人教A版 高中数学必修一 函数的概念
- 格式:pptx
- 大小:483.18 KB
- 文档页数:22
高一数学人教版必修一第一单元知识点:函数的基本性质高一数学人教版必修一第一单元知识点:函数的基本性质函数表示每个输入值对应唯一输出值的一种对应关系。
小编准备了高一数学人教版必修一第一单元知识点,希望你喜欢。
1.高中数学必修一函数的基本性质——函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.注意:如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合; 函数的定义域、值域要写成集合或区间的形式.定义域补充能使函数式有意义的实数 x 的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1) 分式的分母不等于零;(2) 偶次方根的被开方数不小于零;(3) 对数式的真数必须大于零;(4) 指数、对数式的底必须大于零且不等于 1.中的 x 为横坐标,函数值 y 为纵坐标的点 P(x , y) 的集合 C ,叫做函数y=f(x),(x ∈A)的图象.C 上每一点的坐标 (x , y) 均满足函数关系 y=f(x) ,反过来,以满足 y=f(x) 的每一组有序实数对 x 、 y 为坐标的点 (x , y) ,均在 C 上 . 即记为 C={ P(x,y) | y= f(x) , x ∈A }图象 C 一般的是一条光滑的连续曲线 ( 或直线 ), 也可能是由与任意平行与 Y 轴的直线最多只有一个交点的若干条曲线或离散点组成 .(2) 画法A、描点法:根据函数解析式和定义域,求出 x,y 的一些对应值并列表,以 (x,y) 为坐标在坐标系内描出相应的点P(x, y) ,最后用平滑的曲线将这些点连接起来 .B、图象变换法(请参考必修4三角函数)常用变换方法有三种,即平移变换、伸缩变换和对称变换(3) 作用:1 、直观的看出函数的性质;2 、利用数形结合的方法分析解题的思路。
3.2.1 单调性与最大(小)值最新课程标准:借助函数图象,会用符号语言表达函数的单调性、最大值、最小值,理解它们的作用和实际意义.第1课时 函数的单调性知识点一 定义域为I 的函数f (x )的单调性状元随笔 定义中的x 1,x 2有以下3个特征(1)任意性,即“任意取x 1,x 2”中“任意”二字绝不能去掉,证明时不能以特殊代替一般;(2)有大小,通常规定x 1<x 2; (3)属于同一个单调区间. 知识点二 单调性与单调区间如果函数y =f (x )在区间D 上是单调递增或单调递减,那么就说函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做y =f (x )的单调区间.状元随笔 一个函数出现两个或者两个以上的单调区间时,不能用“∪”连接,而应该用“和”连接. 如函数y =1x 在(-∞,0)和(0,+∞)上单调递减,却不能表述为:函数y=1x 在(-∞,0)∪(0,+∞)上单调递减. [教材解难]1.教材P 77思考f (x )=|x |在(-∞,0]上单调递减,在[0,+∞)上单调递增; f (x )=-x 2在(-∞,0]上单调递增,在[0,+∞)上单调递减.2.教材P 77思考(1)不能 例如反比例函数f (x )=-1x,在(-∞,0),(0,+∞)上是单调递增的,在整个定义域上不是单调递增的.(2)函数f (x )=x 在(-∞,+∞)上是单调递增的.f (x )=x 2在(-∞,0]上是单调递减,在[0,+∞)上是单调递增的. [基础自测]1.下列说法中正确的有( )①若x 1,x 2∈I ,当x 1<x 2时,f (x 1)<f (x 2),则y =f (x )在I 上是增函数; ②函数y =x 2在R 上是增函数; ③函数y =-1x在定义域上是增函数;④y =1x的单调递减区间是(-∞,0)∪(0,+∞).A .0个B .1个C .2个D .3个解析:由于①中的x 1,x 2不是任意的,因此①不正确;②③④显然不正确. 答案:A2.函数y =(2m -1)x +b 在R 上是减函数,则( ) A .m >12 B .m <12C .m >-12D .m <-12解析:使y =(2m -1)x +b 在R 上是减函数,则2m -1<0,即m <12.答案:B3.函数y =-2x 2+3x 的单调减区间是( ) A .[0,+∞) B.(-∞,0) C.⎝ ⎛⎦⎥⎤-∞,34 D.⎣⎢⎡⎭⎪⎫34,+∞ 解析:借助图象得y =-2x 2+3x 的单调减区间是⎣⎢⎡⎭⎪⎫34,+∞,故选D.答案:D4.若f(x)在R上是增函数,且f(x1)>f(x2),则x1,x2的大小关系为________.解析:∵f(x)在R上是增函数,且f(x1)>f(x2),∴x1>x2.答案:x1>x2题型一利用函数图象求单调区间[经典例题]例1 已知函数y=f(x)的图象如图所示,则该函数的减区间为( )A.(-3,1)∪(1,4) B.(-5,-3)∪(-1,1)C.(-3,-1),(1,4) D.(-5,-3),(-1,1)【解析】在某个区间上,若函数y=f(x)的图象是上升的,则该区间为增区间,若是下降的,则该区间为减区间,故该函数的减区间为(-3,-1),(1,4).【答案】 C观察图象,若图象呈上升(下降)趋势时为增(减)函数,对应的区间是增(减)区间.跟踪训练1 函数f(x)的图象如图所示,则( )A.函数f(x)在[-1,2]上是增函数B.函数f(x)在[-1,2]上是减函数C.函数f(x)在[-1,4]上是减函数D.函数f(x)在[2,4]上是增函数解析:函数单调性反映在函数图象上就是图象上升对应增函数,图象下降对应减函数,故选A.答案:A根据图象上升或下降趋势判断.题型二函数的单调性判断与证明[教材P79例3]例2 根据定义证明函数y =x +1x在区间(1,+∞)上单调递增.【证明】 ∀x 1,x 2∈(1,+∞), 且x 1<x 2,有y 1-y 2=⎝ ⎛⎭⎪⎫x 1+1x 1-⎝ ⎛⎭⎪⎫x 2+1x 2=(x 1-x 2)+⎝ ⎛⎭⎪⎫1x 1-1x 2=(x 1-x 2)+x 2-x 1x 1x 2=x 1-x 2x 1x 2(x 1x 2-1). 由x 1,x 2∈(1,+∞),得x 1>1,x 2>1. 所以x 1x 2>1,x 1x 2-1>0. 又由x 1<x 2,得x 1-x 2<0. 于是x 1-x 2x 1x 2(x 1x 2-1)<0, 即y 1<y 2.所以,函数y =x +1x在区间(1,+∞)上单调递增.先根据单调性的定义任取x 1,x 2∈(1,+∞),且x 1<x 2,再判断f(x 1)-f(x 2)的符号. 教材反思利用定义证明函数单调性的步骤注:作差变形是解题关键.跟踪训练2 利用单调性的定义,证明函数y =x +2x +1在(-1,+∞)上是减函数. 证明:设x 1,x 2是区间(-1,+∞)上任意两个实数且x 1<x 2,则f (x 1)-f (x 2)=x 1+2x 1+1-x 2+2x 2+1=x 2-x 1(x 1+1)(x 2+1), ∵-1<x 1<x 2,∴x 2-x 1>0,x 1+1>0,x 2+1>0. ∴x 2-x 1(x 1+1)(x 2+1)>0.即f (x 1)-f (x 2)>0,f (x 1)>f (x 2).∴y =x +2x +1在(-1,+∞)上是减函数. 利用四步证明函数的单调性.题型三 由函数的单调性求参数的取值范围[经典例题]例3 已知函数f (x )=x 2+2(a -1)x +2在区间(-∞,4]上是减函数,求实数a 的取值范围.【解析】 ∵f (x )=x 2-2(1-a )x +2=[x -(1-a )]2+2-(1-a )2, ∴f (x )的减区间是(-∞,1-a ]. ∵f (x )在(-∞,4]上是减函数,∴对称轴x =1-a 必须在直线x =4的右侧或与其重合. ∴1-a ≥4,解得a ≤-3. 故a 的取值范围为(-∞,-3].