当前位置:文档之家› 国外铁路LED信号机发展与应用

国外铁路LED信号机发展与应用

国外铁路LED信号机发展与应用
国外铁路LED信号机发展与应用

中国铁路CHINESE RAILWAYS 2007/5

54

W orld R ailw ays

世界铁路

1 国外主要发光二极管(LED)信号机及其技术特点

美国GELcore公司是GE照明与EMCORE公司的合资公司,创建于1999年1月,是全球著名的LED产品供货商。GELcore公司生产RM4 25、RM4 75、RM4 85三种类型的铁路LED发光盘(见图1),其中RM4 85型采用窄光束,其光强和散角指标与我国铁路TB/T2353基本接近。盘面和现有的灯丝信号系统完全兼容。单个LED故障,其光损失小于1%。

RM4型LED发光盘的供电电压有10 V(AC/DC)和120 V(AC)两种类型,电压范围较宽,设关闭电压,抗浪涌能力强,功率因数90%,总谐波小于20%,工作温度40~74℃,抗振能力符合1999 AREMA和MIL-STD-833 Method2007标准,抗电干扰能力符合AREMA Section 11.5.1和FCC Title 47

国外铁路LED信号机

成远:上海铁大电信设备有限公司,总经理,上海,200070

摘 要:发光二极管(LED)信号机相对于传统灯丝信号机具有节能、可视性好、免调整、免维护、寿命长等诸多技术经济优势,在美国、英国、德国、瑞士等国家铁路迅速推广应用。LED的发光原理与灯泡不同,当LED直接替换灯泡时,需要解决功率匹配、灯丝检查、灯丝安全等问题,保证其兼容性。适时修改信号标准,以适应铁路信号安全要求,确保铁路运输安全。关键词:铁路信号机;发光二极管(LED);技术特点;兼容性

发展与应用

Section 15 Class A标准,抗潮湿能力符合IP65标准。RM4 85型LED发光盘参数见表1。

瑞士ACOL公司是专业生产LED大功率灯具的厂家,长期致力于LED研发和生产,产品品质优良,价

图1 GELcore公司的LED发光盘

W orld R ailw ays

世界铁路

表2 ACOL铁路LED发光模块技术指标

格优惠。该公司专为高速铁路研制了

窄光束LED发光模块,其技术指标见

表2。

英国Variable Message Signs

Limited公司生产的VMSL型铁路

LED信号机(见图2),符合英国铁路

路网公司的RT/E/S/10062标准,发

光盘采用RIGEL公司的LED技术,光

利用率高达90%,独特的盖板和透镜

设计,无需遮掩也不会产生灯光幻

影。3。

散角窄光束设计,确保显示距

离大于800 m,并且可内部调节成宽角度,以适合短距离显示的需要。宽电压范围输入(AC 78~131 V ),亮度不变,灭灯后在20 ms内即可迅速关闭。采用机械和电子鉴别装置,有效防止发光盘的错误安装。轴向光强为:红灯850 cd,黄灯2 600 cd,绿灯850 cd。非亮灯状态的平均故障间隔时间(MTBF)大于15年。当一条或多条支路故障时,产生非紧急报警。当发光盘电流大于75 mA时产生紧急报警。其维护方法简便,每年只需清洁透镜。

英国Roxboro集团下属的Diallight公司曾专为我国设计892系列LED铁路发光盘,其光强和散角符合我国铁路标准,可提供红、绿、黄、蓝、白5种颜色,供电电压AC 12 V,具有功率因素校正、有效减低谐波干扰等功能。发光为集束面式结构,光线聚焦利用现有信号机透镜,灯丝检

测采用L.O.D兼容方式(虚拟继电

器)。由于各种原因,此产品并未在我

国得到使用。

英国西屋铁路系统公司

(Westinghouse Rail Systems

Limited)生产的Westled 3000系列

LED信号灯 (见图3)有200 mm、125 mm

两种直径,输入电压AC 78~131 V ,显

示距离大于800 m,与现有的双灯丝

灯泡兼容,采用双电源供电,全盘88

个LED分成两组,由两个独立电源供

电。当LED发生50%故障时,可产生

输出报警信号,也可向联锁电路输出

故障信号。灯盘

安装有测试按

钮,可对每个

LED供电电路进

行检测,通过电

阻调节,确保回

路电流和灯泡相

同。当电流小于

50 mA时,输出报警信号。每年只需

维修检查一次。

德国西门子公司生产的LED信

号机主要与城市轻轨系统配套。其中

LED 70型在隧道内使用,整个发光

盘采用30个LED,与具有透镜的

Classic St 70型光学机构配合组成信

号机。LED 136型则适合在隧道外使

用,适用速度可达120 km/h或160

km/h,发光盘由60个LED组成。LED

发光盘设计与双丝灯泡兼容,并设有

白天/夜间开关,可根据时间和天气

变化调节发光亮度。控制电路具有闪图2 VMSL型铁路LED信号机图3 西屋公司的LED信号灯

国外铁路LED信号机发展与应用 成远

中国铁路CHINESE RAILWAYS 2007/555

中国铁路CHINESE RAILWAYS 2007/5

56

W orld R ailw ays

世界铁路

烁工作模式,可产生闪光信号,满足城市轻轨对信号的控制要求。

英国Signal House公司开发的铁路干线LED信号机(见图4),采用亮度反馈控制技术,满足英国铁路信号机的亮度标准,其信号色坐标可在整个温度范围内达到标准要求。它设有检测电路,当显示偏离标准时,电路自动关闭。电路关闭后,具有很小的空载电流。发光盘可设计成适合任何交流电压,其装置元件少,可靠性高,具有恒功率控制功能和寿命告警功能,适合在标准基座上安装。

LED信号机在美国、英国、法国、德国、澳大利亚等国投入使用。

3 铁路LED信号机应用中的主

要问题

早期LED信号机的主要问题反映在LED的光学参数上,英国专家H.Barton在第六届“铁路线路、信号及构筑物维护与更新”国际会议上指出,黄色LED的色坐标随温度变化较大,可能超出铁路标准规定范围。LED的发光原理和灯泡不同,对LED显示效果的评估不能沿用原有的方法。随着LED的技术发展,LED光学问题已基本得到解决。目前,LED在铁路应用中主要存在以下问题。

(1)功率匹配。由于LED的发光效率高,在同等光强下,LED发光盘需要的功率比白炽灯泡小。如用LED替换25 W灯泡时,大约需要4~8 W。电压和电流决定功率的大小,当控制电路的输出电压一定时,由于灯丝继电器的工作需要,电流不能减小。因此,直接替换遇到了困难,为了与既有设备直接接口,可能要人为增大LED发光盘的功耗。这不仅丧失了LED节能的优点,也增加了发光盘的发热,缩短了发光盘的使用寿命。

(2)灯丝检查。铁路信号机应具备的基本功能是在灯点亮时进行热丝检查,用于确认信号已正确显示。在灯熄灭时进行冷丝检查,用于检查灯丝是否完整,预防信号不能开放。考虑到设备兼容,同样需要对LED信号机的灯丝检查功能。但对LED发光盘进行灯丝检查时,情况和灯泡不同,冷丝检查一般可用脉冲电流进行。由于脉冲检查电流小,不会点亮灯泡信号机。而在LED信号机中,脉冲检查可使LED产生可见光。

