均为n 阶可逆矩阵,则下列运算关系正确的是()A B B A --=11).⒌设A B ,均为n 阶方阵,k >0且k ≠1,则下列等式正确的是(D ).D.-=-k A k An() ⒍下列结论正确的是(A. 若A 是正交矩阵则A -1也是正交矩阵).⒎矩阵1325⎡⎣⎢⎤⎦⎥的伴随矩阵为( C. 5321--⎡⎣⎢⎤⎦⎥). ⒏方阵A 可逆的充分必要条件是(A ≠0)⒐设A B C ,,均为n 阶可逆矩阵,则()A C B '=-1(D).D.()B C A ---'111⒑设A B C ,,均为n 阶可逆矩阵,则下列等式成立的是(A).A. ()A B A A B B+=++2222 ⒈用消元法得x x x x x x 12323324102+-=+=-=⎧⎨⎪⎩⎪的解x x x 123⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥为(C. [,,]--'1122 ).⒉线性方程组x x x x x x x 12313232326334++=-=-+=⎧⎨⎪⎩⎪( 有唯一解). ⒊向量组100010001121304⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥,,,,的秩为( 3).⒋设向量组为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1111,0101,1100,00114321αααα,则(ααα123,, )是极大无关组. ⒌A 与A 分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则D. 秩()A =秩()A -1⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组(A ). A. 可能无解 ⒎以下结论正确的是(D ).D. 齐次线性方程组一定有解 ⒏若向量组ααα12,,, s线性相关,则向量组内(A )可被该向量组内其余向量线性表出. A. 至少有一个向量 9.设A ,B为n 阶矩阵,λ既是A又是B的特征值,x 既是A又是B的属于λ的特征向量,则结论( A )成立. A.λ是AB 的特征值10.设A,B,P为n 阶矩阵,若等式(C )成立,则称A和B相似.C.B PAP =-12⒈A B ,为两个事件,则( B )成立. B.()AB B A+-⊂ ⒉如果( C )成立,则事件A 与B 互为对立事件.C.A B =∅且A B U = ⒊10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中恰有1人中奖的概率为( D.307032⨯⨯..). 4. 对于事件A B ,,命题(C )是正确的. C. 如果A B ,对立,则A B,对立⒌某随机试验的成功率为)10(<<p p ,则在3次重复试验中至少失败1次的概率为(D.)1()1()1(223p p p p p -+-+-6.设随机变量X B n p ~(,),且E X D X ().,().==48096,则参数n 与p 分别是(6, 0.8). 7.设f x ()为连续型随机变量X 的密度函数,则对任意的ab a b ,()<,E X ()=(A ). A.xf x x ()d -∞+∞⎰8.在下列函数中可以作为分布密度函数的是(B ).B. f x x x ()s in ,,=<<⎧⎨⎪⎩⎪020π其它9.设连续型随机变量X 的密度函数为f x (),分布函数为F x (),则对任意的区间(,)a b ,则=<<)(b X a PD.f x x ab ()d ⎰).10.设X 为随机变量,EX D X (),()==μσ2,当(C )时,有E Y D Y (),()==01.C. σμ-=X Y1.A 是34⨯矩阵,B 是52⨯矩阵,当C 为( B 24⨯)矩阵时,乘积AC B ''有意义。
《工程数学》期末综合练习题工程数学(本)课程考核说明(修改稿)I. 相关说明与实施要求本课程的考核对象是国家开放大学(中央广播电视大学)理工类开放教育专升本土木工程专业及水利水电工程专业的学生。
本课程的考核形式为形成性考核和期末考试相结合的方式。
考核成绩由形成性考核成绩和期末考试成绩两部分组成,考核成绩满分为100分,60分为及格。
其中形成性考核成绩占考核成绩的30%,期末考试成绩占考核成绩的70%。
形成性考核的内容及成绩的评定按《国家开放大学(中央广播电视大学)人才培养模式改革与开放教育试点工程数学形成性考核册》的规定执行。
工程数学(本)课程考核说明是根据《国家开放大学(中央广播电视大学)专升本“工程数学(本)”课程教学大纲》制定的,参考教材是《大学数学——线性代数》和《大学数学——概率论与数理统计》(李林曙主编,中央广播电视大学出版社出版)。