状元随笔 首先求出f(x)的单调减区间,求出f(x)的对称轴为x =1-a ,利用对称轴应在直线x =4的右侧或与其重合求解.方法归纳“函数的单调区间为I ”与“函数在区间I 上单调”的区别单调区间是一个整体概念,说函数的单调递减区间是I ,指的是函数递减的最大范围为区间I ,而函数在某一区间上单调,则指此区间是相应单调区间的子区间.所以我们在解决函数的单调性问题时,一定要仔细读题,明确条件含义.跟踪训练3 例3中,若将“函数在区间(-∞,4]上是减函数”改为“函数的单调递减区间为(-∞,4]”,则a 为何值?解析:由例3知函数f (x )的单调递减区间为(-∞,1-a ], ∴1-a =4,a =-3.求出函数的减区间,用端点值相等求出a.一、选择题1.定义在R 上的函数f (x )对任意两个不相等的实数a ,b ,总有f (a )-f (b )a -b>0,则必有( )A .函数f (x )先增后减B .f (x )是R 上的增函数C .函数f (x )先减后增D .函数f (x )是R 上的减函数 解析:由f (a )-f (b )a -b>0知,当a >b 时,f (a )>f (b );当a <b 时,f (a )<f (b ),所以函数f (x )是R 上的增函数.答案:B2.下列函数中,在(0,2)上为增函数的是( ) A .y =-3x +2 B .y =3xC .y =x 2-4x +5D .y =3x 2+8x -10解析:显然A 、B 两项在(0,2)上为减函数,排除;对C 项,函数在(-∞,2)上为减函数,也不符合题意;对D 项,函数在⎝ ⎛⎭⎪⎫-43,+∞上为增函数,所以在(0,2)上也为增函数,故选D.答案:D3.函数f (x )=x |x -2|的增区间是( ) A .(-∞,1] B .[2,+∞) C .(-∞,1],[2,+∞) D.(-∞,+∞)解析:f (x )=x |x -2|=⎩⎪⎨⎪⎧x 2-2x ,x ≥2,2x -x 2,x <2,作出f (x )简图如下:由图象可知f (x )的增区间是(-∞,1],[2,+∞). 答案:C4.函数y =f (x )在R 上为增函数,且f (2m )>f (-m +9),则实数m 的取值范围是( ) A .(-∞,-3) B .(0,+∞)C .(3,+∞)D .(-∞,-3)∪(3,+∞)解析:因为函数y =f (x )在R 上为增函数,且f (2m )>f (-m +9),所以2m >-m +9,即m >3.答案:C 二、填空题5.如图所示为函数y =f (x ),x ∈[-4,7]的图象,则函数f (x )的单调递增区间是____________.解析:由图象知单调递增区间为[-1.5,3]和[5,6]. 答案:[-1.5,3]和[5,6]6.若f (x )在R 上是单调递减的,且f (x -2)<f (3),则x 的取值范围是________. 解析:函数的定义域为R .由条件可知,x -2>3,解得x >5. 答案:(5,+∞)7.函数y =|x 2-4x |的单调减区间为________.解析:画出函数y =|x 2-4x |的图象,由图象得单调减区间为:(-∞,0],[2,4].答案:(-∞,0],[2,4] 三、解答题8.判断并证明函数f (x )=-1x+1在(0,+∞)上的单调性.解析:函数f (x )=-1x+1在(0,+∞)上是增函数.证明如下:设x 1,x 2是(0,+∞)上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫-1x 1+1-⎝ ⎛⎭⎪⎫-1x 2+1=x 1-x 2x 1x 2,由x 1,x 2∈(0,+∞),得x 1x 2>0, 又由x 1<x 2,得x 1-x 2<0, 于是f (x 1)-f (x 2)<0, 即f (x 1)<f (x 2),∴f (x )=-1x+1在(0,+∞)上是增函数.9.作出函数f (x )=⎩⎪⎨⎪⎧-x -3,x ≤1,(x -2)2+3,x >1的图象,并指出函数的单调区间.解析:f (x )=⎩⎪⎨⎪⎧-x -3,x ≤1,(x -2)2+3,x >1的图象如图所示.由图象可知:函数的单调减区间为(-∞,1]和(1,2];单调递增区间为(2,+∞). [尖子生题库]10.已知f (x )是定义在[-1,1]上的增函数,且f (x -2)<f (1-x ),求x 的取值范围. 解析:∵f (x )是定义在[-1,1]上的增函数, 且f (x -2)<f (1-x ), ∴⎩⎪⎨⎪⎧-1≤x -2≤1,-1≤1-x ≤1,x -2<1-x ,解得1≤x <32,所以x 的取值范围为1≤x <32.。
第三章函数概念与性质3.1.1.1函数的概念 (1)3.1.1.2函数概念的应用 (6)3.1.2.1函数的表示法 (10)3.1.2.2分段函数 (14)3.2.1.1函数的单调性 (21)3.2.1.2函数的最大(小)值 (25)3.2.2.1函数奇偶性的概念 (30)3.2.2.2函数奇偶性的应用 (35)3.3幂函数 (37)3.4函数的应用(一) (41)3.1.1.1函数的概念要点整理1.函数的概念(1)函数的定义设A,B是非空的实数集,如果对于集合A中的任意一个数x,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B 为从集合A到集合B的一个函数,记作y=f(x),x∈A.(2)函数的定义域与值域函数y=f(x)中,x叫做自变量,x的取值范围A叫做函数的定义域,与x 的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.(3)对应关系f:除解析式、图象表格外,还有其他表示对应关系的方法,引进符号f统一表示对应关系.温馨提示:(1)当A,B为非空数集时,符号“f:A→B”表示A到B的一个函数.(2)集合A中的数具有任意性,集合B中的数具有唯一性.(3)符号“f”它表示对应关系,在不同的函数中f的具体含义不一样.2.区间概念(a,b为实数,且a<b)3.其他区间的表示题型一函数关系的判断【典例1】(1)判断下列对应是不是从集合A到集合B的函数.①A=N,B=N*,对应法则f:对集合A中的元素取绝对值与B中元素对应;②A={-1,1,2,-2},B={1,4},对应法则f:x→y=x2,x∈A,y∈B;③A={-1,1,2,-2},B={1,2,4},对应法则f:x→y=x2,x∈A,y∈B;④A={三角形},B={x|x>0},对应法则f:对A中元素求面积与B中元素对应.(2)设M={x|-2≤x≤2},N={y|0≤y≤2},函数y=f(x)的定义域为M,值域为N,对于下列四个图象,不可作为函数y=f(x)的图象的是( )[思路导引] 在“非空数集”A中“任取x”,在对应关系“f”作用下,B中“有唯一”的“数f(x)”与之“对应”,称f:A→B为集合A到集合B的一个函数.[解析](1)①对于A中的元素0,在f的作用下得0,但0不属于B,即A 中的元素0在B中没有元素与之对应,所以不是函数.②对于A中的元素±1,在f的作用下与B中的1对应,A中的元素±2,在f的作用下与B中的4对应,所以满足A中的任一元素与B中唯一元素对应,是“多对一”的对应,故是函数.③对于A中的任一元素,在对应关系f的作用下,B中都有唯一的元素与之对应,如±1对应1,±2对应4,所以是函数.④集合A不是数集,故不是函数.(2)由函数定义可知,任意作一条直线x=a,则与函数的图象至多有一个交点,结合选项可知C中图象不表示y是x的函数.[答案](1)见解析(2)C(1)判断对应关系是否为函数的2个条件①A、B必须是非空数集.②A中任意一元素在B中有且只有一个元素与之对应.(2)根据图形判断对应是否为函数的方法①任取一条垂直于x轴的直线l.②在定义域内平行移动直线l.③若l与图形有且只有一个交点,则是函数;若在定义域内没有交点或有两个或两个以上的交点,则不是函数.题型二用区间表示数集【典例2】把下列数集用区间表示,并在数轴上表示出来.(1){x|x≥3};(2){x|x<-5};(3){x|-4≤x<2或3<x≤5}.