合并同类项与移项第3课时导学案
- 格式:doc
- 大小:33.00 KB
- 文档页数:3
第3课时利用去括号解一元一次方程教学步骤师生活动教学目标课题 5.2 第3课时利用去括号解一元一次方程授课人素养目标 1.会解含有括号的一元一次方程.2.知道解方程的基本思路是把“复杂”转化为“简单”,把“未知”转化为“已知”的过程.教学重点利用去括号解一元一次方程.教学难点利用去括号解一元一次方程.教学活动教学步骤师生活动活动一:回顾旧知,引入新知设计意图为后面学习去括号解方程作准备.【知识回顾】1.在前面的课时我们学习了一元一次方程的解法,当中有哪几个步骤?移项、合并同类项、系数化为1.2.你能快速求出方程6x-7=4x-1的解吗?移项,得6x-4x=-1+7.合并同类项,得2x=6.系数化为1,得x=3.3.去括号:(1)(3a+2b)+(6a-4b);原式=3a+2b+6a-4b.(2)(-3a+2b)-3(a-b);原式=-3a+2b-3a+3b.(3)-(5a+4b)+2(-3a+b).原式=-5a-4b-6a+2b.今天我们将在以上知识的基础上学习新的解方程的方法.【教学建议】提醒学生注意:(1)移项时要变号.(2)去括号注意两点:①如果括号外的数是负数,去括号后,原括号内各项都要改变符号;②将括号前的乘数与括号内的式子相乘时,乘数应乘括号内的每一项,不要漏乘.活动二:交流讨论,探究新知设计意图继续强化根据实际问题建立方程模型的能力,并引出带有括号的一元一次方程,学会求其解探究点利用去括号解一元一次方程(教材P124问题3)某工厂采取节能措施,去年下半年与上半年相比,月平均用电量减少2000kW·h(千瓦时),全年的用电量是150000kW·h.这个工厂去年上半年平均每月的用电量是多少?问题1设去年上半年平均每月的用电量是xkW·h,请你根据题意说一说相等关系是怎样的?并列出方程.问题2我们前面学过了用移项、合并同类项的方法解一元一次方程,对于这个方程,如果要用我们前面学过的知识求解,你觉得需要先对方程作怎样的变形?将方程中的括号去掉.问题3请你结合去括号的知识,解这个方程.【教学建议】让学生对比本节课与上节课解方程的过程,体会其中增加的步骤.方程左边去括号,得6x+6x-12000=150000.移项,得6x+6x=150000+12000.合并同类项,得12x=162000.系数化为1,得x=13500.由上可知,这个工厂去年上半年平均每月的用电量是13500kW·h.【对应训练】教材P126练习第2题.活动三:巩固提升,灵活运用设计意图规范展现利用去括号解一元一次方程的过程.设计意图构建方程模型解决涉及顺、逆水的行程问题,并进一步展现去括号等解方程的步骤.例1(教材P125例5)解下列方程:(1)2x-(x+10)=5x+2(x-1);(2)3x-7(x-1)=3-2(x+3).解:(1)去括号,得2x-x-10=5x+2x-2.移项,得2x-x-5x-2x=-2+10.合并同类项,得-6x=8.系数化为1,得x=−43.(2)去括号,得3x-7x+7=3-2x-6.移项,得3x-7x+2x=3-6-7.合并同类项,得-2x=-10.系数化为1,得x=5.例2(教材P125例6)一艘船从甲码头到乙码头顺水而行,用了2h;从乙码头返回甲码头逆水而行,用了2.5h.已知水流的速度是3km/h,求船在静水中的平均速度.问题1这道题中哪一个量是不变的?这艘船往返的路程.问题2根据题意你能得出怎样的相等关系?顺水速度×顺水时间=逆水速度×逆水时间.问题3题中涉及顺水、逆水因素,这类问题中又有哪些基本相等关系?顺水速度=静水速度+水流速度.逆水速度=静水速度-水流速度.问题4根据前面的分析,求出船在静水中的平均速度.解:设船在静水中的平均速度为xkm/h,则顺水速度为(x+3)km/h,逆水速度为(x-3)km/h.根据往返路程相等,列得方程2(x+3)=2.5(x-3).去括号,得2x+6=2.5x-7.5.移项及合并同类项,得-0.5x=-13.5.系数化为1,得x=27.答:船在静水中的平均速度为27km/h.【对应训练】教材P126练习第1,3题.【教学建议】请两个学生上台板演,其他学生独立完成解方程,教师讲解正确的解题步骤,提醒学生注意去括号时符号的变化规律,以减少解方程中的运算错误.【教学建议】教学时,教师要引导学生知晓:(1)找到一个不变的量,这个不变的量能以不同式子表示,是列方程的核心.(2)在匀速运动中,“路程=速度×时间”是基本的相等关系.活动四:随堂训练,课堂总结【随堂训练】见《创优作业》“随堂小练”册子相应课时随堂训练.【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.解带括号的一元一次方程时,步骤有哪些?2.去括号时要注意什么?3.在行程问题中,涉及顺、逆水问题时,速度分别是怎样计算的?【知识结构】【作业布置】1.教材P130习题5.2第2,4(3),7,11,13题.2.《创优作业》主体本部分相应课时训练.板书设计第3课时利用去括号解一元一次方程1.利用去括号解一元一次方程2.涉及顺、逆水的行程问题教学反思1.注意去括号的符号问题:无论是整式中的去括号化简,还是解含括号的一元一次方程,去括号时的符号处理都是学生最容易犯错的地方.在教学过程中既要让学生了解去括号背后的原理,同时也要让学生进行一些必要的练习以巩固所学.2.