灭灯状态下产生可见光,在铁路信号中是绝不允许的。

(3)灯丝安全。灯泡由灯丝发热而亮灯,具有明显的两值特性,灯丝正常状态亮灯,断丝而灭灯。而LED发光盘本身不具有明显的两值特性,当LED部分短路时,其电流增加而亮度减小。而且LED还容易受干扰或感应而亮灯,存在安全问题。

4 结束语

铁路信号采用LED技术,具有节能、可视性好、免调整、免维护、长寿命等优点,发展前景良好。LED具有和白炽灯泡完全不同的特性,但LED直接替换灯泡需要研究新的电路和控制方式,才能充分发挥其优势。LED作为新型光源,只要设计合理、使用适当,同样具有可靠的故障安全特性。

参考文献

[1]H.Barton.Led Cluster Technology in Railway Signalling. The Sixth Inter- national Conference on“Maintenance & Renewal of Permanent Way,Power &Signalling,Structures & Earthworks”, 2003

[2] J.Liebscher,(Siemens AG,Germany) D.Zimmermann.Source.Photo metric design of colour light signals: Signal und Draht v 96,n 12,2004[3] Petit,Williama.Wayside LED signals -Why it's harder than it looks. Railway Track and Structures,2002[4]DTI, Report of a DTI global watch mission,2005

[5] Petit, William A. Wayside LED sig- nals-why it's harder than it looks. Railway Track and Structures,2002

责任编辑 陈晓云收稿日期 2007-04-04

2 国外铁路LED信号机应用状况

加拿大运输部运输发展中心专门就平交道口LED信号显示技术立项进行深入研究,并制定了技术标准,美国、英国也制定了相应的LED道口信号技术标准。2004年,GELcore公司为美国铁路客运公司(Amtrak)在东北走廊的宾夕法尼亚、纽约、德拉瓦、马里兰等地安装了TR3和RM4型LED信号机。同年,英国Tube Lines铁路客运公司向西屋公司订购了数十套125 mm规格的LED信号机,安装在伦敦地铁Jubilee延长线上,替代灯丝信号机。目前,已有数以万计的

图4 Signal House公司的LED信号机

国外铁路LED信号机发展与应用 成远

第一章 (铁路信号设计与施工)初步设计

第一篇信号工程设计 信号工程设计一般按初步设计和施工设计两个阶段进行,即“两段设计”方式。有些工程规模很小、方案明确,主要技术原则已经确定、投资较少的项目,也可将初步设计和施工设计合为一个阶段进行,即采用“一段设计”方式。“两段设计”的程序示意图如下图所示。图中的“竣工图”是施工单位根据施工情况对施工图纸进行必要的修改,形成竣工图纸,作为维修单位日后维护信号设备的依据,也是“施工设计”的必要延伸。

第一章初步设计 第一节初步设计的任务 初步设计的主要任务是选择和确定设计方案,提出设计的经济、工程概算技术指标及各种方案的比较指标,提出主要工程数量、材料设备和劳动力数量、用地面积等。初步设计提出的工程概算审批后,作为实行招标承包和投资包干的主要依据,也是考核设计技术经济合理性和建设成本的依据。 开展初步设计的依据是有关部门下达的设计任务书。 一、设计任务书 设计任务书是开展设计工作的重要依据。铁道部根据国家分配或自筹的投资安排全路基建项目,各铁路局根据铁道部分配的基建和大修投资按轻重缓急与铁道部协商提出建设项目,确定投资安排,明确基建或大修计划。这种情况下,信号系统是作为配合线路上部建筑工程的一部分提出的,属于总体设计的一部分。有时为了提高铁路通过能力,信号工程也可作为主体工程提出。但无论是作为配合工程还是主体工程,都必须有铁道部或铁路局批复的设计任务书。设计任务书的主要内容如下: 1.设计范围 说明要求设计的具体车站、车场的名称。 2.设计类型 建议采用车站联锁的标准图号、相邻区间采用的闭塞方式及设备类型。 3.投资 明确投资数目,以便根据投资的控制数目考虑设计方案。 4.建设年限 明确信号工程建成及投产的时间。如果信号工程属配合站场工程时(新建或扩建),要明确站场线路工程完成的顺序及年限,以便考虑信号工程与线路工程之间的相互配合。 5.牵引种类(内燃、电力) 非电力牵引区段,要明确将来采用电力牵引的计划,以便在设计中考虑将来与有关设备的结合设计和合理地预留设备。 6.站场与线路状况 明确站场与线路在5年或l0年内是否有较大变动,有无新线接轨的可能,以及有无预留股道或道岔,以便在设计中考虑预留信号设备的内容。 7.利旧原则 对于营业线的改建工程要明确设计中对原有设备的利用原则。 8.设计分工 明确配合信号设备的使用而设计的通信系统、供电系统、技术房屋、过渡信号等项配合工程的设计分工及要求。 9.新技术及其他 对信号设计提出采用何种新技术和其他要求,如信号楼的数量及控制范围等建议。 10.时间要求 要求设计文件提出的日期,鉴定文件日期以及施工的开、竣工日期。 二、初步设计应确定的设计原则 1.设计范围 在说明站名、场名的前提下,要确定集中区的范围。如果有多楼控制方案,还要进一步确定各楼控制的集中区范围。 2.信号楼数量及位置 一个车站原则上由一个信号楼集中控制全站信号设备。而由数个车场组成的编组站和区

铁路信号维修规则(新)

铁运公司铁路信号维修细则 第一章总则 第一条为满足铁路运输生产的需要,确保铁路信号设备的正常运用,加强信号设备的维修管理工作,特制定《铁运公司铁路信号维修细则》。 第二条信号设备维修工作必须坚持“安全第一,预防为主”的方针,贯彻计划修与整修相结合的原则,确保信号设备运用状态良好。要积极采用现代化的技术手段,优化维修作业方式方法,提高维修效率,要全面落实责任制,完善考核制度,提高维修管理水平,保证信号设备符合技术标准,在规定的寿命期内性能良好、质量稳定、安全可靠地运用。 第三条铁路信号设备维修工作应坚持以安全和质量为主的原则,依据设备技术状态变化规律和磨损程度相应地进行月度计表、状态维修、故障修。测试工作是信号设备维修工作的重要内容之一,包含在月度计表、状态维修、故障修之中。 第四条铁路信号设备维修工作应以安全管理为核心,实行安全管理责任制、岗位责任制和质量验收制,建立设备质量、技术、设备、成本管理台账。铁路信号维修工作必须与工务工区实行密切协作的制度,做好各项基础工作。 第二章信号设备维修分类 第五条月度计表(占计划60%) 月度计表是每月对信号设备进行的日常养护和集中检修,通过维修,保持设备性能,预防设备故障,使设备经常处于良好的运用状态。 第六条状态维修(占计划30%) 状态维修是根据设备特性变化状态有针对性地进行维修。状态修要求建立信号设备技术档案,信号值班人员每天通过信号微机软件和设备记录信号设备技术参数,信号技术员通过技术参数分析后随时掌握该设备工作状态及变化趋势,预防可能出现的故障。 第七条故障修(占计划10%) 故障修是当信号设备发生事故或故障时,故障处理人员应严格按故障处理程序处理,