[思路导引] 用区间表示数集的关键是确定开、闭区间,含“或”的数集用符号“∪”连接区间.[解](1){x|x≥3}用区间表示为[3,+∞),用数轴表示如图.(2){x|x<-5}用区间表示为(-∞,-5),用数轴表示如图.(3){x|-4≤x<2或3<x≤5}用区间表示为[-4,2)∪(3,5],用数轴表示如图.应用区间时的3个注意点(1)区间是数集,区间的左端点小于右端点.(2)在用区间表示集合时,开和闭不能混淆.(3)用数轴表示区间时,用实心点表示包括在区间内的端点,用空心圈表示不包括在区间内的端点.[针对训练]3.已知全集U=R,A={x|-1<x≤5},则∁U A用区间表示为__________________.[解析]∁U A={x|x≤-1或x>5}=(-∞,-1]∪(5,+∞).[答案](-∞,-1]∪(5,+∞)4.用区间表示不等式{x|x2-x-6≥0}的解集为______________________.[解析]不等式x2-x-6=(x-3)(x+2)≥0,解得x≥3或x≤-2,所以不等式的解集为{x|x≤-2或x≥3}=(-∞,-2]∪[3,+∞).[答案](-∞,-2]∪[3,+∞)题型三求函数的定义域【典例3】求下列函数的定义域.(1)y=2+3x-2;(2)y=(x-1)0+2x+1;(3)y =3-x ·x -1; (4)y =(x +1)2x +1--x 2-x +6.[思路导引] 函数定义域即是使自变量x 有意义的取值范围.[解] (1)当且仅当x -2≠0,即x ≠2时,函数y =2+3x -2有意义,所以这个函数的定义域为{x |x ≠2}.(2)函数有意义,当且仅当⎩⎪⎨⎪⎧x -1≠0,2x +1≥0,x +1≠0,解得x >-1,且x ≠1,所以这个函数的定义域为{x |x >-1且x ≠1}.(3)函数有意义,当且仅当⎩⎨⎧3-x ≥0,x -1≥0,解得1≤x ≤3,所以这个函数的定义域为{x |1≤x ≤3}.(4)要使函数有意义,自变量x 的取值必须满足⎩⎨⎧x +1≠0,-x 2-x +6≥0,即⎩⎨⎧x ≠-1,x 2+x -6≤0,即⎩⎨⎧x ≠-1,(x +3)(x -2)≤0,解得-3≤x ≤2且x ≠-1,即函数定义域为{x |-3≤x ≤2且x ≠-1}.[变式] (1)将本例(3)中“y =3-x ·x -1”改为“y =(3-x )(x -1)”,则其定义域是什么?(2)将本例(3)中“y =3-x ·x -1”改为“y =3-xx -1”,则其定义域是什么?[解] (1)要使函数有意义,只需(3-x )(x -1)≥0,解得1≤x ≤3,即定义域为{x |1≤x ≤3}.(2)要使函数有意义,则⎩⎨⎧3-x ≥0,x -1>0,解得1<x ≤3,即定义域为{x |1<x ≤3}.求函数定义域的几种类型(1)若f(x)是整式,则函数的定义域是R.(2)若f(x)是分式,则应考虑使分母不为零.(3)若f(x)是偶次根式,则被开方数大于或等于零.(4)若f(x)是由几个式子构成的,则函数的定义域是几个部分定义域的交集.(5)若f(x)是实际问题的解析式,则应符合实际问题,使实际问题有意义.3.1.1.2函数概念的应用要点整理1.常见函数的定义域和值域2.函数的三要素由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域.3.相同函数值域是由定义域和对应关系决定的,如果两个函数的定义域和对应关系相同,我们就称这两个函数是同一函数.两个函数如果仅对应关系相同,但定义域不同,则它们不是相同的函数.题型一同一函数的判断【典例1】下列各组式子是否表示同一函数?为什么?(1)f(x)=|x|,φ(t)=t2;(2)y=x2,y=(x)2;(3)y=1+x·1-x,u=1-v2;(4)y=(3-x)2,y=x-3.[思路导引] 两个函数表示同一函数的关键条件是定义域相同,对应关系一致.[解](1)f(x)与φ(t)的定义域相同,又φ(t)=t2=|t|,即f(x)与φ(t)的对应关系也相同,∴f(x)与φ(t)是同一函数.(2)y=x2的定义域为R,y=(x)2的定义域为{x|x≥0},两者定义域不同,故y=x2与y=(x)2不是同一函数.(3)y=1+x·1-x的定义域为{x|-1≤x≤1},u=1-v2的定义域为{v|-1≤v≤1},即两者定义域相同.又∵y=1+x·1-x=1-x2,∴两函数的对应关系也相同.故y=1+x·1-x与u=1-v2是同一函数.(4)∵y=(3-x)2=|x-3|与y=x-3的定义域相同,但对应关系不同,∴y=(3-x)2与y=x-3不是同一函数.判断两个函数为同一函数的方法判断两个函数是否为同一函数,要先求定义域,若定义域不同,则不是同一函数;若定义域相同,再化简函数的解析式,看对应关系是否相同.题型二求函数值和值域【典例2】(1)已知f(x)=11+x(x∈R,且x≠-1),g(x)=x2+2(x∈R).①求f(2)、g(2)的值;②求f[g(3)]的值.(2)求下列函数的值域:①y=x+1,x∈{1,2,3,4,5};②y=x2-2x+3,x∈[0,3);③y =2x +1x -3; ④y =2x -x -1.[思路导引] (1)代入法求值;(2)结合解析式的特征选择适当的方法求值域. [解] (1)①∵f (x )=11+x ,∴f (2)=11+2=13.又∵g (x )=x 2+2,∴g (2)=22+2=6. ②g (3)=32+2=11, ∴f [g (3)]=f (11)=11+11=112. (2)①(观察法)∵x ∈{1,2,3,4,5},分别代入求值,可得函数的值域为{2,3,4,5,6}.②(配方法)y =x 2-2x +3=(x -1)2+2, 由x ∈[0,3),可得函数的值域为[2,6). ③(分离常数法)y =2x +1x -3=2(x -3)+7x -3=2+7x -3, 显然7x -3≠0,∴y ≠2. 故函数的值域为(-∞,2)∪(2,+∞). ④(换元法)设x -1=t , 则t ≥0,且x =t 2+1.∴y =2(t 2+1)-t =2t 2-t +2=2⎝ ⎛⎭⎪⎫t -142+158.∵t ≥0,∴y ≥158. 故函数的值域为⎣⎢⎡⎭⎪⎫158,+∞.(1)函数求值的方法①已知f (x )的表达式时,只需用a 替换表达式中的x 即得f (a )的值. ②求f [g (a )]的值应遵循由里往外的原则. (2)求函数值域常用的4种方法①观察法:对于一些比较简单的函数,其值域可通过观察得到;②配方法:当所给函数是二次函数或可化为二次函数处理的函数时,可利用配方法求其值域;③分离常数法:此方法主要是针对有理分式,即将有理分式转化为“反比例函数类”的形式,便于求值域;④换元法:即运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域.对于f (x )=ax +b +cx +d (其中a ,b ,c ,d 为常数,且a ≠0)型的函数常用换元法.题型三求抽象函数的定义域【典例3】 已知函数f (x )的定义域为[1,3],求函数f (2x +1)的定义域. [思路导引] 定义域是x 的取值范围,f (x )中的x 与f (2x +1)中的2x +1是相对应的.[解] 因为函数f (x )的定义域为[1,3],即x ∈[1,3],函数f (2x +1)中2x +1的范围与函数f (x )中x 的范围相同,所以2x +1∈[1,3],所以x ∈[0,1],即函数f (2x +1)的定义域是[0,1].[变式] (1)若将本例条件改为“函数f (2x +1)的定义域为[1,3]”,求函数f (x )的定义域.(2)若将本例条件改为“函数f (1-x )的定义域为[1,3]”,其他不变,如何求解?[解] (1)因为x ∈[1,3],所以2x +1∈[3,7],即函数f (x )的定义域是[3,7]. (2)因为函数f (1-x )的定义域为[1,3], 所以x ∈[1,3],所以1-x ∈[-2,0], 所以函数f (x )的定义域为[-2,0]. 