突出列方程,结合实际问题讨论解方程:列方程和解方程是学习方程时的两个重点内容,一般的解法都较容易掌握,在每一个课时都需要注意在分析问题的数量关系的基础上,用数学的符号语言正确地表达.对于较难的问题,教师要加强对学生的引导,对每一个环节都进行具体的分析.解题大招利用方程同解求字母的值先求出其中一个不含字母参数的方程的解,再将其代入另一个方程,求出待求字母参数的值.例若关于x的方程x-3(kx+1)=8的解与方程2(x-2)+5=3x+2的解相同,求k的值.解:方程2(x-2)+5=3x+2,去括号,得2x-4+5=3x+2.移项,得2x-3x=2+4-5.合并同类项,得-x=1.系数化为1,得x=-1.把x=-1代入x-3(kx+1)=8,得-1-3(-k+1)=8.解得k=4.培优点根据几何图形面积构建方程模型例如图,长方形纸片的长是15cm,沿图中方式剪去两个宽为3cm的长条(阴影部分),剩下部分的面积是原长方形纸片面积的35.求原长方形纸片的面积.分析:设原长方形纸片的宽为xcm,再列式表示剪完后剩下部分的相邻两边的长,再根据面积关系建立方程求解.解:设原长方形纸片的宽是xcm,则它的面积是15xcm2.剪去两个宽为3cm的长条后,剩下部分也是一个长方形,长为15-3=12(cm),宽为(x-3)cm,面积是12(x-3)cm2.根据题意,得=12(x-3).15x×35即9x=12(x-3).解得x=12.则原长方形纸片的面积是15×12=180(cm2).。
教案反思一元一次方程的解法是在学生已经具备了代数初步知识、系统学习了整式加减的基础上安排的,是对整式运算的进一步深化和认识。
本节课是在教授了一元一次方程解法第一课时因此尤为重要。
同时着力培养学生积极思维的优良品格,逐步形成具体问题具体分析的哲学思想,养成正确思考,善于思考的良好习惯,从而提高分析问题,解决问题的能力。
教学过程方程的有关概念1.方程:含有未知数的等式就叫做方程.2. 一元一次方程:只含有一个未知数(元)x ,未知数x 的指数都是1(次),这样的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x )=5等都是一元一次方程.3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.等式的性质等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.用式子形式表示为:如果a=b ,那么a±c=b±c等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,用式子形式表示为:如果a=b ,那么ac=bc;如果a=b(c≠0),那么a c =b c合并同类项法则:把同类项的系数相加,所得的结果作为系数,字母和字母指数保持不变。
移项法则:把等式一边的某项变号后移到另一边,叫做移项.新课例1.某校三年级共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?分析:设前年这个学校购买了x 台计算机,已知去年购买数量是前年的2倍,那么去年购买___台,又知今年购买数量是去年的2倍,则今年购买了______(即____)台;题目中的相等关系为:三年共购买计算机140台,即前年购买量+去年购买量+今年购买量=140列方程:_____________如何解这个方程呢?根据分配律,x+2x+4x=(______)x=7x ;这样就可以把含x 的项合并为一项,合并时要注意x 的系数是1,不是0;下面的框图表示了解这个方程的具体过程:x+2x+4x=140↓合并同类项7x=140↓系数化为1x=20由上可知,前年这个学校购买了20台计算机.上面解方程中“合并”起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax=b 的形式,其中a 、b 是常数.练习:1.合并:x+3x-6x,z+0.5z-1.8z,5y+4y-y2.解方程:5x-2x=9 -3x+0.5x=10例2.某班学生共60人,外出参加种树活动,根据任务的不同,要分成三个小组且使甲、乙、丙三个小组人数之比是2:3:5,求各小组人数.思路:这里甲、乙、丙三个小组人数之比是2:3:5,就是说把总数60•人分成___份,甲组人数占___份,乙组人数占___份,丙组人数占___份,如果知道每一份是多少,•那么甲、乙、丙各组人数都可以求得,所以本题应设每一份为x人.关键:本题中相等关系是什么?_____________________________________.解:设每一份为x人,则甲组人数为__人,乙组人数为___人,丙组为___人,•列方程:_______________合并,得________系数化为1,得x=___所以2x=____,3x=_____,5x=______答:甲组_____人,乙组___人,丙组______人.请同学们检验一下,答案是否合理,即这三组人数的比是否是2:3:5,•且这三组人数之和是否等于60;【要点归纳】:列一元一次方程解决实际问题的一般步骤中,找等量关系是关键也是难点,本节课的两个问题的相等关系都是:“各部分量的和=总量”;这是一个基本的相等关系;合并就是把类型相同的项系数相加合并为一项,也就是逆用乘法分配律,合并时,注意x或-x的系数分别是1,-1,而不是0;例3.足球的表面是由若干个黑色五边形和白色六边形皮块围成的,黑白皮块的数目比为3:5,一个足球的表面一共有32个皮块,黑色皮块和白色皮块各有多少?解:设每份为_____个,则黑色皮块有_____个,白色皮块有_______个列方程_________合并,得_________系数化为1,得x=_____黑色皮块为___×___=____(个),白色皮块有____×___=____(个)例4. 某学生读一本书,第一天读了全书的三分之一多2页,第二天读了全书的二分之一少1页,还剩23页没读,问全书共有多少页?解:设全书共有____页,那么第一天读了()页,第二天读了()页.本问题的相等关系是:_____________+_______________+_____________=全书页数;列方程:_______________________。
