指数与对数函数复习课
- 格式:ppt
- 大小:148.00 KB
- 文档页数:11
高中数学总复习对数和指数函数复习内容:高中数学第三章【复习目标】1. 理解对数的意义,会熟练的将指数式与对数式互化,掌握积、商、幂的对数运算性质换底公式; 2. 理解反函数的概念,会求已知函数的反函数,掌握函数与它的反函数在定义域、值域及图像上的关系;3. 理解指数函数和对数函数的要领,掌握指数函数和对数函数的图像和性质,掌握指数函数和对数函数互为反函数的结论;4. 理解指数方程和对数方程的意义,会解简单的指数方程和对数方程. 5. 掌握数学方法:分类讨论,数形结合,换元法,等价转换.【重点难点】对数的意义与运算性质,反函数的概念及性质,指数函数和对数函数的图像和性质. 【课前预习】1.函数()(2)x f x =-、2()3x f x -=、1()2()3x f x =⋅、3()f x x =中,指数函数是2.(1)函数1()()2x f x =的值域是 (2)函数212()log (25)f x x x =-+的值域是3.(1)函数()f x =(2)函数()f x =4.(1)函数()y f x =的图像与函数()2x f x =的图像关于x 轴对称,则()y f x == (2)函数lg(2)(2)y x x =->的图像关于x 轴对称的函数()y f x ==5. 函数2()(1)x f x a =-是R 上的减函数,则实数a 的取值X 围是6. 已知0<a<1,b<-1,则函数()x f x a b =+的图像不经过 ( )A.第一象限B. 第二象限C. 第三象限D. 第四象限 7.函数213()log (232)f x x x =--的单调递增区间是8. 使log 2(-x)<x+1成立的x 的取值X 围是 9.不论a 为何值时,函数y=(a-1)2x -2a 的图像过一定点,这个定点的坐标是(-1,-12)10.已知函数f(x)是定义在R 上的奇函数,当x<0时,f(x)=1()3x ,则f(12)11.已知函数y=4x -32x +3的值域为[1,7],则实数x 的取值X 围是(-∞,0]∪[1,2]12.函数()2x f x =,x 1,x 2∈R 且x 1≠x 2,则 ( ) A.12121[()()]()22x x f x f x f ++= B.12121[()()]()22x x f x f x f ++> C.12121[()()]()22x x f x f x f ++< D.以上答案都不对【基础知识】1.幂的有关概念(1)正整数指数幂()nna a a a a n N *=⋅⋅⋅⋅∈ (2)零指数幂)0(10≠=a a(3)负整数指数幂()10,nn aa n N a-*=≠∈ (4)正分数指数幂()0,,,1mn m n a a a m n N n *=>∈>; (5)负分数指数幂()110,,,1m nm nmnaa m n N n a a-*==>∈>(6)0(0)a a >,没有意义.2.有理数指数幂的性质()()10,,rsr sa a aa r s Q +=>∈()()()20,,sr rs a a a r s Q =>∈()()()30,0,rr r ab a b a b r Q =>>∈3.根式的内容(1)根式的定义:一般地,如果a x n=,那么x 叫做a 的n 次方根,其中()*∈>N n n ,1,na 叫做根式,n 叫做根指数,a 叫被开方数。