由2x +1∈[-2,0],得x ∈⎣⎢⎡⎦⎥⎤-32,-12,所以f (2x +1)的定义域为⎣⎢⎡⎦⎥⎤-32,-12.两类抽象函数的定义域的求法(1)已知f(x)的定义域,求f[g(x)]的定义域:若f(x)的定义域为[a,b],则f[g(x)]中a≤g(x)≤b,从中解得x的取值集合即为f[g(x)]的定义域.(2)已知f[g(x)]的定义域,求f(x)的定义域:若f[g(x)]的定义域为[a,b],即a≤x≤b,求得g(x)的取值范围,g(x)的值域即为f(x)的定义域.3.1.2.1函数的表示法要点整理温馨提示:列表法、图象法和解析法是从三个不同的角度刻画自变量与函数值的对应关系,同一个函数可以用不同的方法表示.题型一函数的表示法【典例1】某商场新进了10台彩电,每台售价3000元,试求售出台数x 与收款数y之间的函数关系,分别用列表法、图象法、解析法表示出来.[思路导引] 把自变量与函数值的对应关系分别用表格、图象和数学表达式加以刻画.[解]①列表法③解析法:y=3000x,x∈{1,2,3,…,10}.理解函数的表示法的3个关注点(1)列表法、图象法、解析法均是函数的表示法,无论用哪种方式表示函数,都必须满足函数的概念.(2)判断所给图象、表格、解析式是否表示函数的关键在于是否满足函数的定义.(3)函数的三种表示法互相兼容或补充,许多函数是可以用三种方法表示的,但在实际操作中,仍以解析法为主.题型二函数的图象【典例2】作出下列函数的图象并求出其值域.(1)y=2x,x∈[2,+∞);(2)y=x2+2x,x∈[-2,2].[思路导引] 通过“列表→描点→连线”作出函数图象,借助图象求出函数值域.[解](1)列表:画图象,当x∈[2,+∞)时,图象是反比例函数y=2x的一部分(图1),观察图象可知其值域为(0,1].(2)列表:(图2).由图可得函数的值域是[-1,8].描点法作函数图象的3个关注点(1)画函数图象时首先关注函数的定义域,即在定义域内作图. (2)图象是实线或实点,定义域外的部分有时可用虚线来衬托整个图象. (3)要标出某些关键点,例如图象的顶点、端点、与坐标轴的交点等.要分清这些关键点是实心点还是空心点.题型三函数解析式的求法【典例3】 (1)已知f (x )是二次函数,且满足f (0)=1,f (x +1)-f (x )=2x ,求f (x )的解析式;(2)已知函数f (x +1)=x +2x +1,求f (x )的解析式; (3)已知函数f (x )满足2f (x )+f ⎝ ⎛⎭⎪⎫1x =3x ,求f (x )的解析式.[思路导引] 求函数解析式,就是寻找函数三要素中的对应关系,即在已知自变量和函数值的条件下求对应关系的表达式.[解] (1)设f (x )=ax 2+bx +c (a ≠0), ∵f (0)=1,∴c =1.∴f (x +1)-f (x )=a (x +1)2+b (x +1)+c -(ax 2+bx +c )=2ax +a +b . 又f (x +1)-f (x )=2x ,∴⎩⎨⎧2a =2,a +b =0.∴⎩⎨⎧a =1,b =-1.∴f (x )=x 2-x +1.(2)解法一:∵f (x +1)=x +2x +1=(x +1)2, ∴f (x )=x 2.又x +1≥1,∴f (x )=x 2(x ≥1). 解法二:令t =x +1,则x =(t -1)2. 由于x ≥0,所以t ≥1.代入原式有f (t )=(t -1)2+2(t -1)+1=t 2, 所以f (x )=x 2(x ≥1). (3)∵2f (x )+f ⎝ ⎛⎭⎪⎫1x =3x ,①∴将x 用1x替换,得2f ⎝ ⎛⎭⎪⎫1x +f (x )=3x ,②联立①②得⎩⎪⎨⎪⎧2f (x )+f ⎝ ⎛⎭⎪⎫1x =3x ,2f ⎝ ⎛⎭⎪⎫1x +f (x )=3x ,解得f (x )=2x -1x(x ≠0),即f (x )的解析式是f (x )=2x -1x(x ≠0).[变式] (1)若将本例(2)中条件“f (x +1)=x +2x +1”变为“f ⎝ ⎛⎭⎪⎫1x +1=1x2-1”,则f (x )的解析式是什么?(2)若将本例(3)中条件“2f (x )+f ⎝ ⎛⎭⎪⎫1x =3x ”变为“f (x )-2f (-x )=9x +2”,则f (x )的解析式是什么?[解] (1)f ⎝ ⎛⎭⎪⎫1x +1=⎝ ⎛⎭⎪⎫1x +12-2⎝ ⎛⎭⎪⎫1x +1,所以f (x )=x 2-2x .因为1x ≠0,所以1x+1≠1,所以f (x )=x 2-2x (x ≠1).(2)由条件知,f (-x )-2f (x )=-9x +2, 则⎩⎨⎧f (x )-2f (-x )=9x +2,f (-x )-2f (x )=-9x +2,解得f (x )=3x -2.求函数解析式的3种常用方法(1)待定系数法:若已知函数的类型,可用待定系数法求解,即由函数类型设出函数解析式,再根据条件列方程(组),通过解方程(组)求出待定系数,进而求出函数解析式.如典例3(1).(2)换元法(有时可用“配凑法”):已知函数f [g (x )]的解析式求f (x )的解析式,可用换元法(或“配凑法”),即令g (x )=t ,反解出x ,然后代入f [g (x )]中求出f (t ),从而求出f (x ).如典例3(2).(3)解方程组法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).如典例3(3).3.1.2.2分段函数要点整理1.分段函数就是在函数定义域内,对于自变量x 的不同取值范围,有着不同的对应关系的函数.2.分段函数是一个函数,其定义域、值域分别是各段函数的定义域、值域的并集;各段函数的定义域的交集是空集.温馨提示:(1)分段函数虽然由几部分构成,但它仍是一个函数而不是几个函数.(2)分段函数的“段”可以是等长的,也可以是不等长的.如y =⎩⎨⎧1,-2≤x ≤0,x ,0<x ≤3,其“段”是不等长的.(3)分段函数的图象要分段来画. 题型一分段函数求值【典例1】已知函数f (x )=⎩⎪⎨⎪⎧1+1x,x >1,x 2+1,-1≤x ≤1,2x +3,x <-1.(1)求f (f (f (-2)))的值; (2)若f (a )=32,求a .[思路导引] 根据自变量取值范围代入对应解析式求值. [解] (1)∵-2<-1,∴f (-2)=2×(-2)+3=-1, ∴f [f (-2)]=f (-1)=2, ∴f (f (f (-2)))=f (2)=1+12=32.(2)当a >1时,f (a )=1+1a =32,∴a =2>1;当-1≤a ≤1时,f (a )=a 2+1=32,∴a =±22∈[-1,1]; 当a <-1时,f (a )=2a +3=32,∴a =-34>-1(舍去).综上,a =2或a =±22.(1)分段函数求值,一定要注意所给自变量的值所在的范围,代入相应的解析式求解.对于含有多层“f ”的问题,要按照“由内到外”的顺序,逐层处理.(2)已知函数值,求自变量的值时,要先将“f ”脱掉,转化为关于自变量的方程求解.题型二分段函数的图象【典例2】 (1)作出下列分段函数的图象:①y =⎩⎨⎧1x ,0<x <1,x ,x ≥1;②y =|x +1|.(2)如图所示,在边长为4的正方形ABCD 的边上有一点P ,沿着折线BCDA 由B (起点)向点A (终点)运动.设点P 运动路程为x ,△ABP 的面积为y ,求:①y 与x 之间的函数关系式; ②画出y =f (x )的图象.[思路导引] (1)利用描点法分段作图;(2)先依据x 的变化范围求出关系式. [解] (1)①函数图象如图1所示.②y =|x +1|=⎩⎨⎧-x -1,x <-1,x +1,x ≥-1,其图象如图2所示.(2)①y =⎩⎨⎧2x ,0≤x ≤4,8,4<x ≤8,24-2x ,8<x ≤12.②分段函数图象的画法(1)作分段函数的图象时,分别作出各段的图象,在作每一段图象时,先不管定义域的限制,作出其图象,再保留定义域内的一段图象即可.