解一元一次方程(一)——合并同类项与移项(第3课时)教学目标1.通过分析实际问题中的数量关系,能够建立方程解决问题.2.熟练掌握利用合并同类项与移项解一元一次方程的方法,体会化归思想.教学重点会利用合并同类项与移项的方法解一元一次方程.教学难点能够通过题干分析出“总量和分量关系问题”和“盈不足问题”中的相等关系,并建立方程解决问题.教学过程知识回顾1.利用合并同类项解方程.将一元一次方程同侧的含有未知数的项与常数项分别合并,使方程转化为mx=n (m≠0)的简单形式,从而更接近x=a(常数)的形式,便于求解.一般步骤:(1)合并同类项;(2)系数化为1.2.利用移项解方程.将含有未知数的项移到方程的一边,将不含未知数的常数项移到方程的另一边,使方程更接近于mx=n(m≠0)的形式.一般步骤:(1)移项;(2)合并同类项;(3)系数化为1.3.列方程解应用题的步骤.(1)审题勾画关键词,找出相等关系;(2)表示相等关系;(3)设未知数,列方程;(4)解方程、检验,并答题.本节课,我们将学习一元一次方程的简单应用.新知探究类型一、利用合并同类项解方程【问题】1.利用合并同类项解下列方程:(1)6x-4x=17-5;(2)-9x+2x-4x=50-2-4.【答案】解:(1)合并同类项,得2x=12.系数化为1,得x=6.(2)合并同类项,得-11x=44.系数化为1,得x=-4.【师生活动】教师提问:根据上面例题,请同学们尝试归纳利用合并同类项解方程时的注意事项.学生尝试总结,教师补充.【归纳】(1)把方程中的同类项合并时,要牢记合并同类项的法则:同类项的系数相加,字母连同它的指数不变.(2)在系数化为1时,特别注意系数是负数时,符号不要出错.【设计意图】通过例题讲解,让学生掌握如何利用合并同类项解方程.例题之后,进行总结归纳,加深学生对所学知识的理解及应用.类型二、利用移项解方程【问题】2.利用移项解下列方程:(1)5x-4=-7x+8;(2)6-8x=3x+3-5x.【答案】解:(1)移项,得5x+7x=4+8.合并同类项,得12x=12.系数化为1,得x=1.(2)移项,得-8x-3x+5x=-6+3.合并同类项,得-6x=-3.系数化为1,得12x .【师生活动】教师提问:通过例题练习,你能发现利用移项解方程时的易错点吗?学生回答:移项时容易忘记变号.教师补充,学生尝试总结归纳.【归纳】(1)方程中的项包括它前面的符号;(2)在解方程时,习惯上把含有未知数的项移到等号的左边,不含有未知数的项移到等号的右边;(3)移项时一定要变号.【设计意图】通过例题讲解,让学生掌握如何利用移项解方程.例题之后,进行总结归纳,加深学生对所学知识的理解及应用.类型三、列方程解应用题【问题】3.在植树节期间,学校开展了植树活动.七年级三个班共植树100棵,其中一班植树的棵数比二班植树的棵数多4棵,三班植树的棵数比二班植树棵数的2倍少4棵,求三个班各植树多少棵.【师生活动】教师提问:问题中涉及了哪些量?这些量之间有怎样的关系?学生回答:(1)一班植树的棵数,二班植树的棵数,三班植树的棵数;(2)总棵数=一班植树的棵数+二班植树的棵数+三班植树的棵数.教师总结:在列方程时,“总量=各部分量的和”是一个基本的相等关系.【分析】题中已知一班、三班植树的棵数分别与二班植树的棵数的关系,所以可以考虑设二班植树x棵.【答案】解:设二班植树x棵,则一班植树(x+4)棵,三班植树(2x-4)棵.根据题意,得x+x+4+2x-4=100.合并同类项,得4x=100.系数化为1,得x=25.所以x+4=29,2x-4=46.答:一班植树29棵,二班植树25棵,三班植树46棵.【归纳】根据“总量=各部分量的和”解决问题的四个步骤:第1步:弄清楚总量包括哪几部分量,并设出未知数;第2步:根据“总量=各部分量的和”列出方程;第3步:解方程求出所设未知数;第4步:求出其余各部分量,并作答.【问题】4.已知一列火车匀速驶过一条隧道,从车头进入隧道到车尾离开隧道共用45 s,而整列火车全在隧道内的时间为33 s,且火车的长度为180 m,求隧道的长度和火车的速度.【师生活动】教师提问:隧道的长度有几种表示方法?学生回答:(1)若火车的速度为x m/s,火车匀速驶过隧道,从车头进入隧道到车尾离开隧道是45x m,减去火车的长度180 m,得隧道的长度为(45x-180)m;(2)若火车的速度为x m/s,整列火车全在隧道内行驶了33x m,加上两个火车的长度(180×2) m,得隧道的长度为(33x+180×2)m.教师追问:本题哪个相等关系可作为列方程的依据呢?学生回答:两种表示方式表示的隧道的长度是相同的.教师总结:“表示同一个量的两个不同的式子相等”是一个基本的相等关系.【答案】解:设火车的速度为x m/s.