浅谈铁路通信信号一体化技术 赵永旺

浅谈铁路通信信号一体化技术赵永旺 发表时间:2019-07-24T15:51:34.720Z 来源:《基层建设》2019年第10期作者:赵永旺 [导读] 摘要:随着计算机及网络技术的快速进步,推动了信号系统的发展,在发展的过程中,通信系统、信号系统以及信息化系统之间逐渐的实现了融合及组合,向着数字化、智能化的方向发展,而这也是铁路通信信号系统发展的趋势。 赤峰市阿鲁科尔沁旗天山镇查布嘎电务工区内蒙古赤峰市 025550 摘要:随着计算机及网络技术的快速进步,推动了信号系统的发展,在发展的过程中,通信系统、信号系统以及信息化系统之间逐渐的实现了融合及组合,向着数字化、智能化的方向发展,而这也是铁路通信信号系统发展的趋势。在本文中,介绍了当前通信信号设备的现状,接着阐述了通信信号一体化系统结构及关键技术。 关键词:铁路通信信号;一体化技术;发展 一、通信信号设备现状 (一)机车信号与超速防护(ATP) 第一,轨道电路制式多。在当前的铁路通信系统中,通信的制式比较多,而且所采用的轨道电路制式也比较多,这种状态导致在传输信号时十分的混乱。第二,站内轨道电路电码化困难。站内电码化是一个过程,需要逐步的进行完善,不过在最初进行设计时,存在着许多的问题,比如兼容性差、协调性弱等。第三,站内干扰严重,站内轨道电路在工作时,经常会受到同频干扰、外界干扰等不同的干扰,从而导致电路经常问题。 (二)调度集中 目前,我国的铁路行业进行调度时,采用的方式为集中调度,这是一种传统的调度方式,效果并不理想,而且随着铁路现代化、信息化的发展,集中调度的方式已经不能满足铁路快速发展的需求。 (三)无线列调 第一,技术落后,在进行通信时利用模拟单信道,通信质量比较差,而且受到的干扰非常的严重;第二,能力饱和,我国现有的无线列调能力已经达到了饱和,因而无线列调就没有能力再进行列车控制、移动通信等业务;第三,效率低下,在专用系统中,各个部门在工作时,都是独立开展的,缺乏有效地沟通及联系性。 二、现代铁路信号 1949年后,60年来,随着我国铁路事业翻天覆地的变化,中国铁路信号也已经从零发展成为世界铁路信号的强国。今天的现代铁路信号系统,已经成为计算机、现代通信和控制技术在铁路运输生产过程中的具体应用,铁路信号的功能也从传统的保障铁路运输安全的“眼睛”,扩展为保证行车安全、实现集中统一指挥、提高运输效率、改善劳动条件和提升运营管理水平。现代信号技术已成为实现列车有效控制、提高铁路区间通过能力和编组能力、向运输组织人员提供实时信息的必备手段,是铁路的“中枢神经”,是铁路列车提速与发展高速铁路的关键技术之一。 三、通信信号一体化的优势及其系统结构 3.1通信信号一体化的优势 与传统的轨道电路传送信号相比,通信信号一体化具有五大优势:第一,传输可靠性高,传统的轨道电路在传输信号时,传输者只管发送,接受者是否接到信号无法得知,而实现了一体化之后,有效的实现了双向通信,从而保证了信号传输的可靠性;第二,运输效率高,通信信号一体化采用的通信方式为无线通信,这样一来,在传送信号时,实现了移动自动闭塞,使运输效率得到了有效的提高,武县城在设备系统接收信息具有较高的实时性与准确性;第三,传输信息量大,传统的轨道电路在传输信号时,载体是铁轨,这种方式虽能传输的信息量比较小,随着列车速度与目的的不断增加,列车控制信号不断增加,而实现通信信号一体化之后,由于是无线通信,所能传输的信息量大增;第四,降低工程投资和生存期成本,信息传输的方式发生了改变之后,所需要进行的工程投资也相对减少,信息传输不再依赖轨道电路,设备主要集中在室内与机车上,从而实现了投资的降低与故障面的减少;第五,具体有通用性和灵活性,在系统中,只需要保持原有的设备就可以实现双向运行,这样有效的保证了系统的性能和安全,由于系统中采用的是通用组件,所有未来相互独立的子系统升级或者换代时不会对列产的控制产生影响。 3.2通信信号一体化的系统结构及关键技术 从广义上来说,信号系统主要包含四层,从高到低的顺序分别为:第一层,局(部)调度中心,该层的主要作用是进行宏观决策;第二层为分局(局)调度中心,在该层中,包含着许多的结构,主要有调度集中、电力调度、机车调度、车辆调度、设备维修中心;第三层为安全控制设备,主要的作用就是保证安全,车站联锁、道口安全控制等都设置在该层;第四层为最低层,现场的信号机、机车信号等都归属于该层。 四、我国铁路通信、信号系统的发展方向 随着我国高速铁路的跨越式发展,铁路通信信号作为高铁核心技术的重要组成部分,也迎来了高速发展的黄金时期。目前,我国铁路通信信号技术已经迈上了新的台阶,尤其是通过引进吸收国外先进技术、我国已研发出了CTCS、TDCS、等一大批有自主核心技术的铁路通信、信号控制系统,在利用计算机、控制技术方面取得了长足的进步。中国高速铁路的发展需求决定了铁路通信信号的发展方向,不仅对行车安全保障有了更高的标准,还要求通信信号技术能够实现高速铁路站间接发车作业和区间运行的自动化,提高通过速度与列车密度,大大增强高铁运营效率。 4.1铁路通信的发展方向 (1)大力发展GSM-R技术 目前我国铁路对GSM-R技术应用的还不够充分,如有的线路利用GSM-R技术参与列车运行控制,而有的线路仅将其作为一种进行数据传输的移动通信手段。今后我国应重点围绕客运专线建设,做好对GSM-R移动通信核心网的整体布局规划并加大沿线无线网络的建设,全面推进高速铁路无线通信设备的技术进步。 (2)建设综合视频监控技术平台 为满足安全监控需要,需要建设综合视频监控技术平台,主要应用在几点:对铁路重点线路设备的监控;对客运车站重点区域的监

铁路信号维护规则(最新版)

铁路信号维护规则 第一章总则第1条为满足铁路运输生产的需要,确保铁路信号设备的正常运用, 加强信号设备的维护管理工作,特制定《铁路信号维护规则》。 第2条铁路信号设备是指挥列车运行,保证行车安全,提高运输效率,改善行车组织方式,实现行车指挥现代化的关键设施。电务部门必须贯彻国家有关政策,坚持以运输生产为中心,做好维护管理工作,保证信号设备处于良好运用状态(原为:正常运用)。 第3条铁路信号维护工作是铁路运输安全生产的重要组成部分,直接涉及运输安全。信号工是铁路主要行车工种。信号维护工作必须严格执行铁路有关法规,牢固树立安全生产法制观念,认真执行标准化作业,保证行车、设备及人身安全。 第4条铁路信号设备技术密集、科技含量高,具有点多线长、设置分散、布局成网、不间断运用、结合部多、易受外界影响等特点。其维护工作技术要求高,既相对独立,又相互联系,因此,各级电务部门必须加强对职工的政治思想教育和文化、技术业务知识培训,不断提高电务职工队伍素质。参加信号工作的新职工必须经过专业技能培训和安全纪律培训,考试合格后方能上岗工作。 第5条信号维护工作必须坚持“安全第一,预防为主”的方针,贯彻预防与整修相结合的原则,确保信号设备运用状态良好。要积极采用新技术、新器材、新工艺,提高信号设备的可靠性、可用性和安全性;要积极采用现代化的技术手段,优化维护作业方式方法,推进修程修制改革,提高劳动生产率,要全面落实责任制,完善考核制度,提高维护管理水平。 第6条《铁路信号维护规则》是做好信号维护工作的基本规则,电务及有关部门制定的细则、标准、办法等,必须符合本规则的规定。 第二章管理 第一节通则 (全部内容进行修改、增加) 第7条铁路信号设备维护工作由维修、中修、大修三部分组成,测试工作是信号设备维护工作的重要内容之一,包含在维修、中修、大修之中。 第8条铁路信号设备维护工作应贯彻按期大修、强化中修、确保维修的指导思想,坚持以安全和质量为主的原则,依据设备技术状态变化规律和磨损程度做好大修、中修和维修工作,保证信号设备符合技术标准,在规定的寿命期内性能良好、质量稳定、安全可靠地运用。