(2)对含有绝对值的函数,要作出其图象,首先应根据绝对值的意义去掉绝对值符号,将函数转化为分段函数,然后分段作出函数图象.题型三分段函数的综合问题【典例3】 已知函数f (x )=|x -3|-|x +1|. (1)求f (x )的值域; (2)解不等式:f (x )>0;(3)若直线y =a 与f (x )的图象无交点,求实数a 的取值范围. [思路导引] 去掉绝对值符号,化简f (x ),再分段求解. [解] 若x ≤-1,则x -3<0,x +1≤0,f (x )=-(x -3)+(x +1)=4; 若-1<x ≤3,则x -3≤0,x +1>0,f (x )=-(x -3)-(x +1)=-2x +2; 若x >3,则x -3>0,x +1>0,f (x )=(x -3)-(x +1)=-4.∴f (x )=⎩⎨⎧4,x ≤-1,-2x +2,-1<x ≤3,-4,x >3.(1)-1<x ≤3时,-4≤-2x +2<4.∴f (x )的值域为[-4,4)∪{4}∪{-4}=[-4,4]. (2)f (x )>0,即⎩⎨⎧x ≤-1,4>0,①或⎩⎨⎧-1<x ≤3,-2x +2>0,②或⎩⎨⎧x >3,-4>0,③解①得x ≤-1,解②得-1<x <1,解③得x ∈∅.所以f (x )>0的解集为(-∞,-1]∪(-1,1)∪∅=(-∞,1). (3)f (x )的图象如图:由图可知,当a ∈(-∞,-4)∪(4,+∞)时,直线y =a 与f (x )的图象无交点.[变式] 若a ∈R ,试探究方程f (x )=a 解的个数.[解] 由例3(3)知y =f (x )的图象,作出直线y =a ,可以看出:当a =±4时,y =a 与y =f (x )有无数个交点;当-4<a <4时,y =a 与y =f (x )有且仅有一个交点;当a <-4或a >4时,y =a 与y =f (x )没有交点.综上可知:当a =±4时,方程f (x )=a 有无数个解. 当-4<a <4时,方程f (x )=a 有一个解. 当a <-4或a >4时,方程f (x )=a 无解.研究分段函数要牢牢抓住的2个要点(1)分段研究.在每一段上研究函数.(2)合并表达.因为分段函数无论分成多少段,仍是一个函数,对外是一个整体.题型四分段函数在实际问题中的应用【典例4】 某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15~20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y (℃)随时间x (h)变化的函数图象,其中AB 段是恒温阶段,BC 段是双曲线y =k x的一部分,请根据图中信息解答下列问题:(1)求y 与x 的函数关系式;(2)大棚内的温度为18℃时是否适宜该品种蔬菜的生长?(3)恒温系统在一天内保持大棚里的适宜新品种蔬菜的生长温度有多少小时?[思路导引] 利用待定系数法求出x 在每一段上的解析式,再分段研究. [解] (1)设线段AD 的解析式为y =mx +n (m ≠0), 将点A (2,20),D (0,10)代入, 得⎩⎨⎧2m +n =20n =10,解得⎩⎨⎧m =5n =10,∴线段AD 的解析式为y =5x +10(0≤x ≤2). ∵双曲线y =k x经过B (12,20), ∴20=k 12,解得k =240,∴BC 段的解析式为y =240x(12≤x ≤24).综上所述,y 与x 的函数解析式为: y =⎩⎪⎨⎪⎧5x +10(0≤x ≤2)20(2<x <12)240x (12≤x ≤24).(2)当x =18时,y =24018=403,由于403<15,∴大棚内的温度为18℃时不适宜该品种蔬菜的生长. (3)令y =15,当0≤x ≤2时,解5x +10=15,得x =1, 当12≤x ≤24时,解240x=15,得x =16.由于16-1=15(小时),∴恒温系统在一天内保持大棚里的适宜新品种蔬菜的生长温度有15小时.对于应用题,要在分析题意基础上,弄清变量之间的关系,然后选择适当形式加以表示;若根据图象求解析式,则要分段用待定系数法求出,最后用分段函数表示,分段函数要特别地把握准定义域的各个“分点”.3.2.1.1函数的单调性要点整理1.函数的单调性温馨提示:定义中的x1,x2有以下3个特征(1)任意性,即“任意取x1,x2”中“任意”二字绝不能去掉,证明时不能以特殊代替一般;(2)有大小,通常规定x1<x2;(3)属于同一个单调区间.2.函数的单调区间如果函数y=f(x)在区间D上单调递增或单调递减,那么就说函数y=f(x)在这一区间上具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.温馨提示:(1)函数的单调性是对定义域内某个区间而言的,它是函数的一个局部性质.(2)函数f(x)在定义域的某个区间D上单调,不一定在定义域上单调.如f(x)=x2等.(3)并非所有的函数都具有单调性,如f (x )= ⎩⎨⎧1,x 是偶数0,x 是奇数,它的定义域是N ,但不具有单调性.题型一函数单调性的判断与证明【典例1】 证明函数f (x )=x +4x在(-∞,-2)上是增函数.[思路导引] 设出∀x 1<x 2<-2,判定f (x 1)与f (x 2)的大小关系. [证明] ∀x 1,x 2∈(-∞,-2),且x 1<x 2, 则f (x 1)-f (x 2)=x 1+4x 1-x 2-4x 2=(x 1-x 2)+4(x 2-x 1)x 1x 2=(x 1-x 2)(x 1x 2-4)x 1x 2.∵x 1<x 2<-2,∴x 1-x 2<0,x 1x 2>4,x 1x 2-4>0.∴f (x 1)-f (x 2)<0, 即f (x 1)<f (x 2).∴函数f (x )=x +4x在(-∞,-2)上是增函数.证明或判断函数单调性的方法步骤题型二求函数的单调区间【典例2】 求下列函数的单调区间: (1)f (x )=1x -1; (2)f (x )=|x 2-3x +2|.[思路导引] (1)先求出函数的定义域,再利用定义求解;(2)作出函数y =x 2-3x +2的图象,再将x 轴下方的图象翻折到x 轴上方,结合图象写出f (x )的单调区间.[解] (1)函数f (x )=1x -1的定义域为(-∞,1)∪(1,+∞), ∀x 1,x 2∈(-∞,1),且x 1<x 2,则f (x 1)-f (x 2)=1x 1-1-1x 2-1=x 2-x 1(x 1-1)(x 2-1). 因为x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).所以函数f (x )在(-∞,1)上单调递减,同理函数f (x )在(1,+∞)上单调递减.综上,函数f (x )的单调递减区间是(-∞,1),(1,+∞). (2)f (x )=|x 2-3x +2|=⎩⎨⎧x 2-3x +2,x ≤1或x ≥2,-(x 2-3x +2),1<x <2.作出函数的图象,如图所示. 根据图象,可知,单调递增区间是⎣⎢⎡⎦⎥⎤1,32和[2,+∞);单调递减区间是(-∞,1]和⎣⎢⎡⎦⎥⎤32,2.(1)求函数单调区间的2种方法①定义法:即先求出定义域,再利用定义法进行判断求解. ②图象法:即先画出图象,根据图象求单调区间. (2)求函数单调区间的注意点一个函数出现两个或两个以上的单调区间时,不能用“∪”连接两个单调区间,而要用“和”或“,”连接.题型三函数单调性的应用【典例3】 (1)已知函数f (x )=x 2-2(1-a )x +2在[4,+∞)上是增函数,求实数a 的取值范围.(2)已知y =f (x )在定义域(-∞,+∞)上是减函数,且f (1-a )<f (2a -1),求a 的取值范围.[思路导引] 二次函数的单调性由开口方向及对称轴确定,与函数值有关的不等式问题依据单调性转化为自变量的不等关系.[解] (1)∵f (x )=x 2-2(1-a )x +2=[x -(1-a )]2+2-(1-a )2, ∴f (x )的增区间是[1-a ,+∞). 