考核说明中的考核知识点与考核要求不得超出或超过课程教学大纲与参考教材的范围与要求。
本考核说明是工程数学(本)课程期末考试命题的依据。
工程数学(本)是国家开放大学(中央广播电视大学)专升本土木工程专业学生的一门重要的必修基础课,其全国统一的结业考试(期末考试)是一种目标参照性考试,考试合格者应达到普通高等学校理工类专业的本科水平。
因此,考试应具有较高的信度、效度和一定的区分度。
试题应符合课程教学大纲的要求,体现广播电视大学培养应用型人才的特点。
考试旨在测试有关线性代数、概率论与数理统计的基础知识,必要的基础理论、基本的运算能力,以及运用所学基础知识和方法,分析和解决问题的能力。
期末考试的命题原则是在考核说明所规定的范围内命题,注意考核知识点的覆盖面,在此基础上突出重点。
考核要求分为三个不同层次:有关定义、定理、性质和特征等概念的内容由低到高分为“知道、了解、理解”三个层次;有关计算、解法、公式和法则等内容由低到高分为“会、掌握、熟练掌握”三个层次。
三个不同层次由低到高在期末试卷中的比例为:2:3:5。
1一、单项选择题1.若100100200001000=aa ,则=a (12). ⒊乘积矩阵⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡1253014211中元素=23c (10). ⒋设A B ,均为n 阶可逆矩阵,则下列运算关系正确的是()AB BA--=11).⒌设A B ,均为n 阶方阵,k >0且k ≠1,则下列等式正确的是(D ).D. -=-kA k A n()⒍下列结论正确的是(A. 若A 是正交矩阵则A -1也是正交矩阵).⒎矩阵1325⎡⎣⎢⎤⎦⎥的伴随矩阵为( C. 5321--⎡⎣⎢⎤⎦⎥ ).⒏方阵A 可逆的充分必要条件是(A ≠0)⒐设A B C ,,均为n 阶可逆矩阵,则()ACB '=-1(D ).D. ()B C A ---'111⒑设A B C ,,均为n 阶可逆矩阵,则下列等式成立的是(A ).A. ()A B A AB B +=++2222 ⒈用消元法得x x x x x x 12323324102+-=+=-=⎧⎨⎪⎩⎪的解x x x 123⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥为(C.[,,]--'1122 ).⒉线性方程组x x x x x x x 12313232326334++=-=-+=⎧⎨⎪⎩⎪( 有唯一解). ⒊向量组100010001121304⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥,,,,的秩为( 3).⒋设向量组为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1111,0101,1100,00114321αααα,则(ααα123,, )是极大无关组.⒌A 与A 分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则D. 秩()A =秩()A -1⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组(A ). A. 可能无解⒎以下结论正确的是(D ).D. 齐次线性方程组一定有解 ⒏若向量组ααα12,,,Λs 线性相关,则向量组内(A)可被该向量组内其余向量线性表出. A. 至少有一个向量 9.设A ,B为n 阶矩阵,λ既是A又是B的特征值,x 既是A又是B的属于λ的特征向量,则结论( A )成立. A.λ是AB 的特征值10.设A,B,P为n 阶矩阵,若等式(C )成立,则称A和B相似.C.B PAP =-1⒈A B ,为两个事件,则( B )成立. B.()A B B A +-⊂⒉如果( C )成立,则事件A 与B 互为对立事件.C.AB =∅且AB U =⒊10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中恰有1人中奖的概率为( D. 307032⨯⨯..). 4. 对于事件A B ,,命题(C )是正确的. C. 如果A B ,对立,则A B,对立⒌某随机试验的成功率为)10(<<p p ,则在3次重复试验中至少失败1次的概率为(D. )1()1()1(223p p p p p -+-+-6.设随机变量X B n p ~(,),且E X D X ().,().==48096,则参数n 与p 分别是(6, 0.8).7.设f x ()为连续型随机变量X 的密度函数,则对任意的a b a b ,()<,E X ()=(A). A.xf x x ()d -∞+∞⎰8.在下列函数中可以作为分布密度函数的是(B ).B. f x x x ()sin ,,=<<⎧⎨⎪⎩⎪020π其它9.设连续型随机变量X 的密度函数为f x (),分布函数为F x (),则对任意的区间(,)a b ,则=<<)(b X a P D.f x x ab()d ⎰). 10.设X为随机变量,E X D X (),()==μσ2,当(C)时,有E Y D Y (),()==01.C. σμ-=X Y1.A 是34⨯矩阵,B 是52⨯矩阵,当C 为( B 24⨯)矩阵时,乘积AC B ''有意义。