欧洲铁路信号系统概况

欧洲铁路信号系统概况 欧洲是世界上铁路最发达的地区之—。欧洲国家多,国土面积小,各国内部的铁路网很密集。近几年来,欧洲铁路公司和信号公司在对各自的既有信号系统进行升级或者技术改造的同时,在欧盟(EU)委员会和国际铁路联盟(UIC)的推动下,欧洲7大铁路信号公司,如法国的Alstom(阿尔斯通)公司、瑞典的Adtranz公司、德国的Siemens(西门子)公司、法国的Alcatel(阿尔卡特)公司、意大利的Ansaldo(安萨尔多)公司(含法国CSEE公司)、英国WestingHouse(西屋)公司,以及Invensys公司,联合起来为信号系统的互联和兼容问题制定信号标准,并制造了相关的产品: 在较大范围内开发并应用新型计算机辅助铁路运输管理系统; 在进路控制方面,随着区域计算机联锁技术逐步取代陈旧技术,自动化系统得到广泛应用; 在列车防护和控制系统方面,研制了基于通信的列车控制系统(CBTC); 为了欧洲铁路信号系统的互联和兼容问题,制定了统一的、开放性信号系统标准,从而实现欧洲各国铁路互通运营。 本章根据搜集到的有关欧洲铁路信号系统的论文、报道和技术资料,对它们进行了归纳整理,从列车运行控制系统、欧洲统一先进的列车运行控制系统(即ETCS)、联锁系统、行车指挥系统、高速铁路,以及磁悬浮铁路等方面介绍欧洲铁路信号系统的现状和发展,有关法国、英国和德国的铁路信号系统的详细情况在另外章节专门介绍。 第一节列车运行控制系统 一、种类繁多的列控系统 欧洲有7大铁路信号公司(Alstom、Adtranz、Siemens、Invensys、Alcatel、Ansaldo、WestingHouse,它们都是UNIFE的成员),它们研制生产的列车运行控制系统(ATP/A TC)有十余种,如德国的LZB系列和FZB系列、法国的TVM系列等。这些运行控制系统有的适用于中速铁路,有的适用于高速铁路。在欧洲铁路网上,各个国家的铁路部门使用各自不同的信号制式管理列车的运营。 二、基于通信的列车运行控制系统 近年来,几乎所有欧洲国家铁路都在建立列车运行管理和保证行车安全系统方面寻求新的经济有效的技术方案,其中包括地区性线路。德国铁路和Adtranz公司共同研究制定了无线通信管理列车运行(FFB)地区性线路运营规划,在建立的列车运行管理系统中,几乎全部通过无线通信系统来实现通信服务联系,完全不用地面信号和监督线路空闲的线路设备,保证在任何线路上的列车运行安全。基于通信的列车控制系统(CBTC)按欧洲统一的安全标准设计,系统符合欧洲PrEN50129和PrEN50128标准设计的一体化安全要求(SIL4,安全完善度等级4)。 三、列车控制系统向标准化、统一化发展 目前,欧洲由于种类繁多的铁路信号帛式互不兼容,影响了欧洲铁路跨国运输的效率。在欧盟(EU)和国际铁路联盟UIC的支持下,欧洲铁路制定了统一的列车运行管理系统ERTMS(欧洲铁路运输管理系统),包括欧洲列车运行控制系统ETCS(欧洲列车控制系统)、列车与地面的双向无线通信系统GSM-R和欧洲运输管理系统ETMS。

60年铁路信号的发展历程

60年铁路信号的发展历程 在铁路运输的实践中,即使铁路线路、桥梁、机车和车辆等设备条件良好的情况下,也会发生列车冲突和颠覆等重大事故。发生列车冲突的原因可能是两列或多列列车同时占用一个空间造成的;也可能是由于道岔位置不正确而导致列车驶入错误线而造成冲撞;另外,列车速度超过了线路限制速度也会引起颠覆事故。为保证安全,铁路部门在划定的空间入口处设置信号机以指挥列车能否可以驶入该空间。信号机的开放,必须检查线路的空闲、道岔位置的正确和敌对信号的关闭,以防止列车冲突和颠覆等重大事故的发生。因此,在现代铁路运输系统中,除了铁路固定设备(线路、桥、隧)和移动设备(机车、车辆),还需要铁路信号系统,简称铁路信号,他们构成了铁路运输系统三个不可分割的技术基础。铁路信号系统是为了保证运输安全而诞生和发展的,系统的第一使命是保证行车安全,也可以这样说,没有铁路信号,也就没有铁路运输的安全。 1949年以前,我国铁路信号非常落后,没有成形信号制式,东北等铁路沿用日本遗留的初级信号设备,胶东半岛采用德国设备,云南的米轨铁路采用法国制式。没有铁路信号设备生产能力。以手板道岔、人工动作臂板信号为主要手段,信号技术十分落后。 1949年后,60年来,随着我国铁路事业翻天覆地的变化,中国铁路信号也已经从零发展成为世界铁路信号的强国。针对我国铁路的不同发展情况,形成了完备的信号制度与制式标准,建立了雄厚的铁路信号生产、研发、设计施工、管理队伍,信号技术从手动-机械-继电发展到以信息技术为核心电子时代。改革开放以来,特别是铁路六次大提速及近年来的高速铁路、客运专线建设,更是使我国铁路信号产生了根本的变化。今天的现代铁路信号系统,已经成为计算机、现代通信和控制技术在铁路运输生产过程中的具体应用,铁路信号的功能也从传统的保障铁路运输安全的“眼睛”,扩展为保证行车安全、实现集中统一指挥、提高运输效率、改善劳动条件和提升运营管理水平。现代信号技术已成为实现列车有效控制、提高铁路区间通过能力和编组能力、向运输组织人员提供实时信息的必备手段,是铁路的“中枢神经”,是铁路列车提速与发展高速铁路的关键技术之一。在现代铁路运输系统中占有非常重要的地位,成为铁路现代化的重要标志之一。 一、轨旁基础设备的发展 1949年前,我国只有手板道岔、人工动作臂板信号等简单的铁路信号设备,解放后,在我国铁路信号研究人员及生产企业的努力下,信号基础设备得到根本改变,色灯信号早已代替了臂板信号,信号显示全部实现了列车控制自动;国铁正线道岔全部采用我国自行研制的电动转辙机,特别是近年来,我国提速线路、客运专线及高速铁路相关道岔,全面使用了牵引力更大、锁闭更加可靠、转换时间更短的交流转辙机(ZD(J)9 系列电动转辙机)及外锁闭装置;我国自行研制的轨道电路广泛应用于铁路车站及区间,实现了列车占用的自动检测,已经上道运用20000多公里的ZPW-2000无绝缘轨道电路,还能够向列车传送前方空闲间隔信息,为机车信号及列车控制提供依据;除此以外,正在逐步国产化的、高科