又∵已知f (x )在[4,+∞)上是增函数, ∴1-a ≤4,即a ≥-3.∴所求实数a 的取值范围是[-3,+∞).(2)∵f (x )在R 上是减函数,且f (1-a )<f (2a -1), ∴1-a >2a -1,得a <23,∴a 的取值范围是⎝⎛⎭⎪⎫-∞,23.[变式] (1)若本例(1)条件改为“函数f (x )=x 2-2(1-a )x +2的单调递增区间为[4,+∞)”,其他条件不变,如何求解?(2)若本例(2)中“定义域(-∞,+∞)”改为“定义域(-1,1)”,其他条件不变,如何求解?[解] (1)∵f (x )=x 2-2(1-a )x +2=[x -(1-a )]2+2-(1-a )2, ∴f (x )的递增区间为[1-a ,+∞). ∴1-a =4,得a =-3. (2)由题意可知⎩⎨⎧-1<1-a <1,-1<2a -1<1.解得0<a <1.①又f (x )在(-1,1)上是减函数,且f (1-a )<f (2a -1), ∴1-a >2a -1,即a <23.②由①②可知,0<a <23,即所求a 的取值范围是⎝ ⎛⎭⎪⎫0,23.函数单调性的3个应用要点(1)二次函数的单调性由于只与对称轴及开口方向有关,因此处理起来较容易,只需结合图象即可获解.(2)已知函数的单调性求参数的取值范围的方法是:视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,通过与已知单调区间比较,求参数的取值范围.(3)需注意若一函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的.3.2.1.2函数的最大(小)值要点整理 1.最大值(1)定义:一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足: ①∀x ∈I ,都有f (x )≤M ; ②∃x 0∈I ,使得f (x 0)=M .那么,称M 是函数y =f (x )的最大值.(2)几何意义:函数y =f (x )的最大值是图象最高点的纵坐标. 2.最小值(1)定义:一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足: ①∀x ∈I ,都有f (x )≥M ; ②∃x 0∈I ,使得f (x 0)=M .那么,称M 是函数y =f (x )的最小值.(2)几何意义:函数y =f (x )的最小值是图象最低点的纵坐标.温馨提示:(1)最大(小)值必须是一个函数值,是值域中的一个元素. (2)并不是每一个函数都有最值,如函数y =1x,既没有最大值,也没有最小值.(3)最值是函数的整体性质,即在函数的整个定义域内研究其最值. 题型一图象法求函数的最大(小)值【典例1】(1)已知函数f (x )=⎩⎨⎧x 2,-1≤x ≤1,1x ,x >1.求f (x )的最大值、最小值;(2)画出函数f (x )=⎩⎨⎧-2x,x ∈(-∞,0),x 2+2x -1,x ∈[0,+∞)的图象,并写出函数的单调区间,函数的最小值.[思路导引] 作出函数f (x )的图象,结合图象求解. [解] (1)作出函数f (x )的图象(如图1).由图象可知,当x =±1时,f (x )取最大值为f (±1)=1;当x =0时,f (x )取最小值f (0)=0,故f (x )的最大值为1,最小值为0.(2)f(x)的图象如图2所示,f(x)的单调递增区间是(-∞,0)和[0,+∞),函数的最小值为f(0)=-1.图象法求最大(小)值的步骤题型二利用单调性求函数的最大(小)值【典例2】已知函数f(x)=x+1 x .(1)证明:f(x)在(1,+∞)内是增函数;(2)求f(x)在[2,4]上的最值.[解](1)证明:设∀x1,x2∈(1,+∞),且x1<x2.则f(x1)-f(x2)=x1+1x1-x 2-1x2=(x1-x2)·⎝⎛⎭⎪⎫1-1x1x2=(x1-x2)(x1x2-1)x1x2.∵x2>x1>1,∴x1-x2<0,又∵x1x2>1,∴x1x2-1>0,故(x1-x2)·(x1x2-1)x1x2<0,即f(x1)<f(x2),所以f(x)在(1,+∞)内是增函数.∴当x∈[2,4]时,f(2)≤f(x)≤f(4).又f(2)=2+12=52,f(4)=4+14=174,∴f(x)在[2,4]上的最大值为174,最小值为52.函数的最值与单调性的关系(1)如果函数y=f(x)在区间(a,b]上是增函数,在区间[b,c)上是减函数,则函数y=f(x),x∈(a,c)在x=b处有最大值f(b).(2)如果函数y=f(x)在区间(a,b]上是减函数,在区间[b,c)上是增函数,则函数y=f(x),x∈(a,c)在x=b处有最小值f(b).(3)如果函数y=f(x)在区间[a,b]上是增(减)函数,则在区间[a,b]的左、右端点处分别取得最小(大)值、最大(小)值.题型三求二次函数的最大(小)值【典例3】(1)已知函数f(x)=3x2-12x+5,x∈[0,3],求函数的最大值和最小值.(2)求二次函数f(x)=x2-2ax+2在[2,4]上的最小值.[思路导引] 找出f(x)的对称轴,分析对称轴与给定区间的关系,结合单调性求最值.[解] (1)函数f(x)=3x2-12x+5=3(x-2)2-7,函数f(x)=3(x-2)2-7的图象如图所示,由图可知,函数f(x)在[0,2)上递减,在[2,3]上递增,并且f(0)=5,f(2)=-7,f(3)=-4,所以在[0,3]上,f(x)max=f(0)=5,f(x)min =f(2)=-7.(2)∵函数图象的对称轴是x=a,∴f (x )min =f (2)=6-4a .当a >4时,f (x )在[2,4]上是减函数, ∴f (x )min =f (4)=18-8a .当2≤a ≤4时,f (x )min =f (a )=2-a 2.∴f (x )min=⎩⎨⎧6-4a ,a <2,2-a 2,2≤a ≤4,18-8a ,a >4.[变式] 本例(2)条件变为,若f (x )=x 2-2ax +2,当x ∈[2,4]时,f (x )≤a 恒成立,求实数a 的取值范围.[解] 在[2,4]内,f (x )≤a 恒成立, 即a ≥x 2-2ax +2在[2,4]内恒成立, 即a ≥f (x )max ,x ∈[2,4]. 又f (x )max =⎩⎨⎧18-8a ,a ≤3,6-4a ,a >3.①当a ≤3时,a ≥18-8a ,解得a ≥2,此时有2≤a ≤3. ②当a >3时,a ≥6-4a ,解得a ≥65,此时有a >3.综上有实数a 的取值范围是[2,+∞).求解二次函数最值问题的顺序(1)确定对称轴与抛物线的开口方向、作图. (2)在图象上标出定义域的位置. (3)观察单调性写出最值.题型四实际应用中的最值【典例4】 某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R (x )=⎩⎨⎧400x -12x 2,0≤x ≤400,80000,x >400.其中x 是仪器的月产量.(1)将利润表示为关于月产量的函数f (x );(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润)[思路导引] 先将利润表示成关于x 的函数,再利用函数的单调性求最值. [解] (1)月产量为x 台,则总成本为(20000+100x )元,从而f (x )=⎩⎨⎧-12x 2+300x -20000,0≤x ≤400,60000-100x ,x >400.(2)当0≤x ≤400时,f (x )=-12(x -300)2+25000,当x =300时,f (x )max =25000;当x >400时,f (x )=60000-100x 是减函数,f (x )<60000-100×400=20000<25000.∴当x =300时,f (x )max =25000.即每月生产300台仪器时公司所获利润最大,最大利润为25000元.