根据题意,得45x-180=33x+180×2.移项,得45x-33x=180+360.合并同类项,得12x=540.系数化为1,得x=45.45×45-180=1 845(m).答:隧道的长度为1 845 m,火车的速度为45 m/s.【归纳】根据“表示同一个量的两个不同的式子相等”解决问题的四个步骤第1步:找出应用题中贯彻始终的一个不变的量;第2步:用两个不同的式子表示出这个量;第3步:由“表示同一个量的两个不同式子相等”列出方程;第4步:解方程,求出答案并作答.【设计意图】通过问题3、问题4的分析与讲解,加深学生对这两种应用题解题方法的认识,在遇到相对应题型时可以准确迅速地找出相等关系,从而列出方程解决问题.课堂小结板书设计一、利用合并同类项解一元一次方程二、利用移项解一元一次方程三、列方程解应用题课后任务完成教材第91页习题3.2第1,3,6,11题.。
人教版七年级数学上册:3.2《解一元一次方程(一)——合并同类项与移项》说课稿3一. 教材分析《人教版七年级数学上册:3.2《解一元一次方程(一)——合并同类项与移项》》是学生在学习了方程概念和一元一次方程的解法的基础上,进一步深化对一元一次方程的理解和应用。
这一节内容主要介绍了合并同类项和移项的方法,这是解一元一次方程的基础。
通过合并同类项和移项,学生可以更灵活地操作方程,从而更好地解决实际问题。
教材通过丰富的例题和练习题,帮助学生掌握这一技能。
二. 学情分析七年级的学生已经具备了一定的数学基础,对一元一次方程有了初步的了解。
但是,他们在解决实际问题时,可能会遇到难以将实际问题转化为方程,或者在操作方程时出现错误。
因此,在教学过程中,我需要引导学生将实际问题转化为方程,并通过合并同类项和移项的方法操作方程,从而解决问题。
三. 说教学目标1.知识与技能:学生能理解合并同类项和移项的概念,掌握合并同类项和移项的方法,并能运用到实际问题中。
2.过程与方法:通过自主学习、合作交流,培养学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的耐心和细心。
四. 说教学重难点1.教学重点:合并同类项和移项的方法。
2.教学难点:如何将实际问题转化为方程,并运用合并同类项和移项的方法解决问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作法等。
2.教学手段:利用多媒体课件、黑板、粉笔等。
六. 说教学过程1.导入:通过一个实际问题,引导学生思考如何将实际问题转化为方程,激发学生的学习兴趣。
2.讲解:讲解合并同类项和移项的概念和方法,通过例题展示如何运用合并同类项和移项的方法解决问题。
3.练习:学生独立完成练习题,巩固所学知识。
4.应用:学生分组讨论,运用合并同类项和移项的方法解决实际问题。
5.总结:对本节课的内容进行总结,强调合并同类项和移项在解一元一次方程中的重要性。
解一元一次方程〔一〕——合并同类项和移项第三课时〔张永丽〕一、教学目标〔一〕学习目标1.理解移项法那么,会解形如d+的方程,体会等式变形中的化归思想.=cxax+b2.能够从实际问题中列出一元一次方程,进一步体会方程模型思想的作用及应用价值. 〔二〕学习重点理解移项法那么,会解形如d=ax++的方程,体会等式变形中的化归思想.bcx〔三〕学习难点能够从实际问题中列出一元一次方程,进一步体会方程模型思想的作用及应用价值.二、教学设计〔一〕课前设计〔1〕将方程中的某些项改变符号后,从方程的一边移到另一边的变形叫做移项.〔2〕移项的目的是把含有未知数的项放在方程的一边,把常数项放在方程的另一边.〔3〕移项的关键是改变符号,移动的项改变符号,没有移动的项不改变符号.〔1〕由方程43+2-xx,这种变形的根据是〔〕4=-523-=-xx变形5A.合并同类项;B.乘法分配律;C.等式的性质1;D.等式的性质2 .【知识点】等式的性质.【解题过程】解:由前后的变形可知,方程左右两边同时减去了x2,同时加上了5,根据等式的性质,在等式两边同时加上或减去同一个数或者式子,等式仍成立,所以变形的依据是等式的性质1.应选择C.【思路点拨】根据等式的性质对方程进展恒等变形.【答案】C.〔2〕以下变形错误的选项是〔〕1x得2-x3+=5x-x=2x得7+3+7==5-2x12+3+2=1-x得1-x=+2=3=4-34+3-x43x得x4x3【知识点】移项的法那么.【解题过程】解:A.由5=x根据移项的法那么,把等式一边的某项变号后移5-x得7+7=到另一边,正确. B .由1223+=-x x 得2123+=-x x 根据移项的法那么,把等式一边的某项变号后移到另一边,正确. C .由3434-=-x x 得x x 3434+=+ 根据移项的法那么,把等式一边的某项变号后移到另一边,正确. D .由312=+-x 得132=+-x 根据移项的法那么,把等式一边的某项变号后移到另一边,故变形错误.【思路点拨】根据移项的法那么,把等式一边的某项变号后移到另一边,变号是一个易错点.【答案】D.〔3〕解方程x x -=-324,正确的顺序是 ( )①合并同类项,得55=x ;②移项,得234+=+x x ;③系数化为1,得1=x .A.①②③B.①③②C.②①③D.③①②【知识点】移项解一元一次方程.【解题过程】解方程就是把方程转化为a x =形式得过程,从题目可知应该先移项、再合并同类项、进而系数化为1.