《工程数学》期末复习题库工程数学(本)模拟试题一、单项选择题(每小题3分,共15分)1.设B A ,为n 阶矩阵,则下列等式成立的是( ). A .BA AB = B .B A B A +=+ C .111)(---+=+B A B A D .111)(---=B A AB2.方程组⎪⎩⎪⎨⎧=+=+=-331232121a x xa x x a x x 相容的充分必要条件是( ),其中0≠i a ,)3,2,1(=i .A .0321=++a a aB .0321=-+a a aC .0321=+-a a aD .0321=++-a a a3.下列命题中不正确的是( ). A .A 与A '有相同的特征多项式B .若λ是A 的特征值,则O X A I =-)(λ的非零解向量必是A 对应于λ的特征向量 C .若λ=0是A 的一个特征值,则O AX =必有非零解 D .A 的特征向量的线性组合仍为A 的特征向量4.若事件与互斥,则下列等式中正确的是( ). A . B . C . D .5.设n x x x ,,,21 是来自正态总体)1,5(N 的样本,则检验假设5:0=μH 采用统计量U =( ).A .55-xB .5/15-xC .nx /15- D .15-x二、填空题(每小题3分,共15分)1.设22112112214A x x =-+,则0A =的根是 . 2.设4元线性方程组AX =B 有解且r (A )=1,那么AX =B 的相应齐次方程组的基础解系含有 个解向量. 3.设互不相容,且,则 . 4.设随机变量X ~ B (n ,p ),则E (X )= .5.若样本n x x x ,,,21 来自总体)1,0(~N X ,且∑==ni i x n x 11,则~x .三、计算题(每小题16分,共64分)1.设矩阵100111101A ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦,求1()AA -'. 2.求下列线性方程组的通解.123412341234245353652548151115x x x x x x x x x x x x -++=⎧⎪-++=⎨⎪-++=⎩ 3.设随机变量X ~ N (3,4).求:(1)P (1< X < 7);(2)使P (X < a )=0.9成立的常数a . (已知8413.0)0.1(=Φ,9.0)28.1(=Φ,9773.0)0.2(=Φ).4.从正态总体N (μ,4)中抽取容量为625的样本,计算样本均值得x = 2.5,求μ的置信度为99%的置信区间.(已知 576.2995.0=u )四、证明题(本题6分)4.设n 阶矩阵A 满足0))((=+-I A I A ,则A 为可逆矩阵.工程数学(本)11春模拟试卷参考解答一、单项选择题(每小题3分,共15分) 1.A 2.B 3.D 4.A 5.C 二、填空题(每小题3分,共15分)1.1,-1,2,-2 2.3 3.0 4.np 5.)1,0(nN三、(每小题16分,共64分) 1.解:由矩阵乘法和转置运算得10011111111010132101011122AA --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥'=-=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦ ………6分 利用初等行变换得10020001112011101⎡⎤⎢⎥→⎢⎥⎢⎥-⎣⎦1002001110101112⎡⎤⎢⎥→---⎢⎥⎢⎥⎣⎦即 1201()011112AA -⎡⎤⎢⎥'=⎢⎥⎢⎥⎣⎦………16分 7-2.解 利用初等行变换,将方程组的增广矩阵化成行简化阶梯形矩阵,即 245353652548151115-⎛⎫ ⎪- ⎪ ⎪-⎝⎭→245351201000555-⎛⎫ ⎪-- ⎪ ⎪⎝⎭→120100055500555--⎛⎫ ⎪ ⎪ ⎪⎝⎭→120100011100000--⎛⎫ ⎪ ⎪ ⎪⎝⎭ 方程组的一般解为:1243421x x x x x =+⎧⎨=-+⎩,其中2x ,4x 是自由未知量. ……8分令042==x x ,得方程组的一个特解0(0010)X '=,,,.