中铁建高速铁路信号技术发展趋势

中铁建高速铁路信号技术发展趋势 发表时间:2019-11-13T16:32:22.973Z 来源:《工程管理前沿》2019年19期作者:邢远强 [导读] 在新时代的背景下,高速铁路信号技术的发展势不可挡,它也反映着一个国家的综合实力强弱,本文就针对高速铁路信号技术的意义和内容、高速铁路信号技术的发展及应用和高速铁路信号技术的未来趋势三个方面进行了深入的探究和分析。 【摘要】在新时代的背景下,高速铁路信号技术的发展势不可挡,它也反映着一个国家的综合实力强弱,本文就针对高速铁路信号技术的意义和内容、高速铁路信号技术的发展及应用和高速铁路信号技术的未来趋势三个方面进行了深入的探究和分析。 【关键词】高速铁路信号技术 一.前言 高速铁路建设反映了一个地区经济建设的现代化标准,高速公路智能化信息建设以信息化带动管理、保障、服务、救援,将人、车、路和谐地连接在一起。高速铁路信号技术主要内容包括:高速铁路、高速铁路信号系统概述、高速铁路信号基础设备、计算机联锁系统、列车运行控制系统、调度集中系统、信号集中监测系统、高速铁路信号系统集成。 二、高速铁路信号技术的意义和内容 (1)高速铁路信号技术的意义 信号技术作为高速铁路的重要组成部分,对保证行车安全起着至关重要的作用。我国高速铁路在开通运营前,均需采用试验列车在实际运行状态下对线路的信号系统进行动态检测,这称为高速铁路信号系统联调,这是高速铁路信号技术的一方面。高速铁路信号技术的意义重大,它从多方面、多角度地促进高速铁路的发展,打破了之前的运营管理;创新了新的科技技术,不仅在基础设备上,还是专业技术上都有了质的飞跃。所以说高速铁路信号技术的在高速铁路发展过程中起着至关重要的作用,意义重大。 (2)高速铁路信号技术的内容 高速铁路信号技术介绍了高速铁路的概况,包括高速铁路的相关技术和运营管理、高速铁路信号系统的概况,这是对高速铁路信号系统的初步的认识。高速铁路信号技术的内容还包括高速铁路信号基础设备的特点和原理,包括信号机、轨道电路、道岔转换设备、道岔融雪设备、应答器、信号电源屏、信号光缆和电缆、高速铁路专用的信号基础设备。还有关于计算机联锁、列车运行控制、调度集中、信号集中监测系统的特点和原理;高速铁路所采用的四种类型的计算机联锁系统,论述了在高速铁路的应用;详细的内容还包括CTCS一2和CTCS一3级列车运行控制系统的功能、原理和系统组成;信号集中监测系统的结构、功能和原理。最后还包括高速铁路信号系统集成,既有线提速、200~250?km/h高速铁路、300~350?km/h高速铁路的信号系统集成,这就是高速铁路信号技术的基本内容。 三、高速铁路信号技术的发展及应用 (1)中国高速铁路发展规划,是2004年1月中国国务院常务会议讨论并原则通过的《中长期铁路网规划》确定的。《规划》提出,到2020年,全国铁路营业里程达到10万公里,主要繁忙干线实现客货分线,建设高速铁路1.2万公里以上。2008年,中国政府根据我国综合交通体系建设的需要,对《中长期铁路网规划》进行了调整,确定到2020年,全国铁路营业里程达到12万公里以上,建设高速铁路1.6万公里以上。根据《中长期铁路网规划》,中国高速铁路发展以"四纵四横"为重点,构建快速客运网的主要骨架,形成快速、便捷、大能力的铁路客运通道,逐步实现客货分线运输。 (2)"四纵":一是北京~上海高速铁路,全长1318公里,贯通环渤海和长三角东部沿海经济发达地区;二是北京~武汉~广州~深圳(香港)高速铁路,全长2350公里,连接华北、华中和华南地区;三是北京~沈阳~哈尔滨(大连)高速铁路,全长1612公里,连接东北和关内地区;四是上海~杭州~宁波~福州~深圳高速铁路,全长1650公里,连接长三角、东南沿海、珠三角地区。 (3)"四横":一是青岛~石家庄~太原高速铁路,全长906公里,连接华北和华东地区;二是徐州~郑州~兰州高速铁路,全长1346公里,连接西北和华东地区;三是上海~南京~武汉~重庆~成都高速铁路,全长1922公里,连接西南和华东地区;四是上海~杭州~南昌~长沙~昆明高速铁路,全长2264公里,连接华中、华东和西南地区。同时,以环渤海地区、长三角地区、珠三角地区以及辽中南、山东半岛、中原地区、江汉平原、湘东地区、关中地区、成渝地区、海峡西岸等经济发达和人口稠密地区为重点,建设城际高速铁路,覆盖区域内主要城镇。 (4)2005年6月11日,石家庄至太原铁路高速铁路开工,设计时速250公里,这是《中长期铁路网规划》中第一条开工建设的高速铁路。2005年6月23日,设计时速350公里的武汉至广州高速铁路开工建设,这是中国第一条长大干线的高速铁路。2005年7月4日,北京至天津城际铁路开工,这是中国第一条高速城际铁路。中国铁路跨入高速时代。 四、高速铁路信号技术的未来趋势 (1)2006年11月10日-16日,中国铁路第六次大提速进行综合牵引试验。试验数据表明:中国铁路已经掌握既有线提速到时速200-250公里的整套技术,既有线提速技术达到了世界先进水平。2007年4月18日,第六次大提速正式实施,在京哈、京沪、京广、陇海、沪昆、胶济、广深等既有繁忙干线大量开行具有自主知识产权的时速200公里至250公里"和谐号"高速动车组列车。这标志着中国铁路一举进入高速时代。中国铁路提速后,运输效率和服务水平大幅度提高。统计资料显示,2009年,全国铁路客运量、货运量、总换算周转量分别达到15.25亿人、33.2亿吨、33118亿换算吨公里,比2002年分别增长44.4%、62.6%、60.6%。 (2)旅客运输产品优化。在大城市群内和不同区域的中心城市间大量开行时速200-250公里"和谐号"高速动车组列车,增开一站直达和夕发朝至列车。旅客列车运行时间较1997年第一次大提速前普遍压缩一半以上,最高运行时速达到了250公里,提速铁路列车最小追踪间隔达到5分钟。 (3)货物运输产品优化。丰富列车运输产品,开行5000-6500吨级重载货物列车和双层集装箱列车以及货物直达列车、双层集装箱列车和行包专列。提速铁路货物列车最小追踪间隔达到6分钟。 (4)运营管理技术创新。建立了中国高速铁路运营管理体系,在运输管理模式、固定设备维修、动车组检修运用、调度指挥、客运服务等方面积累了许多成功经验,运营管理技术实现重大创新,实现了中国高速铁路安全可靠、运营有序、服务优质、管理一流。 (5)调度指挥水平提高。适应?"和谐号"?高速动车组列车公交化和大密度开行的模式,开发并广泛采用分散自律调度集中系统(CTC),全面实现了运输调度集中统一指挥。 (6)设备维护安全可靠。具有世界一流水平的高速检测列车每10天对固定设备进行一次综合检测,日常采用轨检车、探伤车、网检车等