求解函数最大(小)值的实际问题应注意的2点(1)解实际应用题要弄清题意,从实际出发,引入数学符号,建立数学模型,列出函数关系式,分析函数的性质,从而解决问题,要注意自变量的取值范围.(2)实际应用问题中,最大利润、用料最省等问题常转化为求函数最值来解决.3.2.2.1函数奇偶性的概念要点整理 函数的奇偶性温馨提示:(1)奇偶性是函数的整体性质,所以判断函数的奇偶性应先明确它的定义域(对照函数的单调性是函数的局部性质,以加深理解).(2)奇偶函数的定义域关于原点对称,反之,若定义域不关于原点对称,则这个函数一定不具有奇偶性.题型一函数奇偶性的判断【典例1】 判断下列函数的奇偶性: (1)f (x )=2-|x |;(2)f (x )=x 2-1+1-x 2; (3)f (x )=x x -1;(4)f (x )=⎩⎨⎧2x +1,x >0,-2x +1,x <0.[思路导引] 借助奇函数、偶函数的定义判断. [解] (1)∵函数f (x )的定义域为R ,关于原点对称, 又f (-x )=2-|-x |=2-|x |=f (x ), ∴f (x )为偶函数.(2)∵函数f (x )的定义域为{-1,1},关于原点对称,且f (x )=0,又∵f (-x )=-f (x ),f (-x )=f (x ),∴f (x )既是奇函数又是偶函数.(3)∵函数f (x )的定义域为{x |x ≠1},不关于原点对称,∴f(x)是非奇非偶函数.(4)f(x)的定义域是(-∞,0)∪(0,+∞),关于原点对称.当x>0时,-x<0,f(-x)=1-(-2x)=1+2x=f(x);当x<0时,-x>0,f(-x)=1+(-2x)=1-2x=f(x).综上可知,对于x∈(-∞,0)∪(0,+∞),都有f(-x)=f(x),f(x)为偶函数.判断函数奇偶性的2种方法(1)定义法(2)图象法题型二奇函数、偶函数的图象【典例2】已知奇函数f(x)的定义域为[-5,5],且在区间[0,5]上的图象如图所示.(1)画出在区间[-5,0]上的图象.(2)写出使f(x)<0的x的取值集合.[思路导引] 根据奇函数图象特征作出函数图象,再求解.[解] (1)因为函数f(x)是奇函数,所以y=f(x)在[-5,5]上的图象关于原点对称.由y=f(x)在[0,5]上的图象,可知它在[-5,0]上的图象,如图所示.(2)由图象知,使f(x)<0的x的取值集合为(-2,0)∪(2,5).[变式] 若将本例中的“奇函数”改为“偶函数”,试画出在区间[-5,0]上的图象.[解] 因为函数f(x)是偶函数,所以y=f(x)在[-5,5]上的图象关于y轴对称.由y=f(x)在[0,5]上的图象,可知它在[-5,0]上的图象,如图所示.巧用奇、偶函数的图象求解问题(1)依据:奇函数⇔图象关于原点对称,偶函数⇔图象关于y轴对称.(2)求解:根据奇、偶函数图象的对称性可以解决诸如求函数值或画出奇偶函数图象的问题.题型三利用函数的奇偶性求值【典例3】(1)若函数f(x)=ax2+bx+3a+b是偶函数,定义域为[a-1,2a],则a=________,b=________;。
【新教材】3.1.1 函数的概念(人教A版)函数在高中数学中占有很重要的比重,因而作为函数的第一节内容,主要从三个实例出发,引出函数的概念.从而就函数概念的分析判断函数,求定义域和函数值,再结合三要素判断函数相等.课程目标1.理解函数的定义、函数的定义域、值域及对应法则。
2.掌握判定函数和函数相等的方法。
3.学会求函数的定义域与函数值。
数学学科素养1.数学抽象:通过教材中四个实例总结函数定义;2.逻辑推理:相等函数的判断;3.数学运算:求函数定义域和求函数值;4.数据分析:运用分离常数法和换元法求值域;5.数学建模:通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,提高学生的抽象概括能力。
重点:函数的概念,函数的三要素。
难点:函数概念及符号y=f(x)的理解。
教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
一、情景导入初中已经学过:正比例函数、反比例函数、一次函数、二次函数等,那么在初中函数是怎样定义的?高中又是怎样定义?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本60-65页,思考并完成以下问题1. 在集合的观点下函数是如何定义?函数有哪三要素?2. 如何用区间表示数集?3. 相等函数是指什么样的函数?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1.函数的概念(1)函数的定义:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任何一个属x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x)x∈A.(2)函数的定义域与值域:函数y=f(x)中,x叫做自变量,x的取值范围叫做函数的定义域,与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.2.区间概念(a,b为实数,且a<b)3.其它区间的表示四、典例分析、举一反三题型一 函数的定义例1 下列选项中(横轴表示x 轴,纵轴表示y 轴),表示y 是x 的函数的是( )【答案】D解题技巧:(判断是否为函数)1.(图形判断)y 是x 的函数,则函数图象与垂直于x 轴的直线至多有一个交点.若有两个或两个以上的交点,则不符合函数的定义,所对应图象不是函数图象.2.(对应关系判断)对应关系是“一对一”或“多对一”的是函数关系;“一对多”的不是函数关系. 跟踪训练一1.集合A={x|0≤x ≤4},B={y|0≤y ≤2},下列不表示从A 到B 的函数的是( )【答案】C题型二 相等函数例2 试判断以下各组函数是否表示同一函数:(1)f(x)=(√x )2,g(x)=√x 2;(2)y=x 0与y=1(x ≠0);(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z). 【答案】见解析【解析】:(1)因为函数f(x)=(√x )2的定义域为{x|x≥0},而g(x)=√x 2的定义域为{x|x ∈R},它们的定义域不同,所以它们不表示同一函数.(2)因为y=x 0要求x ≠0,且当x ≠0时,y=x 0=1,故y=x 0与y=1(x ≠0)的定义域和对应关系都相同,所以它们表示同一函数.(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z)两个函数的定义域相同,但对应关系不相同,故它们不表示同一函数. 解题技巧:(判断函数相等的方法) 定义域优先原则1.先看定义域,若定义域不同,则函数不相等.2.若定义域相同,则化简函数解析式,看对应关系是否相等. 跟踪训练二1.试判断以下各组函数是否表示同一函数: ①f(x)=x 2-x x,g(x)=x-1;②f(x)=√x x,g(x)=√x;③f(x)=√(x +3)2,g(x)=x+3;④f(x)=x+1,g(x)=x+x 0;⑤汽车匀速运动时,路程与时间的函数关系f(t)=80t(0≤t ≤5)与一次函数g(x)=80x(0≤x ≤5). 其中表示相等函数的是 (填上所有正确的序号). 【答案】⑤【解析】①f(x)与g(x)的定义域不同,不是同一函数; ②f(x)与g(x)的解析式不同,不是同一函数; ③f(x)=|x+3|,与g(x)的解析式不同,不是同一函数; ④f(x)与g(x)的定义域不同,不是同一函数;⑤f(x)与g(x)的定义域、值域、对应关系皆相同,是同一函数. 题型三 区间例3 已知集合A={x|5-x ≥0},集合B={x||x|-3≠0},则A ∩B 用区间可表示为 . 【答案】(-∞,-3)∪(-3,3)∪(3,5] 【解析】∵A={x|5-x ≥0},∴A={x|x ≤5}. ∵B={x||x|-3≠0},∴B={x|x ≠±3}. ∴A ∩B={x|x<-3或-3<x<3或3<x ≤5}, 即A ∩B=(-∞,-3)∪(-3,3)∪(3,5]. 