方程组的导出组的一般解为: 124342x x x x x =+⎧⎨=-⎩,其中2x ,4x 是自由未知量. 令12=x ,04=x ,得导出组的解向量1(2100)X '=,,,;令02=x ,14=x ,得导出组的解向量2(1011)X '=-,,,. ……13分所以方程组的通解为:22110X k X k X X ++=12(0010)(2100)(1011)k k '''=++-,,,,,,,,,,其中1k ,2k 是任意实数. ……16分3.解:(1)P (1< X < 7)=)23723231(-<-<-X P =)2231(<-<-X P =)1()2(-Φ-Φ= 0.9773 + 0.8413 – 1 = 0.8186 ……8分(2)因为 P (X < a )=)2323(-<-a X P =)23(-Φa = 0.9 所以 28.123=-a ,a = 3 + 28.12⨯ = 5.56 ……16分 4.解:已知2=σ,n = 625,且nx u σμ-= ~ )1,0(N ……5分因为 x = 2.5,01.0=α,995.021=-α,576.221=-αu206.06252576.221=⨯=-nuσα……10分所以置信度为99%的μ的置信区间为:]706.2,294.2[],[2121=+---nux nux σσαα. ……16分四、(本题6分)证明: 因为 0))((2=-=+-I A I A I A ,即I A =2.所以,A 为可逆矩阵. ……6分《工程数学》综合练习一、单项选择题1.设B A ,都是n 阶方阵,则下列命题正确的是( ). A .AB A B = B .222()2A B A AB B -=-+ C .AB BA = D .若AB O =,则A O =或B O = 正确答案:A2.向量组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡732,320,011,001的秩是( ). A . 1 B . 3 C . 2 D . 4正确答案: B3.n 元线性方程组有解的充分必要条件是( ).A . )()(b A r A r =B . 不是行满秩矩阵C .D . 正确答案:A4. 袋中有3个红球,2个白球,第一次取出一球后放回,第二次再取一球,则两球都是红球的概率是( ).A . 256B . 103 C . 203 D . 259正确答案:D 5.设是来自正态总体的样本,则( )是μ无偏估计.A . 321515151x x x ++ B . 321x x x ++C . 321535151x x x ++D . 321525252x x x ++正确答案: C6.若是对称矩阵,则等式( )成立. A . I AA =-1 B . A A =' C . 1-='A A D . A A =-1正确答案:B7.=⎥⎦⎤⎢⎣⎡-15473( ). A . ⎥⎦⎤⎢⎣⎡--3547 B . 7453-⎡⎤⎢⎥-⎣⎦ C . 7543-⎡⎤⎢⎥-⎣⎦ D . 7543-⎡⎤⎢⎥-⎣⎦ 正确答案:D8.若( )成立,则元线性方程组AX O =有唯一解.A .B . A O ≠C .D . A 的行向量线性相关 正确答案:A9. 若条件( )成立,则随机事件,互为对立事件.A . ∅=AB 或A B U += B . 0)(=AB P 或()1P A B +=C . ∅=AB 且A B U +=D . 0)(=AB P 且1)(=+B A P正确答案:C10.对来自正态总体(未知)的一个样本,记∑==3131i i X X ,则下列各式中( )不是统计量.A . XB .∑=31i iXC . ∑=-312)(31i i X μ D . ∑=-312)(31i i X X正确答案: C二、填空题1.设B A ,均为3阶方阵,2,3A B ==,则13A B -'-= .应该填写:-182.设A 为n 阶方阵,若存在数λ和非零n 维向量X ,使得 ,则称λ为A 的特征值.应该填写:AX X λ=3.设随机变量012~0.20.5X a ⎛⎫ ⎪⎝⎭,则a = .应该填写:0.34.设为随机变量,已知3)(=X D ,此时.应该填写:275.设θˆ是未知参数θ的一个无偏估计量,则有 .应该填写:ˆ()E θθ=6.设B A ,均为3阶方阵,6,3A B =-=,则13()A B -'-= . 应该填写:87.设A 为n 阶方阵,若存在数λ和非零n 维向量X ,使得 ,则称X 为A 相应于特征值λ的特征向量. 应该填写:AX X λ=8.