【思路点拨】“移项〞使方程中含x 的项归到方程的同一边〔左边〕,不含x 的项即常数项归到方程的另一边〔右边〕,这样就可以通过“合并〞把方程转化为a x =形式.【答案】C.〔4〕解方程:3541xx +=+. 【知识点】移项解方程.【解题过程】解:移项:3415x x -=-;合并同类项:4x -=-;系数化为1:4x =; 故答案为:4x =.【思路点拨】解方程时,将含未知数x x 的系数相加减,再根据等式的根本性质解题,注意移项要改变符号.【答案】4x =.〔二〕课堂设计〔1〕运用方程解决实际问题的步骤是什么?〔2〕解方程:10252=+x x .探究一 实际问题探究新知活动 :问题:把一些图书分给某班学生阅读,如果每人分3本,那么剩余20本;如果每人分4本,那么还缺25本,这个班有多少学生?分析:设这个班有x名学生,根据第一种分法,分析量和未知量间的关系.师问:每人分3本,那么共分出多少本?生答:x3本师问:共分出x3本和剩余的20本,可知道什么?生答:这批图书的总量〔320x+〕本师问:每人分4本,那么需要分出多少本?生答:x4本师问:需要分出x4本和还缺少25本那么这批书共有多少本?生答:〔425x-〕本师问:这批书的总数有几种表示法?它们之间有什么关系?此题哪个相等关系可以作为列方程的依据?生答:两种分别是〔320x-〕本,相等,依据这批图书的总量不变.x+〕本和〔425师追问:还可以怎么列方程?你抓的什么量不变建立的方程?生答:学生思考并举手答复.总结:这个实际问题有两个不变的量,一个是图书的总量不变,另一个是学生人数不变,用其中一个不变量表示数量关系,那么另一个不变量作为等量关系建立方程.【设计意图】注意变化中的不变量,寻找隐含的相等关系,从此题列方程的过程,可以发现:“表示同一个量的两个不同式子相等〞.探究二解dax++=bcx活动师问:方程25+xx的两边都含有x的项〔x3与x4〕,也都含有不含字母的常数项〔20 =3-420与-25〕怎样才能使它转化为ax=〔常数〕的形式呢?生答:需要先移项,再合并同类项和系数化为1.总结:像上面那样,把等式一边的某项变号后移到另一边,叫做移项.下面的框图表示了解这个方程的具体过程.+=-x x320425↓移项↓合并↓系数化为1由此可知这个班共有45个学生.师问:上面解方程中“移项〞起了什么作用?依据是什么?生答:把含未知数的项和常数项分别写在方程的两边,便于合并同类项把方程转化为a x =形式,依据等式的性质1.师问:在解方程时,什么时候要移项,移哪些项,目的是什么?生答:未知项和项没有分别在方程的两边时就要移项,使方程中含x 的项归到方程的同一边〔左边〕,不含x 的项即常数项归到方程的另一边〔右边〕,这样就可以通过“合并〞把方程转化为a x =形式.师问:移项需要注意什么?没有移项需要注意什么?生答:移项要注意改变项的符号,没有移的项不能改变符号.师问:移项解方程的步骤是什么?生答:〔1〕移项;〔2〕合并同类项;〔3〕系数化为1.总结:“移项〞使方程中含x 的项归到方程的同一边〔左边〕,不含x 的项即常数项归到方程的另一边〔右边〕,这样就可以通过“合并〞把方程转化为a x =形式.在移项的过程中注意符号的变化.【设计意图】通过师生的互动,让学生理解移项解方程的作用和必要性,弄清移项时符号的改变,渗透了数学化归思想.活动②师问:如果把上面的问题2的条件不变,“这个班有多少学生〞改为“这批书有多少本?〞你会解吗?试试看.生答:从原问题的解答中,已求的这个班有45个学生,只要把45=x •代入203+x 〔或254-x 〕就可以求得这批书的总数为:3×45+20=135+20=155〔本〕师问:如果不先求学生数,直接设这批书共有x 本,又如何列方程?这时该用哪个“相等关系〞列方程呢?生答:这批书共有x 本,余下20本,共分出()20-x 本,每人分3本,可以分给320-x 人,即这个班共有203x -人;这批书有x 本,每人分4本,还缺少25本,共需要()25+x 本,可以分给254x +人,•即这个班共有254x +人.这个班的人数是一个定值,表示它的两个式子应相等,根据这个相等关系列方程. 425320+=-x x 师问:你会解这个方程吗?生答:学生独立解题,抽1-2人板书即42543203+=-x x 移项,得32042543+=-x x 合并,得1215512=x 系数化为1,得155=x .答:这批书共有155本.【设计意图】通过对同一个问题不同的解法,培养学生分析问题,解决问题的思维能力, 探究三 解一元一次方程活动例1:解以下方程:〔1〕x x 23273-=+; 〔2〕1233+=-x x . 【知识点】解一元一次方程.【解题过程】解:〔1〕移项,得:73223-=+x x合并同类项,得:255=x系数化为1,得:5=x .〔2〕移项,得:3123+=-x x 合并同类项,得:421=-x 系数化为1,得:8-=x .【思路点拨】“移项〞使方程中含x 的项归到方程的同一边〔左边〕,不含x 的项即常数项归到方程的另一边〔右边〕,这样就可以通过“合并〞把方程转化为x a =形式.在移项的过程中注意符号的变化.【答案】〔1〕5=x ;〔2〕8-=x .练习:解以下方程:〔1〕5476-=-x x ; 〔2〕x x 43621=-. 【知识点】解一元一次方程.【解题过程】解:〔1〕移项,得:7546+-=-x x合并同类项,得:22=x系数化为1,得:1=x .〔2〕移项,得:64321=-x x 合并同类项,得:641=-x 系数化为1,得:24-=x .