铁路信号设计与施工

铁路信号设计与施工 项目1 计算机联锁工程设计 1、勘测调查初步设计文件包括:说明书、图表、概算。 2、现场勘测包括:线路方面、车站作业方面、信号机方面、道岔方面、轨道电路方面、电缆径路方面、信号楼方面、其她方面。A5hSZDb。 3、轨道电路得划分依据就是绝缘节。 4、信号楼得外墙至最近线路中心距离为距到发线不少于5m,距站内正线不少于7m。 5、布置调车信号机得顺序就是:首先布置集中区边界处得防护信号机与专线作业用得信号机;再将满足平行作业起阻挡作用得信号机及减少调车车列走行距离得折返用得信号机布置好;最后再考虑有无特殊情况需要设置得调车信号机。74n7gDH。 6、在尽头线、机车出库线、机待线、岔线、牵出线及编组线等通向集中区入口处,都应设置调车信号机进行防护。tMSsBpd。 7、在咽喉区接车方向对象道岔岔尖处,为了满足转线作业需要,应设置调车信号机。 8、调车信号机一般采用矮型。在牵出线、场间联络线及专用线上得调车信号机多采用高柱,可有较远得显示距离。Kc8Mq2m。 9、牵出线、机待线、出库线、专用线或尽头线入口处得调车信号机前方应设置一段轨道电路其长度距离不小于25m。4Duf2Iz。 10、道岔区段轨道电路,一般不应超过三组单开道岔或两组交分道岔。 11、安全线、避难线上得钢轨绝缘应尽可能设在尽头处。

12、距警冲标小于3、5m时称为侵限绝缘。 13、进站、接车进路、调车信号机处得钢轨绝缘允许安装在信号机前后方各1m得范围内;出站或发车进路信号机处得钢轨绝缘可装在信号机前方1m或后方6、5m得范围内。E9Gf1T0。 14、两根钢轨得绝缘应尽量设置在同一坐标,当不能设于同一坐标时其错开距离(死区段)最大不能超过2、5m。OCXx4Qa。 15、两相邻死区段得间隔或与死区段相邻得轨道电路得间隔,一般不小于18m。 16、警冲标距岔心距离与辙叉号、连接曲线半径与线间距离三个参数有关。 17、凡高度距离轨面在1100mm以内,而边缘距线路中心距离在1875mm以上得设备将不会侵入限界。 18、矮型不带进路表示器得信号机,在警冲标内方不少于3、5m处。 19、股道有效长就是股道内可以停留列车,而不至于妨碍邻线行车得部分线路长度,它就是自股道一端出站信号机起至另一端警冲标为止。tJA5vqs。 20、电缆径路图包括得内容:①轨道电路极性得配置②轨道电路送、受电端得布置③室外电缆网络连接设备类型与位置得确定④室外信号设备得串接顺序与电缆径路得确定⑤每根电缆类型、长度与芯数得确定。R0Jw0JX。 21、不实行轨道电路电码化得道岔区段,可先把道岔绝缘布设在直股上;实行轨道电路电码化得道岔区段得道岔绝缘应布设在弯股上。11eSV3B。22、一送多受轨道电路,最多不应超过三个受电端。

铁路信号维护规则(最新版)

铁路信号维护规则 第一章总则第 1条为满足铁路运输生产的需要 , 确保铁路信号设备的正常运用加强信 号设备的维护管理工作 , 特制定《铁路信号维护规则》。 , 第 2条铁路信号设备是指挥列车运行, 保证行车安全, 提高运输效率, 改善行车组织方式 , 实现行车指挥现代化的关键设施。电务部门必须贯彻国家有关政策 , 坚持以运输生产为中 心 , 做好维护管理工作 , 保证信号设备处于良好运用状态(原为:正常运用)。 第 3条铁路信号维护工作是铁路运输安全生产的重要组成部分 号工是铁路主要行车工种。信号维护工作必须严格执行铁路有关法规产法制观念 , 认真执行标准化作业, 保证行车、设备及人身安全。, 直接涉及运输安全。信 , 牢固树立安全生 第 4条铁路信号设备技术密集、科技含量高,具有点多线长、设置分散、布局成网、 不间断运用、结合部多、易受外界影响等特点。其维护工作技术要求高 , 既相对独立 , 又相互联 系 , 因此 , 各级电务部门必须加强对职工的政治思想教育和文化、技术业务知 识培训 , 不断提高电务职工队伍素质。参加信号工作的新职工必须经过专业技能培训和 安全纪律培训 , 考试合格后方能上岗工作。 第 5条信号维护工作必须坚持“安全第一,预防为主”的方针 , 贯彻预防与整修相结合的原则 , 确保信号设备运用状态良好。要积极采用新技术、新器材、新工艺, 提高信号设备的可靠性、可用性和安全性; 要积极采用现代化的技术手段, 优化维护作业方式方法,推进修程修制改革,提高劳动生产率,要全面落实责任制,完善考核制度,提高维护 管理水平。 第 6条《铁路信号维护规则》是做好信号维护工作的基本规则, 电务及有关部门制定的 细则、标准、办法等 , 必须符合本规则的规定。 第二章管理 第一节通则 (全部内容进行修改、增加) 第 7条铁路信号设备维护工作由维修、中修、大修三部分组 成护工作的重要内容之一 , 包含在维修、中修、大修之中。 , 测试工作是信号设备维 第 8条铁路信号设备维护工作应贯彻按期大修、强化中修、确保维修的指导思想 以安全和质量为主的原则, 依据设备技术状态变化规律和磨损程度做好大修、中修和维 修工作,保证信号设备符合技术标准, 在规定的寿命期内性能良好、质量稳定、安全可 靠地运用。 , 坚持

铁道信号的发展现状及展望

龙源期刊网 https://www.doczj.com/doc/4c15364927.html, 铁道信号的发展现状及展望 作者:贺伟 来源:《中国新通信》2013年第14期 【摘要】我国地域广、人口多的特点及现状使得成本低、运量大的铁路运输成为主要的运输方式。而铁路信号则在指挥列车运行,提高运输作业管理效率等方面起着重要的作用,因此铁道信号的及时有效传送是铁路系统安全、高效运行的基础。本文在总结铁路信号发展现状的基础上,结合相关方面的发展,展望了铁路信号新的发展趋势。 【关键词】铁道信号铁路系统智能化铁路建设 一、铁路信号的现状 由于我国近代具体国情,及地方发展的不平衡。我国铁路建设相对落后,并且缺乏科学的总体规划。尤其是各地区以及地区内在铁路信号技术及管理方面存在很多问题;铁路信号技术总体落后,平台化建设缓慢管理不够规范等问题较为突出。 1.1技术方面 由于系统设备的总体落后,我国铁路的调度指挥很大程度上仍旧依赖于人工作业,采用传统的一支笔、一张图、一部电话的调度指挥方式。对地面信号的观察与判断,也任然依赖于司机。随着列车的提速和密度的不断增加,行车调度的指挥工作将会愈发繁忙,这样调度员出现疏略在所难免,这样既降低工作效率,更会影响到列车的安全运行。并且当车速超过一定程度的时候,单单依靠司机的视力很难保证列车的安全。 1.2管理方面 管理方面的问题主要体现在管理分散和管理水平的落后。铁路系统应该是一个整体,在不同的时间和地区的情况差异性较大。现在的铁路虽然装备了各种监测设备,但是由于通信方式的落后,信息处理的速度较慢,使得已有的系统无法真正的发挥作用,无法在整体上将信息进行整合。 1.3人才方面 由于我国通信技术发展想对落后,特别是铁路通信这一块不够重视,投入力度不够大,造成精通铁路信号处理及研发的人才比较匮乏,现在的大部分从事铁路信号方面工作的人员都不是特别专业的,大多是从相似专业或行业转入的。特别是同时精通铁路信号处理和列车调度的人才及其匮乏。 二、铁路信号的发展趋势