若5.0)(,8.0)(==B A P A P ,则=)(AB P . 应该填写:0.39.如果随机变量的期望2)(=X E ,9)(2=X E ,那么=)2(X D .应该填写:2010.不含未知参数的样本函数称为 . 应该填写:统计量三、计算题1.设矩阵,且有,求X .解:利用初等行变换得即由矩阵乘法和转置运算得2.求线性方程组⎪⎪⎩⎪⎪⎨⎧=++-=++--=+-+-=-+-2284212342272134321432143214321x x x x x x x x x x x x x x x x的全部解.解: 将方程组的增广矩阵化为阶梯形⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------0462003210010101113122842123412127211131 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→0000002200010101113106600022000101011131 方程组的一般解为: (其中为自由未知量)令=0,得到方程的一个特解)0001(0'=X .方程组相应的齐方程的一般解为: ⎪⎩⎪⎨⎧-===4342415xx x x x x (其中为自由未知量)令=1,得到方程的一个基础解系)1115(1'-=X .于是,方程组的全部解为:10kX X X +=(其中k 为任意常数)3.设)4,3(~N X ,试求: (1))95(<<X P ;(2))7(>X P . (已知,8413.0)1(=Φ9987.0)3(,9772.0)2(=Φ=Φ)解:(1))3231()23923235()95(<-<=-<-<-=<<X P X P X P 1574.08413.09987.0)1()3(=-=Φ-Φ=(2))23723()7(->-=>X P X P )223(1)223(≤--=>-=X P X P 0228.09772.01)2(1=-=Φ-=4.据资料分析,某厂生产的一批砖,其抗断强度)21.1,5.32(~N X ,今从这批砖中随机地抽取了9块,测得抗断强度(单位:kg /cm 2)的平均值为31.12,问这批砖的抗断强度是否合格().解: 零假设.由于已知,故选取样本函数已知,经计算得,由已知条件,故拒绝零假设,即这批砖的抗断强度不合格。
2018年电大本科《工程数学》期末试题资料三套附答案一、1.设A 是n m ⨯矩阵,B 是t s ⨯矩阵,且B C A '有意义,则C 是( B )矩阵. A .s n ⨯ B .n s ⨯ C .t m ⨯ D .m t ⨯2.若X 1、X 2是线性方程组AX =B 的解,而21ηη、是方程组AX= O 的解,则( A )是AX =B 的解.A .213231X X + B .213231ηη+ C .21X X - D .21X X +3.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=211102113A ,则A 的对应于特征值2=λ的一个特征向量α=( C ) . A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101 B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-101 C .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡011 D .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1004. 下列事件运算关系正确的是( A ).A .AB BA B += B .A B BA B +=C .A B BA B+= D .B B -=15.若随机变量)1,0(~N X ,则随机变量~23-=X Y ( D ). A .)3,2(-N B .)3,4(-N C .)3,4(2-ND .)3,2(2-N6.设321,,x x x 是来自正态总体),(2σμN 的样本,则( C )是μ的无偏估计. A .321525252x x x ++ B .321x x x ++C .321535151x x x ++D .321515151x x x ++ 7.对给定的正态总体),(2σμN 的一个样本),,,(21n x x x ,2σ未知,求μ的置信区间,选用的样本函数服从( B).A .χ2分布 B .t 分布 C .指数分布D .正态分布二、填空题(每小题3分,共15分)1.设三阶矩阵A 的行列式21=A ,则1-A . 2.