【思路点拨】“移项〞使方程中含x 的项归到方程的同一边〔左边〕,不含x 的项即常数项归到方程的另一边〔右边〕,这样就可以通过“合并〞把方程转化为x a =形式.在移项的过程中注意符号的变化.【答案】〔1〕1=x ;〔2〕24-=x .【设计意图】通过练习,让学生进一步稳固解一元一次方程的根本步骤,特别强调移项时符号的变化.活动②例2. 以下变形过程中,属于移项的是〔 〕A .由13-=x ,得31-=xB .由14=x ,得4=x C .由053=+x ,得53-=x D .由033=+-x ,得033=-x【知识点】移项的概念及法那么.【解题过程】解:A.由13-=x ,得31-=x 方程两边同时除以了3,是系数化为1,不是移项. 14=x ,得4=x 方程两边同时乘以了4,是系数化为1,不是移项. 053=+x ,得53-=x 根据移项的法那么,把等式一边的某项变号后移到另一边,正确. 033=+-x ,得033=-x 利用加法交换律对方程进展了变形,故不正确.【思路点拨】根据移项的法那么,把等式一边的某项变号后移到另一边,变号是一个易错点.【答案】C.练习:解方程8263-=+x x ,移项正确的选项是〔 〕A.8623-=+x x ;B.6823+-=-x x ;C.8623--=-x x ;D.6823-=-x x .【知识点】移项的概念及法那么.【解题过程】移项:8623--=-x x ,应选C.【思路点拨】根据移项的法那么,把等式一边的某项变号后移到另一边,x2从方程的右边移到了方程的左边,所以需改变符号,6从方程的左边移到方程的右边也需改变符号,所以变形后可得:8-x=x.263--【答案】C.【设计意图】通过练习进一步体会移项法那么,正确的利用移项法那么对方程进展恒等变形.3.课堂总结知识梳理〔1〕移项:将方程中的某些项改变符号后,从方程的一边移到另一边的变形叫做移项.①移项的目的是把含有未知数的项放在方程的一边,把常数项放在方程的另一边.②移项的关键是改变位置,移动的项改变符号,没有移动的项不改变符号.③移项的依据是等式的性质1.〔2〕解形如d+类型的方程:①移项;②合并同类项;③系数化为1.=bcxax+重难点归纳:〔1〕将方程中的某些项改变符号后,从方程的一边移到另一边的变形叫做移项.〔2〕解形如d=ax++类型的方程的一般步骤:移项、合并同类项、系数化为1.cxb〔三〕课后作业根底型自主突破2+=y,这种变形叫,根据是.7-y=762+-yy变形为6【知识点】移项.【解题过程】解:72+=-yy,根据等式的性质1.7y,移项得:62+6=-y故答案为:移项,等式根本性质1.【思路点拨】根据等式的根本性质,等式的两边都减去y,再等式的两边都加上6,即可得出6y,即可得出答案.=-y72+【答案】移项,等式根本性质1.列变形属于移项的是〔〕2x13=+x,得1x;5=3=+x-x25223=2+xx,得5-()3x,得3-12=3x,得59-=+x.-2-2==x359-【知识点】移项.5223=-+x x ,移项得:2523-=-x x 123=+x x ,合并得:15=x ()312=-x ,去括号得:322=-x 359-=+x ,移项得:539--=x ,本选项正确.应选D【思路点拨】根据解一元一次方程时,将未知项移到左边,常数项移到右边,且移项要变号,判断即可得到结果.【答案】D .2a 与392-a 互为相反数,求a 的值. 【知识点】解一元一次方程.【解题过程】解:∵2a 与392-a 互为相反数,∴29023a a -+=,解得:718=a ,故a 的值为718. 【思路点拨】根据互为相反数的两数和为0列出方程求解即可. 【答案】718. 4.超市店庆促销,某种书包原价每个x 元,第一次降价打“八折〞,第二次降价每个又减10元,经两次降价后售价为90元,那么得到方程〔 〕A.90108.0=-x ;B.901008.0=-x ;C.108.090=-x ;D.90108.0=--x x .【知识点】列方程解应用题.【解题过程】解:设某种书包原价每个x 元,可得:90108.0=-x ,应选A.【思路点拨】设某种书包原价每个x 元,根据题意列出方程解答即可.【答案】A .5.如果1225+m b a 与3221+-m b a 是同类项,那么m = . 【知识点】解一元一次方程.【解题过程】解:由同类项的定义可知,312+=+m m ,解这个方程得:2=m .故填2.【思路点拨】此题是一道同类项与方程组的综合试题,通过同类项的一样字母的次数相等,可以得到方程组,然后求解方程组即可求出m 的值.【答案】2.能力型 师生共研1.解方程:1235-=x x【知识点】解一元一次方程.【解题过程】解:移项合并得:122-=x ,解得:6-=x .【思路点拨】移项合并,把x 系数化为1,即可求出解.【答案】6-=x .2.解方程:8725+=-x x .【知识点】解一元一次方程.【解题过程】解:移项得:2875+=-x x ,合并同类项得:102=-x ,方程两边同除以﹣2得:5-=x .【思路点拨】此题应先对方程进展移项,然后合并同类项,最前方程两边同时除以x 的系数,即可解出x 的值.【答案】5-=x .探究型 多维突破1.近年来,A 市民用汽车拥有量持续增长,2021年至此2021年该市民用汽车拥有量〔单位:万辆〕依次为11,13,15,19,x ,假设这五个数的平均数为16,那么=x .【知识点】解一元一次方程.