解题技巧:(如何用区间表示集合)1.正确利用区间表示集合,要特别注意区间的端点值能否取到,即“小括号”和“中括号”的区别.2.用区间表示两集合的交集、并集、补集运算时,应先求出相应集合,再用区间表示. 跟踪训练三1.集合{x|0<x<1或2≤x ≤11}用区间表示为 .2. 若集合A=[2a-1,a+2],则实数a 的取值范围用区间表示为 . 【答案】(1)(0,1)∪[2,11] (2)(-∞,3)【解析】 (2)由区间的定义知,区间(a,b)(或[a,b])成立的条件是a<b. ∵A=[2a-1,a+2],∴2a-1<a+2.∴a<3, ∴实数a 的取值范围是(-∞,3). 题型四 求函数的定义域 例4 求下列函数的定义域: (1)y=(x+2)|x |-x; (2)f(x)=x 2-1x -1−√4-x .【答案】(1) (-∞,-2)∪(-2,0) (2) (-∞,1)∪(1,4]【解析】(1)要使函数有意义,自变量x 的取值必须满足{x +2≠0,|x |-x ≠0,即{x ≠-2,|x |≠x ,解得x<0,且x ≠-2.故原函数的定义域为(-∞,-2)∪(-2,0).(2)要使函数有意义,自变量x 的取值必须满足{4-x ≥0,x -1≠0,即{x ≤4,x ≠1.故原函数的定义域为(-∞,1)∪(1,4]. 解题方法(求函数定义域的注意事项)(1)如果函数f(x)是整式,那么函数的定义域是实数集R;(2)如果函数f(x)是分式,那么函数的定义域是使分母不等于零的实数组成的集合;(3)如果函数f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数组成的集合; (4)如果函数f(x)是由两个或两个以上代数式的和、差、积、商的形式构成的,那么函数的定义域是使各式子都有意义的自变量的取值集合(即求各式子自变量取值集合的交集). 跟踪训练四1.求函数y=√2x +3√2-x1x的定义域.2.已知函数f(x)的定义域是[-1,4],求函数f(2x+1)的定义域. 【答案】(1) {x |-32≤x <2,且x ≠0} (2) [-1,32]【解析】(1)要使函数有意义,需{2x +3≥0,2-x >0,x ≠0,解得-32≤x<2,且x ≠0,所以函数y=√2x +3−1√2-x+1x的定义域为{x |-32≤x <2,且x ≠0}.(2)已知f(x)的定义域是[-1,4],即-1≤x≤4. 故对于f(2x+1)应有-1≤2x+1≤4, ∴-2≤2x≤3,∴-1≤x≤32. ∴函数f(2x+1)的定义域是[-1,32]. 题型五 求函数值(域) 例5 (1)已知f(x)=11+x(x ∈R ,且x ≠-1),g(x)=x 2+2(x ∈R),则f(2)=________,f(g(2))=________. (2)求下列函数的值域:①y =x +1; ②y =x 2-2x +3,x ∈[0,3); ③y =3x−11+x ; ④y =2x -√x −1. 【答案】(1)1317 (2)① R ② [2,6) ③ {y|y ∈R 且y≠3} ④ ⎣⎢⎡⎭⎪⎫158,+∞ 【解析】(1) ∵f (x)=11+x ,∴f(2)=11+2=13.又∵g (x)=x 2+2,∴g (2)=22+2=6, ∴f ( g(2))=f (6)=11+6=17.(2) ①(观察法)因为x ∈R ,所以x +1∈R ,即函数值域是R.②(配方法)y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图),可得函数的值域为[2,6).③(分离常数法)y =3x -1x +1=3x +3-4x +1=3-4x +1.∵4x +1≠0,∴y≠3, ∴y =3x -1x +1的值域为{y|y ∈R 且y≠3}.④(换元法)设t =x -1,则t≥0且x =t 2+1,所以y =2(t 2+1)-t =2 ⎝ ⎛⎭⎪⎫t -142+158,由t≥0,再结合函数的图象(如图),可得函数的值域为⎣⎢⎡⎭⎪⎫158,+∞.解题方法(求函数值(域)的方法)1.已知f(x)的表达式时,只需用数a 替换表达式中的所有x 即得f(a)的值.2.求f(g(a))的值应遵循由内到外的原则.3. 求函数值域常用的4种方法(1)观察法:对于一些比较简单的函数,其值域可通过观察得到;(2)配方法:当所给函数是二次函数或可化为二次函数处理的函数时,可利用配方法或二次函数图像求其值域;(3)分离常数法:此方法主要是针对有理分式,即将有理分式转化为 “反比例函数类”的形式,便于求值域;(4)换元法:即运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域.对于f (x )=ax+b+√cx +d (其中a ,b ,c ,d 为常数,且a ≠0)型的函数常用换元法. 跟踪训练五1.求下列函数的值域:(1)y = √2x +1 +1;(2)y =1−x 21+x 2. 【答案】(1) [1,+∞) (2) (-1,1]【解析】(1)因为2x +1≥0,所以2x +1+1≥1,即所求函数的值域为[1,+∞). (2)因为y =1-x 21+x 2=-1+21+x2,又函数的定义域为R ,所以x 2+1≥1,所以0<21+x 2≤2,则y ∈(-1,1]. 所以所求函数的值域为(-1,1]. 五、课堂小结让学生总结本节课所学主要知识及解题技巧 六、板书设计 七、作业课本67页练习、72页1-5本节课主要通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,尤其在求抽象函数定义域时,先根据特殊函数的规律总结一般规律.。
必修第一册第三章函数的概念与性质3.1 函数的概念及其表示1.函数的概念:一般地,设A、B是非空的数集,如果对于集合A中的任意一个数x,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数。
记作:y=f(x),x∈A。
其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域。
2.构成函数的三要素:定义域、对应关系和值域(1)函数的定义域的求法:①自然型:解析式自身有意义,如分式函数的分母不为零,偶次根式函数的被开方数为非负数,对数函数的真数为正数;②实际型:解决函数的综合问题与应用问题时,应认真考察自变量x的实际意义。
(2)求函数的值域的方法:①配方法(将函数转化为二次函数);②不等式法(运用不等式的各种性质);③函数法(运用函数的单调性、函数图象等)。
(3)两个函数的相等:当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数。
3.常用的函数表示法(1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式;(2)列表法:就是列出表格来表示两个变量的函数关系;(3)图象法:就是用函数图象表示两个变量之间的关系。
4.分段函数:若一个函数的定义域分成了若干个子区间,而每个子区间的解析式不同,这种函数又称分段函数;5.区间的概念:设a,b是两个实数,且a<b,我们规定:(1)满足不等式a≤x≤b的实数x的集合叫做闭区间,表示[a,b];(2)满足不等式a<x<b的实数x的集合叫做开区间,表示(a,b);(3)满足不等式a≤x<b或a<x≤b的实数x的集合叫做半开半闭区间,表示[a,b)或(a,b];a,b都叫做区间的端点。
(4)代数与几何表示对照表(数轴上用实心点表示包括在区间内的端点,用空心点表示不包括在区间内的端点)(5)3.2 函数的基本性质⊆: 1.单调性:(1)定义:一般地,设函数y=f(x)的定义域为I,区间D I①∀ x1,x2∈D,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数;特别地,当函数f(x)在它的定义域上单调递增时,我们成它是增函数。