若向量组:⎥⎥⎥⎤⎢⎢⎢⎡-=2121α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1302α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=2003k α,能构成R 3一个基,则数k3.设A B ,互不相容,且A )>0,则P B A ()= 4.若随机变量X ~ ]2,0[U ,则=)(X D5.设θˆ是未知参数θ的一个估计,且满足θθ=)ˆ(E ,则θˆ称为θ三、(每小题10分,共60分)1.已知矩阵方程B AX X +=,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=301111010A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=350211B ,求X . 解:因为B X A I =-)(,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-101210011110001011100201010101001011)(I A I ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→110100121010120001110100011110010101即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=--110121120)(1A I所以 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-=-334231350211110121120)(1B A I X .2.设向量组)1,421(1'--=,,α,)4,1684(2'--=,,α,)2,513(3'--=,,α,)1,132(4'-=,,α,求这个向量组的秩以及它的一个极大线性无关组.解:因为(1α2α 3α 4α)=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------12411516431822341⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----→1100770075002341⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→0000200011002341所以,r (4321,,,αααα) = 3.它的一个极大线性无关组是 431,,ααα(或432,,ααα). 3.用配方法将二次型32312123222132122435),,(x x x x x x x x x x x x f +++++=化为标准型,并求出所作的满秩变换. 解:32312123222132122435),,(x x x x x x x x x x x x f +++++=322322232122)2(x x x x x x x -++++=232322321)()2(x x x x x x +-+++= 令333223211,,2x y x x y x x x y =-=++=即得232221321),,(y y y x x x f ++=由(*)式解出321,,x x x ,即得⎪⎩⎪⎨⎧=+=--=33322321132yx y y x y y y x或写成⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321*********y y y x x x4.罐中有12颗围棋子,其中8颗白子,4颗黑子.若从中任取3颗,求:(1)取到3颗棋子中至少有一颗黑子的概率;(2)取P (X < a )=0.9成立的常数a . (8413.0)0.1(=Φ,9.0)28.1(=Φ,9973.0)0.2(=Φ).均值得x = 21,求μ的置信度为95%的置信区间.(已知 96.1975.0=u )设A 是n 阶矩阵,若3A = 0,则21)(A A I A I++=--.证明:因为 ))((2A A I A I ++-=322A A A A A I ---++ =3A I -= I所以21)(A A I A I ++=--一、 1.设B A ,都是n 阶矩阵)1(>n ,则下列命题正确的是(D ). A . 若AC AB =,且0≠A ,则C B = B .2222)(B AB A B A ++=+C . A B B A '-'='-)(D . 0=AB ,且0≠A ,则0=B2.在下列所指明的各向量组中,(B )中的向量组是线性无关的.A . 向量组中含有零向量B . 任何一个向量都不能被其余的向量线性表出C . 存在一个向量可以被其余的向量线性表出D . 