【解题过程】解:由题可列:51619151311⨯=++++x ,合并同类项,得:8058=+x , 移项,得:22=x【思路点拨】根据平均数的定义列方程即可.【答案】22=x2.某公路一侧原有路灯106盏,相邻两盏灯的距离为36米,为节约用电,现方案全部更换为新型节能灯,且相邻两盏灯的距离变为54米,那么需要更换新型节能灯多少盏?【知识点】列方程解应用题.【解题过程】解:设需要更换新型节能灯x ()()110636154-⨯=-x解得:71=x ,答:需要更换新型节能灯71盏.【思路点拨】根据题意公路的长度不变作为等量关系列方程即可.【答案】需要更换新型节能灯71盏.自助餐1253--=+x x 的过程中,移项正确的选项是〔 〕A .5123+-=-x xB .1523-=--x xC .5123--=+x xD .5123--=--x x【知识点】移项.【解题过程】解:解:原方程移项得:5123--=+x x .应选C .【思路点拨】根据移项法那么进展移项即可,注意符号的变化.【答案】C.2.通过移项将方程变形,错误的选项是〔 〕A .由432--=-x x ,得342+-=-x xB .由 722-=+x x ,得722--=-x xC .由625-=-y ,得45-=yD .由x x 423-=+,得15-=x【知识点】移项.【解题过程】解:由432--=-x x ,得:342+-=+x x 故A 错误;B .由 722-=+x x ,得722--=-x x ,故正确;C .由625-=-y ,得45-=y ,故正确;D .由x x 423-=+,得324-=+x x ,合并,得:15-=x 故正确.【思路点拨】根据移项法那么进展移项即可,注意符号的变化.【答案】A.2312+=-x x 的解为 .【知识点】解一元一次方程.【解题过程】解:移项,得:1232+=-x x ;合并同类项,得:3=-x ;系数化为1,得:3-=x . 应选3-=x .【思路点拨】根据移项法那么进展移项即可,注意符号的变化.【答案】3-=x .253232+=-y y 的解是 . 【知识点】解一元一次方程. 【解题过程】解:移项,得:225323-=--y y ;合并同类项,得:2129=-y ;系数化为1,得:91-=y . 【思路点拨】根据移项法那么进展移项即可,注意符号的变化. 【答案】91-=y 5.解方程:〔1〕23312+-=-x x ; 〔2〕931384-=+--x x x . 【知识点】解一元一次方程.【解题过程】解:(1)移项,得:31232+=+x x ;合并同类项,得:3737=x ;系数化为1,得:1=x ..下载后可自行编辑修改,页脚下载后可删除。
3.2 解一元一次方程(一)—合并同类项与移项(3)七 年级备课人: 审核: 审批: 班级:____________ 姓名:____________ 时间: 年 月导学目标知识点:1、领悟列方程解应用题的一般方法及步骤.2、学会依据数中包含的规律列方程解决求数的问题.课时:1课时导学方法:启发式教学导学过程:一、课前导学:1、已学过的解方程的步骤是什么?依据分别是什么?2、解方程:(1)5476-=-x x (2)x x 43621=-二、课堂导学:问题:有一列数,按一定规律排列:1,-3,9,-27,81,-243……,其中某三个相邻数的和是-1701,这三个数各是多少?观察:从符号和绝对值两方面观察,这列数有什么规律?如果设其中一个为x ,那么它后面与它相邻的数是__________.师生共析:设这三个相邻数中的第一个数为x ,那么第二个数就是__________,第三个数就是__________,本题哪个相等关系可作为列方程的依据?方程:______________________________________________________________________ 解方程:____________________________________________________________________思考:你还有自己独特的解法吗? 三、教师引导、学生自我小结: 四、课堂练习: 1、如图的日历中,任意圈出一列上下相邻的三个 日 一 二 三 四 五 六 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 2627 28 29 30 31数,其中某列上下相邻三个数之和是60,这三个数是多少?观察:任意圈出一列上下相邻的三个数,你有什么发现?思考:如何设未知数列方程?规律技巧:__________________________________________________________________ 2、三个连续自然数和是24,则这三个数分别是多少?五、课外练习1、明明说:我参加科技夏令营,外出一个星期,这七天的日期之和是84,你知道我是几号出去的?2、斌斌说:我假期去北京玩了7天,日期数的和再加上月份数也是84,你猜我是几号回家的?3、有人问小明的生日是几号,小明说:“我的生日连同上、下、左、右5个日期之和为21.”可这个人说小明在撒谎,他是怎么知道的?请分析原因?课后反思:小组评价:教师评价:。
七年级数学 主备: 审核: 班级: 姓名: 2013.11.253.2解一元一次方程(一)合并同类项与移项导学案(课时三) 【学习目标】1.进一步体会用一元一次方程解决实际问题的基本过程,巩固通过移项、合并解一元一次方程;会设未知数,并利用问题中的相等关系列方程,且正确求解。