铁路通信信号施工组织设计

目录 第一章工程概况 (1) 1.1编制依据 (1) 1.2编制原则 (1) 1.3施工组织设计标准 (1) 1.4工程实施概况 (1) 1.5施工范围 (1) 1.6施工条件 (2) 1.7工期要求 (2) 1.8气象: (2) 第二章施工总体部署 (3) 2.1施工组织人员安排 (3) 2.2安全施工要求及责任 (3) 2.3工程项目分工 (3) 2.4工程项目实施 (4) 2.5关键工序的施工组织措施 (4) 2.6材料采购措施 (5) 2.7临时工程安排 (5) 2.8工期 (5) 2.9安全目标 (5) 2.10质量目标 (5) 第三章主要项目施工方法和措施 (6) 3.1总体施工方案 (6) 3.2施工顺序 (6) 3.3光电缆线路施工方法 (7) 3.3.1 光缆施工工艺 (7) 3.3.2 电缆施工工艺图 (7) 3.4信号机施工方法 (10) 3.5用户系统、信息及户线施工方法 (11) 3.6安放系统施工方法 (11) 3.7设备安装施工方法 (11)

3.8电源设备安装 (11) 第四章质量保证措施 (12) 4.1施工技术措施 (12) 4.2控制工程施工措施 (12) 4.3质量保证措施 (13) 4.3.1 质量保证制度 (13) 第五章冬季和雨季施工措施 (15) 5.1冬季施工质量保证措施 (15) 5.2雨季施工质量保证措施 (15) 第六章安全保证措施 (16) 6.1安全目标 (16) 6.2安全管理机构 (16) 6.3安全管理制度 (16) 6.3.1 实行施工计划的申报和审批制度 (16) 6.3.2执行施工安全员持证上岗制 (17) 6.3.3实行安全奖惩制度 (17) 6.3.4实行安全生产责任制度 (17) 6.3.5 实行事故申报及管理制度 (17) 6.3.6 建立健全安全检查制度 (17) 6.3.7 建立民工安全管理制度 (17) 6.4保证施工安全措施 (18) 6.5保证人身、设备安全措施 (19) 第七章工期保证措施 (20) 7.1工期保证总体指导思想 (20) 7.2工期进度计划的控制 (21) 7.2.1工期进度计划的实施 (21) 7.2.2 工期进度计划的检查 (22) 7.2.3 工期进度计划的调整 (23) 第八章文明施工措施 (23) 8.1文明施工措施 (23)

国内铁路信号技术发展及趋势

国内铁路信号技术发展及趋势 铁路运输与其他各种现代化运输方式相比较,具有受自然条件影响小、运输能力大,能够负担大量客货运输的显著特点。迫于运输市场愈演愈烈的竞争,各国铁路部门都在积极采取铁路新科技来提升铁路的运输能力。而在实现高速、重载运输的同时,要保证列车的行车的安全,就不能不提到铁路信号。铁路信号设备是保证列车行车安全的重要基础设备,其技术水平发展直接影响到了行车安全水平和铁路运输效率。 1.铁路信号的定义 铁路信号是用特定的物体(包括灯)的颜色、形状、位置,或用仪表和音响设备等向铁路行车人员传达有关机车车辆运行条件、行车设备状态以及行车的指示和命令等信息。铁路信号是铁路运输系统中,保证铁路行车安全、提高区间和车站通过能力以及编解能力的手动控制及远程控制的技术和设备的总称;是在行车、调车工作中,用于向行车人员指示行车条件而规定的符号;是显示、联锁、闭塞设备的总称。 2.铁路信号作用及发展历程 铁路信号的最主要的功能就是保证铁路行车安全。 随着列车运行速度的不断提升,从最初的人持信号旗、骑马前行、引导列车前进;到逐渐发展的球形固定信号装置、电报信号、连锁机、轨道接触器、自动停车装置;到后来出现的车内信号、调度集中控制、行车指挥自动化等设备。 每一次铁路速度的提升就会要求一种新型铁路信号的出现;每次铁路信号的革新,就会给铁路运输带来一次质的飞跃。随着铁路信號技术的发展和铁路信号的广泛应用,铁路信号的发展也成为提高铁路区间和车站通过能力、增加铁路运输经济效益的一种现代化技术手段。 3.铁路信号的组成

3.1信号控制设备 信号控制设备是指信号联锁系统,是保障铁路运输安全的核心,是铁路信号中最重要的组成部分。信号控制设备通过信号传输设备接收和发送不同的信息,经由联锁关系来控制信号设备及各种信号的显示。 3.2信号显示设备 信号显示设备指接收来自于信号控制设备的信息,通过信号机,机车信号,控制台、显示器,音响等设备,采用声、光等信息,来实时反应列车和相关信号设备状态的铁路信号设备。 3.3信号传输设备 指服务于信号控制系统与信号显示系统之间,进行各种信息互通的传输设备及媒介。 3.4信号防干扰措施及设备 指为防止信号被其他因素干扰而产生错误的信号显示而设立的防干扰设备及措施。 4.国内铁路信号技术及发展趋势 4.1信号控制设备的技术发展 信号控制设备中的核心是联锁系统。 国内联锁系统发展主要历经了早期的继电器联锁,90年代时期的计算机联锁加安全型继电器执行形式的控制系统,以及目前在广泛推广的计算机联锁系统。 计算机联锁除了自身的联锁系统管理之外,还可以向旅客服务系统、列车运行监督系统以及列车指挥系统等提供信息,加快铁路运输管理的一体化的实现。随着计算机技术的迅速发展,尤其是对于可靠性技术和容错技术的深入研究,计算机联锁技术日趋成熟,我国的计算机联锁也逐步开始由计算机联锁加安全型继电器控制型向全电子计算机联锁转变。 全电子计算联锁系统是基于未来铁路及城市轨道交通联锁设备集成度高、安装速度快、维护方便的使用需求而研制;具有模块化程