向量组的向量个数大于向量的维数3.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=211102113A ,则A 的对应于特征值2=λ的一个特征向量α=( C ) .A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-101C .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡011D .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1004. 甲、乙二人射击,分别表示甲、乙射中目标,则AB 表示( A )的事件. A . 至少有一人没射中 B . 二人都没射中C . 至少有一人射中D . 两人都射中 5.设)1,0(~N X,)(x Φ是X的分布函数,则下列式子不成立的是( C ).A .5.0)0(=ΦB . 1)()(=Φ+-Φx xC . )()(a a Φ=-ΦD .1)(2)(-Φ=<a a x P6.设321,,x x x 是来自正态总体的样本,则(D )是μ无偏估计.A . 321x x x ++ B . 321525252x x x ++C . 321515151x x x ++D . 321535151x x x ++7.对正态总体),(2σμN 的假设检验问题中,U 检验解决的问题是(A ).A . 已知方差,检验均值B . 未知方差,检验均值C . 已知均值,检验方差D . 未知均值,检验方差二、填空题(每小题3分,共15分) 1.设A 是2阶矩阵,且9=A ,'-)(31A2为53⨯矩阵,且该方程组有非零解,则)(A r3.2.)(=A P ,则=+)(B A P4.若连续型随机变量X数的是⎩⎨⎧≤≤=其它,010,2)(x x x f ,则)(X E 5.若参数θ的两个无偏估计量1ˆθ和2θ满足)ˆ()(21θθD D >,则称2ˆθ比1ˆθ三、计算题(每小题10分,共60分)1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=500050002,322121011B A ,问:A1-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-520125151051585000500021461351341B A2.线性方程组的增广矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----112313211151132212322213214242),,(x x x x x x x x x x f ++++=化为标准(C)⎩⎨⎧≤≤=其它,0π0,sin )(x x x f (D)⎪⎩⎪⎨⎧≤≤-=其它,0π2π,cos )(x x x f 7.设总体满足,又,其中是来自总体的个样品,则等式(B )成立. (A)nX E μ=)( (B)μ=)(X E (C)22)(n X D σ=(D)2)(σ=X D1.=⎥⎦⎤⎢⎣⎡-*02132.若λ是A 根.3.已知5.0)(,9.0)(==AB P A P ,则=-)(B A P4.0.4.设连续型随机变量X的密度函数是)(x f ,则<<)(b X a P5三、计算题(每小题10分,共60分)1.设矩阵⎥⎥⎥⎤⎢⎢⎢⎡--=101111001A ,求1)(-'A A即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡='-211110102)(1A A2.在线性方程组⎪⎩⎪⎨⎧=++-=+-=++153233232121321x x x x x x x x λλ中λ取何值时,此方程组有解.有解的情况下写出方程组的一般解.解:将方程组的增广矩阵化为阶梯形 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--λλλλ21110333032115323011321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→λλλλ2200011102101220001110321由此可知当1≠λ时方程组无解,当1=λ时方程组有解.此时方程组的一般解为⎩⎨⎧+-=--=113231x x x x 3.用配方法将二次型23322231212132162242),,(x x x x x x x x x x x x f +++-+=化为标准型,并求出所作的满秩变换. 解:23322231212132162242),,(x x x x x x x x x x x x f +++-+=232332223231212322217)96()4424(x x x x x x x x x x x x x x -+++--+++=2323223217)3()2(x x x x x x -++-+= 令333223211,3,2x y x x y x x x y =+=-+=即得2322213217),,(y y y x x x f -+= 由式解出321,,x x x ,即得⎪⎩⎪⎨⎧=-=+-=33322321135yx y y x y y y x 或写成。