初步掌握用方程解决实际问题的基本过程.2.学习将实际问题转化为数学问题,感悟数学建模思想,体会数学的应用价值;3..通过学习使学生更加关注生活,增强用数学的意识,激发学习数学的热情。
【重点难点】重点:会用一元一次方程解决实际问题。
难点:将实际问题转化为数学问题,通过列方程解决问题 学习过程 一、复习旧知 解下列方程:(1) (2)二、自主探究活动1:一种混凝土中,水泥,黄沙,石子的配比是1:2:3,现有混凝土1000kg ,则水泥,黄沙,石子各有多少kg? 如何寻找规律?算术方法如何做?你会列方程解吗?怎样设未知数?根据以上问题的解决过程,你能从中发现什么? 用一元一次方程解决实际问题的一般过程:解:1.设 2.列 3.解 4.检 5.答 三、合作交流例4:某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200 t ;如用新工艺,则废水排量要比环保限制的最大量少100 t.新、旧工艺的废水排量之比为2 :5,两种工艺的废水排量各是多少?思考:1.本题的等量关系是 2.如何设未知数,列方程? 解:你还能从不同的角度提出问题吗?四、能力提升1.王芳和李丽同时采摘樱桃,王芳平均每小时采摘8 kg ,李丽平均每小时采摘7kg.采摘结束后王芳从她采摘的樱桃中取出0.25 kg 给了李丽,这时两人的樱桃一样多.她们采摘用了多少时间? 解:2.几个人共同种一批树苗,如果每人种10课,则剩下6棵树苗未种,如果每人种12棵,则缺6棵树苗,求参与种树的人数。
五、当堂检测1.用火车运送一批货物,如果每节车厢装34吨,还有18吨装不下;如果每节多装4吨,那么还可以多装26吨,问共有几节火车车厢?2.用一根长60m 的绳子围出一个长方形,使它的长是宽的1.5倍,长和宽各应是多少?3.小新出生时父亲28岁,现在父亲的年龄是小新年龄的3倍,求现在小新的年龄。
合并同类项与移项第3课时导学案
一、新课导入
1.导入课题:
上节课,我们研究了像含有未知数的项在等号一边,常数项在等号另一边的方程怎样求解,如果等号两边都有含有未知项和常数项,那么这样的方程该怎样求解呢?这节课我们继续学习解一元一次方程的方法——移项。
2.目标展示:
(1)会根据实际问题列方程;
(2)会用移项的方法解一元一次方程并理解其根据。
3.学习重、难点:
重点:运用移项的方法解一元一次方程。
难点:理解移项的含义及为什么要变号。
二、分层学习
第一层次学习
1. 自学指导:
(1)自学内容:课本第88页问题2至“思考”前的内容.
(2)自学时间:5分钟.
(3)自学方法:认真看课本,重点和疑点地方做上记号;然后结合自学参考提纲进行看书学习。
(4)自学参考提纲:
在问题2中:
①如果设这个班有学生x 人,每人分3本,共分出了 _本,加上剩余的20本,这批书共 本.每人分4本,需要 本,减去缺少的25本,这批书共 本.
②这批书的总数有几种表示方法?它们之间有什么关系?
③本题哪个相等关系可作为列方程的依据呢?
④观察方程,交流一下:这个方程有什么特点?应如何将它化为“x a =”的形式。
2.自学:学生结合自学指导进行自学.
3.助学:
师助生:
(1)明了学情:教师深入课堂了解学生在自学中存在的问题,掌握学习动向和学生认识的误区。
(2)差异指导:对自学方法不当和疑点较多的学生要求其与别人交流,教师适时点拔引导。
生助生:生生互动交流
4.强化:如何用不同的式子表示同一个量。
表示同一个量的两个式子具有相等关系,这是列方程的依据。
第二层次学习
1. 自学指导
(1)自学内容:课本第88页思考至89页例3之前的内容.
(2)自学时间:5分钟.
(3)自学方法:认真思考课本中“思考”提出的问题及下面介绍的解一元一次方程的过程,认真体验方法、步骤和依据。
(4)自学参考提纲:
①思考:方程3x+20=4x-25的两边都有含 x 的项(3x 与4x)和不含字母的常数项(20与-25),怎样才能使它向x=a(常数)的形式转化呢?
②观察:
上述演变过程中,方程的哪些项改变了在原方程中的位置?为什么要这样变位置?
③改变位置的项有什么变化?
④归纳:把等式一边的某项 ,叫移项。
⑤下列变形是否正确?为什么?
)5x 3x 323x 5x 23a -=-+⇒-=-+)32233232b x x x x -=-⇒+=--
2.自学:学生可结合自学指导进行自学。
3.助学:
师助生:
(1)明了学情:教师深入课堂巡视,了解学生在自学中存在的问题。
(2)差异指导:对学习方法不当和阅读理解出现错误的学生进行点拔引导或让其它学生帮助分析纠正错误。
生助生:生生互动交流。
4.强化:
(1)总结交流:
①移项的概念及方法;
②移项的根据;
③移项的作用;
④移项要注意的问题.
(2)练习:
1)下面的移项对不对?如果不对,错在哪里?应当怎样改正?
①从7+x=13.得到x=13+7
②从5x=4x+8,得到5x-4x=8
③从3x+5=-2x-8,得到3x+2x=8-5
2)解下列方程,并口算检验:
①2.4x-2=2x ②3x+1=-2
③10x-3=7x+3 ④8-5x=x+2
(3)思考:移项的根据是什么?上面解方程中“移项”起了什么作用?
三、评价:
1.学生的自我评价(围绕三维目标):让学生交流自己在学习时的态度、方法和得失。
2.教师对学生的评价:
(1)表现性评价:对学生在学习过程的积极主动的态度和合作交流的学习方法加以总结。
(2)纸笔评价:课堂评价检测
3.教师的自我评价(教学反思):结合学习效果,反思教学得失。