logab
相关结论:logab= 1 ;logab·logbc·logcd=logad (a,b,c均大于0且不lo等gba于1,d>0)
条件
a>0且a≠1,M>0,N>0
结论
loga(MN)=logaM+logaN
M
loga N =logaM-logaN logaMn=nlogaM(n∈R)
考点二 指数函数与对数函数的图象与性质
x 1
x 1
因为2f(x)-f(-x)=3ln x 1,①
x 1
所以用-x代替x得2f(-x)-f(x)=3ln x 1=3ln x 1,②
x 1
x 1
①×2+②得3f(x)=3ln x 1,
x 1
故f(x)=ln x 1,x∈(-∞,-1)∪(1,+∞).
x 1
(2)由题意可知x+ 1 +6>1,x2+ 1 +
∵0<0.40.3<0.40=1,∴0<c<1,∴a<c<b.故选D.
答案 D
考法二 指数型复合函数的相关问题 1.对于与指数函数的图象有关的问题,一般从最基本的指数函数的图象 入手,通过平移、伸缩、对称变换得到. 2.指数函数的性质主要是单调性,常用单调性来比较大小、解简单的指 数不等式、求函数的值域(最值)等. 3.求解与指数函数有关的复合函数问题,首先,要熟知指数函数的定义 域、值域、单调性等相关性质,其次,要明确复合函数的构成,涉及值域、 单调区间、最值等问题时,一般要借助“同增异减”分析判断,最终将问 题归纳为与内层函数相关的问题加以解决. 注意:当底数a与1的大小关系不确定时,应分类讨论.