工程数学》期末综合练习题
工程数学(本)课程考核说明
(修改稿)
I. 相关说明与实施要求本课程的考核对象是国家开放大学(中央广播电视大学)理工类开放教育专升本土木工程专业及水利水电工程专业的学生。
本课程的考核形式为形成性考核和期末考试相结合的方式。
考核成绩由形成性考核成绩和期末考试成绩两部分组成,考核成绩满分为100 分,60 分为及格。
其中形成性考核成绩占考核成绩的30%,期末考试成绩占考核成绩的70%。
形成性考核的内容及成绩的评定按《国家开放大学(中央广播电视大学)人才培养模式改革与开放教育试点工程数学形成性考核册》的规定执行。
工程数学(本)课程考核说明是根据《国家开放大学(中央广播电视大学)专升本“工程数学(本)”课程教学大纲》制定的,参考教材是《大学数学——线性代数》和《大学数学——概率论与数理统计》(李林曙主编,中央广播电视大学出版社出版)。
考核说明中的考核知识点与考核要求不得超出或超过课程教学大纲与参考教材的范围与要求。
本考核说明是工程数学(本)课程期末考试命题的依据。
工程数学(本)是国家开放大学(中央广播电视大学)专升本土木工程专业学生的一门重要的必修基础课,其全国统一的结业考试(期末考试)是一种目标参照性考试,考试合格者应达到普通高等学校理工类专业的本科水平。
因此,考试应具有较高的信度、效度和一定
的区分度。
试题应符合课程教学大纲的要求,体现广播电视大学培养应用型人才的特点。
考试旨在测试有关线性代数、概率论与数理统计的基础知识,必要的基础理论、基本的运算能力,以及运用所学基础知识和方法,分析和解决问题的能力。
期末考试的命题原则是在考核说明所规定的范围内命题,注意考核知识点的覆盖面,在此基础上突出重点。
考核要求分为三个不同层次:有关定义、定理、性质和特征等概念的内容由低到高分为“知道、了解、理解”三个层次;有关计算、解法、公式和法则等内容由低到高分为“会、掌握、熟练掌握”三个层次。
三个不同层次由低到高在期末试卷中的比例为:2:3:5 。
试题按其难度分为容易题、中等题和较难题,其分值在期末试卷中的比例为:4:4:2。
试题类型分为单项选择题、填空题和解答题。
单项选择题的形式为四选一,即在每题的四个备选答案中选出一个正确答案;填空题只要求直接填写结果,不必写出计算过程和推理过程;解答题包括计算题和证明题,求解解答题要求写出文字说明、演算步骤或推证过程。
三种题型分数的百分比为:单项选择题15%,填空题15%,解答题70%(其中证明题6%)。
期末考试采用半开卷笔试形式,卷面满分为100分,考试时间为90 分钟。
II. 考核内容和考核要求
考核内容分为线性代数、概率论与数理统计两个部分,包括行列式、矩阵、线性方程组、矩阵的特征值及二次型、随机事件与概率、随机变量的分布和数字特征、数理统计基础等方面的知识。
工程数学(本)2013秋模拟试题(一)
、单项选择题(每小题 3分,共15分)
1. A , B 都是n 阶矩阵(n .1),则下列命题正确的是(D )
A . AB=BA
B .若 AB =0,则 A =O 或 B =0 C. (A-B)2 = A 2 -2AB+B 2 D . AB = AB
B . 2 D . 4
人-1
3.设矩阵A 的特征多项式 卩1 - A= 0
0 0
0 九一2 0 ,贝U A 的特征值为(D ).
九一3
D . ,1 — 1 ,
・2=2 , ■'・3=3
B. 4D (X ) 9D (Y )
D. 2D (X ) 3D (Y )
二2未知,检验总体期望 」采用(A ).
B. U 检验法
D . F 检验法 二、填空题(每小题3分,共15分)
1 二
1 .设三阶矩阵 A 的行列式 A = 2,贝y A = ________ 2_ .
2.线性方程组 AX 二B 中的一般解的自由元的个数是 2,其中A 是4 5矩阵,则方程 组增广矩阵r (A B )=— 3
).
A . 1
C. 3
4.若随机变量 X 与Y 相互独立,则方差
D(2X -3Y)= ( B ). A . 4D(X)-9D(Y) C. 2D(X)-3D(Y) 5.已知总体X ~ N^\-2), A . t 检验法 C. x 2
检验法 2.向量组 的秩是。