铁路信号电源系统

铁路信号智能电源系统 铁路信号技术的发展,需要有综合电力电子技术、信息技术、电工新技术的更安全、更可靠、更容易维护、更方便使用、寿命更长、体积更小的新型智能化电源系统。 为满足铁路高速发展的需要、北京特锐电子科技开发有限公司、铁路部电化局北京电铁通信信号勘测设计院及郑州铁路局武汉分局武昌电务段共同研制了"铁路信号智能电源系统",并由北京特锐电子科技开发有限公司生产。 铁路信号智能电源系统的概述: 铁路信号智能电源系统属于铁路电源领域中新一代的产品,其特征为:它含有以计算机为主构成的现场检测层和电源变换层、隔离保护层。现场检测可通过远程网和局部网使远端机和副控机与主控机同步运行并可进行自动电话拨号报警和现场图像监视,主控机对电源的运行实时监测。电源变换层将输入交流电源变换为不同电压、功率、直流或交流、相互隔离、具有完善保护功能、能满足铁路信号使用要求的输出电源。隔离保护层对电源系统进行避雷保护、分级断路器保护、变压器隔离用输出短路保护。具有智能化、网络化、模块化、高可靠、高安全、高效率、小体积、少或免维护的优点。 铁路信号智能电源系统的具体特点: 本产品充分利用成熟的新技术,采用系统工程的思想,设计和研制了新型的智能化、网络化、模块化、热备份、标准化、安全型的铁路信号电源系统,充分考虑了其安全性、可靠性、易用性和易维护性。 系统具有过压/欠压/断相/错相检测的输入电源自动/半自动/手动转换系统、集中输入输出配电系统、微电脑补偿自动旁路稳压系统及R 型隔离变压器系统、UFB/辅助电源/报警一体化系统、标准化多模式双机模块直流电源系统、直流模块限流+容量冗余+完全热备份主备用结构、主/备25HZ电子变频电源系统、电子开关双机冗余闪光电源、轨装型隔离传感器系统、本地浪涌抑制系统+外配避雷系统结合的抗雷击系统、直接利用现有电话网的PSTN直接数据通路远程联网技术、对等网方式的局部联网技术、主回路分级断路器保护技术、副回路带LED显示熔断器保护、标准19英寸机柜(设备均改造为19英寸标准机箱模式)、导线连接采用先进的笼式弹簧接线端子、所有主回路断路器、接触器、继电器、模块正常/故障状态、输入输出电流/电压等均由检测计算机动态监测、记录、打印及报警,并可由设于本地另一场所的副控计算机和设于远方的远端计算机准同步检测。 本产品可以根据实际需要选择模块组合构成,以适应不同规模车站的要求。 ● 适应多种制式的高频开关电源模块 1.采用开关电源方案,效率高、体积小、重量轻,输入电压范围宽,实现AC220V±20%。 2.输出电压可调范围宽,可按使用要求全范围22V~60V连续调压。

高速铁路信号系统的抗电磁干扰技术研究

高速铁路信号系统的抗电磁干扰技术研究 发表时间:2019-06-21T16:03:58.057Z 来源:《防护工程》2019年第6期作者:刘磊 [导读] 作为高速移动的复杂巨系统,高速列车在高速运行的过程中,整个系统受到了数量众多的电磁干扰,且相关干扰多为突发性脉冲干扰。 中铁建电气化局集团南方工程有限公司湖北武汉市 430074 摘要:作为高速移动的复杂巨系统,高速列车在高速运行的过程中,整个系统受到了数量众多的电磁干扰,且相关干扰多为突发性脉冲干扰。另一方面,高速铁路采用的综合接地方式、共用的接地钢轨使得电磁骚扰传输耦合途径错综复杂,这些均对高速铁路信号系统的抗电磁干扰提出了较高挑战,由此可了解本文研究具备的较高现实意义。 关键词:高速铁路;信号系统;抗电磁干扰技术;研究 1高速铁路信号系统抗电磁干扰技术措施 1.1基本抑制措施 高速铁路信号系统的抗电磁干扰技术措施一般由三个方面入手,以高速铁路车载信号系统为例,具体的抑制措施如下:①骚扰源:高速铁路的电磁噪声在1.88~2.6GHz频段基本不会对设备的孔缝、信号端口、电源线端口造成影响,设备的天线端口也不会受到影响,因此仅需要考虑实际工程中的具体设备以采用针对性措施。②耦合途径:需考虑电缆的合理布线和接地,并保证不同类别的电缆间隔敷设,不同类别电缆之间的最小距离应遵循(表1)规定,同时保证电缆间互为直角;如出现不同类别间电缆最小距离无法满足情况,需设法将电缆隔开,一般采用连接整体屏蔽、金属电缆槽、金属板、金属管的方式,在信号电缆和电力电缆共存情况下,还需要重点关注电路馈线与回流电缆的敷设距离,保证二者尽可能拉近,将在接近导电的机车结构处安装电缆能够有效抑制电缆的发射场,一般情况下电缆屏蔽层需接地,且需要关注机箱屏蔽,机箱孔缝尺寸需满足最小波长要求,必要时可通过安装金属密闭塾片、导电性填料进行改善,接地线应短而宽并与接地面实现可靠搭接,电缆合理的接地和布线可有效提升其抗电磁干扰能力。③敏感设备:信号设备的电磁兼容性也需要得到重视,由于高速铁路车载信号系统本身属于敏感设备,该设备本身的防护措施必须得到重视,这种重视需体现在设计层面。具体来说,通信系统在设计阶段应选择适当的接收电平,电磁兼容设计需使用,浪涌防护器件设置电压限幅环节,瞬变电压抑制器、压敏电阻、硅雪崩二极管、放电管均属于常用的浪涌防护器件,此种措施下冲击电流可得到较好抑制(如雷电、变电所过流保护开关瞬时开闭引发的相关现象)。 表1 不同类别电缆之间的最小距离 同样以车载信号系统为例,其处理流程可概括为:“故障现象分析→现场实际测试→干扰耦合途径验证→敏感设备分析→抗干扰措施实施→验证试验”,通过列举可能导致故障现象的因素、选择针对性较强的仪器设备、围绕典型干扰传输耦合途径开展分析、建立被干扰信号系统电磁抗扰度模型,即可完成高质量的电磁干扰故障处理,最终合理应用抗干扰措施并验证其有效性,即可有效解决电磁干扰导致的故障问题。为取得优秀的高速铁路信号系统抗电磁干扰效果,一般需同时应用屏蔽、接地、滤波技术,但如果三种技术存在应用不当情况,则很容易引起更为严重的电磁干扰问题,因此必须保证抗干扰措施应用的针对性、定制性,并从整个系统角度思考问题,避免解决问题的过程引入新的电磁干扰耦合,结合故障实际和相关经验属于其中关键,这些必须得到相关业内人士的重点关注。 2实例分析 2.1故障现象分析 为提升研究的实践价值,本文选择了某高速列车作为研究对象,在通过某一位置时,该高速列车出现了ATP(车载自动列车防护系统)和多次报人机交互单元DMI出现通信超时故障,结合故障现象开展分析,技术人员初步确定了电磁骚扰源及其耦合途径,具体判断如下:①由于DMI临近的弱电设备未出现类似故障(通信超时故障报警时),因此可初步判断空间的辐射电磁场骚扰与主要电磁干扰信号基本不存在联系。②与DMI共用电源的弱电设备未出现类似故障,因此来自电源线的传导电压/电流骚扰与主要电磁干扰信号基本不存在联系。③ATP与DMI间的Profibus总线平行于220V交流输电线平行走线,且长度为23m,电压骚扰信号进入Profibus总线因此获得可行性较高的方式,即线间的容性耦合方式,ATP与DMI之间的数据传输也很容易出现误码故障,因此可初步判断信号线的传导电压骚扰为干扰源。 2.2敏感设备分析 图1为车载ATP系统基本结构图,结合该图不难发现,主机柜内的设备主要有JRU单元、BTM单元、DC/DC电源、车载电台、ATP核心运算单元,主机柜外则安装有天线、速度传感器、DMI单元等设备,ATP与DMI间的数据传输采用Profibus总线,设备的连接采用菊花链结构,在ATP核心运算单元支持下,总线可实现间隔性的DMI状态查询,必要时需上报DMI通信超时故障,如出现多次无法收到响应数据包的

相关主题
文本预览
相关文档 最新文档